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Electronic tunneling into an isolated vortex in a clean type-II superconductor
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The electronic structure of a type-II superconductor is investigated in the vicinity of an isolated
vortex line by solving the Bogoliubov-de Gennes equations for the quasiparticle amplitudes. The
tunneling differential conductance as a function of bias voltage is calculated at the center of the
vortex; it shows a pronounced peak near zero bias originating from the lowest quasiparticle bound
state. This explains recent scanning-tunneling-microscopy observations by Hess et al. [Phys. Rev.
Lett. 62, 214 (1989)l. Quantitative agreement with these experiments can be obtained by consid-

ering several intrinsic and extrinsic broadening effects.

Theoretical attempts at understanding the electronic
properties of vortex lines in type-II superconductors have
recently been revived by a beautiful scanning-tunneling-
microscopy (STM) experiment by Hess et al. on NbSe2. '

In addition to vortex imaging, a strong enhancement of
the tunneling differential conductance was observed at
zero bias with the tip at the center of a vortex core. The
naive picture describing the vortices as cylindrical
domains having the properties of a normal metal cannot
account for this effect. A simple model was recently pro-
posed by Overhauser and Daemen which describes the
change in the density of states of such a cylinder of nor-
mal metal induced by coupling to a superconducting back-
ground. It predicts an enhancement in the density of
one-electron states at the Fermi energy in qualitative
agreement with the observations. A more complete un-
derstanding of the electronic properties of vortex lines,
however, requires a microscopic approach such as, e.g.,
given by the Bogoliubov-de Gennes theory. Within this
framework, and parallel with our own work, Shore et al.
have estimated the contributions of quasiparticle bound
states to the local density of states, and deduced that the
resulting tunneling conductance should have a peak at the
Fermi level. However, since their analysis did not include
the quasiparticle scattering states, no explicit complete
conductance spectrum was obtained and no direct com-
parison with experiment was possible.

In this paper, we study the electronic properties of a
vortex line in the framework of the Bogoliubov-de Gennes
theory, for both bound and scattering quasiparticle states,
analyze the tunneling process in terms of these states, and
show that the differential conductance observed in Ref. l

can be well reproduced in an energy range of EF ~360.
We also study the dependence of the tunneling differential

[(p —eA) —(Er+E))u(r)+h(r)v(r) 0, (la)

[(p+eA) —(EF —E)]i~(r) —6 (r)u(r) 0. (lb)

We consider here the case of an isolated vortex carrying
one flux quantum. Following Caroli and co-worker we
choose the gauge in which the order parameter d, (r) is
real so that the solutions can be written (in cylindrical
coordinates)

u(r, 8,z) -u„.p (r)e '"'e"',

i(r, 8,z) v„„l,(r)e'"'e' **,

(2a)

(2b)

where p is half an odd integer, n a radial quantum num-
ber, and u„„q(r) and v„„k(r) are solutions of the radial
equations

conductance on various parameters, such as the coherence
length and the anisotropy of the Fermi surface. We find
that for a quantitative explanation of the data, additional
extrinsic effects have to be invoked.

The electronic properties of a superconductor are deter-
mined in the mean-field picture by the solutions of the
Gor'kov equations. ' A closed solution of these equa-
tions, however, has only been obtained in the homogene-
ous case and appears to be beyond reach in the presence of
a magnetic field where the translational symmetry is bro-
ken by the appearance of vortex lines. Within the quasi-
particle approximation, the Gor'kov equations reduce to
the simpler Bogoliubov-de Gennes equations from which
one can obtain the properties of the lowest fermionlike ex-
citations of the system.

