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Momentum noise in vacuum tunneling transducers
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(Received 15 November 1989)

The vacuum tunneling probe can serve as a sensitive transducer of position into current. The per-
formance of such a transducer is characterized by both the uncertainty in the inferred position Ax
and the uncertainty in the momentum transfer hp during the measurement. For realistic barrier pa-
rameters we find that the uncertainty product b,x hp differs by less than 1% from A'/2. We also cal-
culate the expectation values of the force associated with tunneling electrons. If sufficiently sensi-

tive force measurements can be made, this force can provide information about a surface or an ab-

sorbed atom, differing from that provided by the tunneling current.

I. INTRODUCTION

Recently, Bocko, Stephenson, and Koch' have pointed
out that the vacuum tunneling probe used in the scanning
tunneling microscope " represents a new class of nonre-
ciprocal electromechanical transducers. They argue that
such a probe may reach the quantum limit for a measure-
ment of the position of a macroscopic mechanical oscilla-
tor even when followed by non-quantum-limited
amplifiers.

In their noise analysis, it is assumed that when per-
forming a position measurement, the tunneling electrons
induce a momentum uncertainty bp -=A/hx, where Ax is
the uncertainty in the inferred position of the mass. Here
we rigorously show that an uncertainty product
b,x bp =A/2 can be realized for a square-well barrier.
For a realistic barrier we find that the uncertainty prod-
uct differs by less than 1% from fi/2. Although carried
out only for one-dimensional barriers, the analysis sug-
gests that real vacuum tunneling position transducers
could come close to achieving the minimum allowed by
quantum mechanics for the uncertainty product of posi-
tion and momentum.

The noise analysis of Bocko et al. ' suggests that it may
be feasible to measure the quantum fluctuations, Ap, in
the momentum transferred across the vacuum barrier. If
such a sensitivity can be achieved, an atomic force micro-
scope " could be used to probe directly the exchange
force that results as electrons tunnel across the vacuum
barrier. These forces are the covalent-bonding forces be-
tween the two sides of the tunnel junction. Momentum-
transfer measurements could thus complement more usu-
al methods ' of extracting the physical and chemical
properties of surfaces via tunneling microscopy. As an il-
lustration, we have calculated the momentum transfer for
a square-well atom on the surface of the tunneling probe.
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For simplicity, the potential V(x) will have the form de-
picted in Fig. 1. The potential is taken to be constant for
x (I, orx &lz,
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and momentum-current operators will be obtained. The
current and momentum shot noise is characterized by the
variances of these operators. For simplicity, the analysis
will be confined to one-dimensional barriers.

Consider the case where the electron wave function
satisfies the equation:

II. CURRENT OPERATORS

Tunneling theory has concentrated on evaluating the
charge transported across a barrier. " Here, in addi-
tion, we evaluate the momentum transported across a
barrier. Expressions for the second-quantized current

FIG. 1. A barrier potential. The figure indicates the behav-
ior of two independent solutions to the Schrodinger equation.
In (a) the incoming wave propagates toward the barrier from
the left. In (b) the incoming wave propagates toward the barrier
from the right.

41 8184 1990 The American Physical Society



MOMENTUM NOISE IN VACUUM TUNNELING TRANSDUCERS 8185
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The region 1, ~x ~ lz is the barrier. We will leave V(x)
unspecified here and do as much of the calculation as
possible in terms of the scattering matrix.

In the region x & l, and x & l2, the energy eigenstates

Pz(x, t)=gz(x)e ' ' " will consist of sums of plane
waves of the form

is the momentum-current operator

J
I'

2
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4m dx Bx ()x 2 ()x 2

The operators pz and Jz are related by

~Pp + ~Jp BV(x) @)@
Bt Bx Bx

(2.14}
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We introduce the notation

k, = [(2m /R )(E —V; ) ]' (2.4)

% =%,+%, ,
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and
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where i& I1,2I refers to space beyond the left or right
sides of the barrier. It is convenient to work with the two
independent solutions, g, (kz, x) and gz(kz, x), of Eq.
(2.1},which correspond to waves incident on the barrier
from the left and right sides, respectively. The incoming

lk (X —&k&x
waves are specified by e for 1(, and e for $2.

In terms of these wave functions the second-quantized
field operator 4 can be written as

This is not generally a continuity equation, because the
particle can exchange momentum with the potential
when BV(x}/Bx@0.

The experimentally measured current, J, is a filtered
version of J because of parasitic reactances and instru-
ment response times. Hence, the operator for the mea-
sured current is

J (t)= f H(t —r)J(r)dr, (2.16)

where H(t —r) is a causal filter function: H(t)=0 for
t (0 and f H (t)dt finite. In addition, it will be con-

venient to take H(t) to be a unit response function:

f H(t)dt =1 . (2.17)

From the operator (2.16) the mean tunneling current,
(J ), and its variance, (hJ ), can be computed. Let r
be some time interval and 8 be the filter-function band-
width; then the mean, (,N ), and the variance, (b,N), in
the number of electrons N that tunnel across the barrier
during the time ~ are given by

Again, the subscripts 1 and 2 on g refer to particles com-
ing at the barrier from the left and right sides, respective-
ly. The annihilation operators a] and az satisfy the usual
anticommutation relations

and

(bN) = (AJ )

(2.18)

(2.19)

[a„(k„),a, (k,')] =5„,5(k, —k,'), (2.8)

where r, s F [1,2].
The field operator 4 satisfies the Schrodinger equation:

A' a'4
Bt 2m Qx~

(2.9)

The probability density operator is

p ——%'%,

and the associated probability current operator is
T

g ae ae'
2/m Bx Bx

(2.10)

(2.1 1)

The operators p and J satisfy the continuity equation

ap aJ
Bt Bx

(2.12}

Similarly, associated with the momentum-density
operator

BN
Bl

(2.20)

For small-amplitude motions, a mechanical system
such as a tunneling probe can be represented as a collec-
tion of harmonic oscillators. Since momentum noise is
transformed into position noise after one-quarter of a
harmonic oscillator's period, we need also to consider the
momentum noise introduced by the tunneling process.
To determine how much of an incoming particle's
momentum is deposited on each half of the system, we
need to decompose the barrier V(x) into two parts:

This last equation follows from the Wiener-Khintchine
theorem under the assumption that ~ and I/8 are large
compared to the characteristic correlation time for J(t).

Let l denote the distance between the two walls of the
tunneling barrier. The tunneling current is a function of
l, so a measurement of N allows one to infer l. Fluctua-
tions in the tunneling current become fluctuations in the
inferred l, and the uncertainty in I is
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V(x)= V, (x)+ Vz(x),

where

av, (x)
F1=

BX

and

(2.21)

(2.22)

(2.29)

The position-momentum uncertainty product of interest
is thus hp„hl.

III. EXPECTATION VALUES

F2=
X

(2.23)

are the forces exerted on the electron by the left- and
right-hand electrodes of the tunnel junction. We require
that F, and F2 go to zero for x outside of [li, lz]. If we
look to Eq. (2.15) to find the momentum transferred to
the potential, we can write the momentum current into
the right electrode of the tunneling probe, J 2, as

We now evaluate the means and variances of the
particle-current and momentum-current operators for the
case when the incoming electrons on both sides of the