The Bogoliubov-de Gennes equations for the quasipar-
ticle amplitudes u(r) and v(r) read

, u„„I,(r) —— u„„l,(r)+gr' ""' r ar ""' r2
k,

EF — +E„„k u„„k(r) + h(r) v„„k(r) 0,
Z
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2 v„„l,(r) —— v„„k,(r)+ 2
— EF — —E„„p v„„k(r) —b, (r)u„„k,(r) 0.
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The order parameter d, (r) must be determined self-consistently by

A(r) 2V g u„„p(r)v„„l,(r) [1 —2f(El,gl, )I,
Pnkz

(3b)
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In the normal metal, the corresponding quantity is

AN(r, E) 2xgb(E —Eg) .
k

(5)

(6)

Assuming the tip to be small compared to g and centered
at r, the tunneling current due to an applied voltage Vis
then

I(r, V) ce Az(r, E)AJv(r, E+eV) .E
4 2x

The differential conductance is then given by

8I(r, V) g [u~gg (r )f (E~„p, eV)
Pnkz

+v„„g,(r)f'(E„„p+eV)],

(7)

(8)

where f' is the derivative of the Fermi function.
The tunneling process involves states near the Fermi

surface, which in NbSep consists of undulating cylinders
oriented along the k, direction and centered on the H-K
axis of the hexagonal Brillouin zone. s Its precise shape is
not well known, since it is modified by the onset of a
charge-density wave (CDW) below T 32 K. It can be
assumed, however, that the portions of the Fermi surface
which subsist in the presence of the CDW remain approxi-
mately cylindrical. s In the case of a perfectly cylindrical
Fermi surface (m, oo) Eq. (3) is independent of k, .
Deviations from a cylindrical Fermi surface will introduce
a finite dispersion as a function of k„which will tend to
broaden any structure in the density of states.

The matrix element which usually appears in the
definition of the tunneling current is described in detail by
Tersoff and Hamann. ' A detailed analysis sho~s that
the tunneling matrix element is maximal for states with
large k, . In the limit of a cylindrical Fermi surface, how-
ever, this will not have any effect on the spectral distribu-
tion, since the eigenvalues E„„p,are independent of k, and
the tunneling current will be given by Eq. (7).

The Bogoliubov-de Gennes equations were solved using
the following approximate form for the order parameter:

h(r) -hptanh —,r

where f(E) is the Fermi function and V is the electron-
electron attractive coupling constant. The Ginzburg-
Landau parameter is assumed to be large (xt-9 in

NbSeq), so that the spatial dependence of the magnetic
field can be ignored.

Equation (3) admits two types of solutions:s bound
states which are exponentially localized within a radius of
order ( of the vortex center with corresponding eigenval-
ues E„„q,& hp, and extended scattering states, which are
associated with eigenvalues E„„z,)&. The quantity of
interest for a comparison to a tunneling experiment is the
local density of one-particle excitations in the supercon-
ductor. This information is contained in the one-particle
spectral function, which in the quasiparticle approxima-
tion is given by

Az(r, E) 2n g tu„„q,(r)8(E E„„p,—)
ink,
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FIG. 1. Quasiparticle amplitudes u(r) (solid line) and v(r)
(dotted line) of the lowest bound state for kryo 40, EF/dp 32,
and T/T, 0.3.

which has the appropriate behavior in the limits r 0 and
r ~. The dimensionless parameter kF( was estimated
to be 40, which is consistent' with a value of kp of about
0.5 A ' and a coherence length g of 80 A. We solve Eq.
(3) in a cylinder of radius R » (, with Dirichlet boundary
conditions at r R. The dimensionless ratio EF/hp was
chosen to obey the relation 3 "

kF &

which for given g, & can be used, e.g., to define the in-

plane effective mass.
The lowest bound-state eigenvalues (E„„(dg)are in

good agreement with the values predicted by Caroli and
co-worker

hp
Ep p, p (10)

kF( EF
The quasiparticle amplitudes corresponding to the lowest
bound state are shown in Fig. 1. They are exponentially
localized on a distance of order ( near the vortex center.
Note the finite value of u~/q(r) at the origin, which is a
characteristic of s-like states (p & ) only. There are no
other bound states with p —,

' for kF( &80. States with
higher angular momentum are successively more extended
and have zero amplitude at r 0. Scattering states are
found at energies larger than hp. At energies larger than
2hp, the energy spacing between successive eigenvalues
becomes identical to that of free electron states contained
in a cylinder of radius R.

The complete tunneling differential conductance at the
center of the vortex core, shown in Fig. 2, was calculated
using Eq. (8) with kFg 40, m, ~, EF/hp 32, and
T/T, 0.3, which corresponds to the experimental condi-
tions of Ref. 1. The pronounced peak at zero bias arises
from the lowest bound state (p —,

' ) which, as mentioned,
is the only bound state that has a nonzero amplitude at the
origin. For V& hp, the contributions from scattering
states become dominant, giving the spectrum its charac-
teristic peak-dip structure. The calculation of the full
spectrum allows for a direct comparison with experimen-
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FIG. 2. Tunneling differential conductance calculated at the
center of the vortex using parameters kryo, Er/h&&, and T/ T, cor-
responding to the nominal experimental conditions (solid line),
compared to the experimental curve (dotted line).
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tal data, also shown in Fig. 2 for reference. The calculat-
ed zero-bias differential conductance is larger than the ex-
perimental one by a factor of 2 to 3. Various effects
reduce the magnitude of the zero-bias peak. First, we ex-
pect the peak height to be affected by the presence of im-
purities or defects. In fact, the height of the experimental
peak shows considerable variations from sample to sam-
ple, which indicates that the purity of the sample is an im-
portant parameter. " Second, any rise of the tip tempera-
ture above that of the sample, broadens the features of the
differential conductance and reduces the height of the
zero-bias peak which is strongly temperature dependent.
The peak height also decreases with increasing kF( for
given EF/hp. Calculations done with various values of kFg
show that in the limit of large kF(, the differential con-
ductance at r 0 loses its structure and becomes a con-
stant, as expected for a normal metal. This does not ex-
clude, however, the possibility that the differential con-
ductance may exhibit some structure at a distance of or-
der g from the vortex center.

In an attempt to reproduce more closely the experimen-
tal data, we have performed calculations with various
values of the parameters kFg, EF/d, p, and T/T, . The
differential conductance calculated with kr( 60, EF/&o

16, and T/T, 0.5 (i.e., about twice the nominal exper-
imental temperature) is shown on Fig. 3 (top). The
height and width of the zero-bias peak are now in good
agreement with the experimental curve. This in principle
offers the possibility of extracting materials parameters
from such a line-shape analysis. However, the enhance-
ment of the differential conductance beyond V= + hp
can never be reproduced in this fashion. Since this feature
was not observed in all the samples measured, "we attri-
bute it to extrinsic effects. For instance, the presence of a
secondary tip would in some cases add contributions to the
differential conductance from tunneling events into super-
conducting regions away from the vortex core. The
differential conductance in these regions has peaks near
V + hp corresponding to the singularities in the density
of states of a homogeneous superconductor. The differ-
ential conductance arising from such a double-tip config-
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FIG. 3. Top part: tunneling differential conductance calcu-
lated with adjusted kryo, Er/Ap, and T/T, values (see text).
Bottom part: theoretical results for kryo 40, Er/Ap 32, and
T/T, 0.45, with inclusion of the contributions of a secondary
tip. The experimental data are shown as a dotted line.

uration, represented by an equal combination of the
differential conductance at the vortex center and at large
distance from the vortex is shown in Fig. 3 (bottom),
along with the experimental curve. In addition, the struc-
ture of the underlying density of states of NbSe2 can begin
to appear in the differential conductance on an energy
scale of several hp.

In conclusion, we have investigated the electronic prop-
erties of a clean type-II superconductor in the vicinity of
an isolated vortex line by solving the Bogoliubov-de
Gennes equations for both bound and scattering quasipar-
ticle states. The complete tunneling differential conduc-
tance was calculated for the first time. At the center of
the vortex core, it shows a strong zero-bias enhancement
arising from the lowest quasiparticle bound state. This
yields the characteristic observed peak-dip conductance
spectrum. However, quantitative agreement with experi-
ment can only be obtained by using an increased effective
temperature and in some cases by assuming extrinsic
effects, such as the presence of a secondary tip contrib-
uting to the tunneling current. The solution of the
Bogoliubov-de Gennes equations in a vortex lattice
geometry is the next step towards a more complete under-
standing of the electronic properties of type-II supercon-
ductors in a magnetic field, and will be the subject of
forthcoming studies.
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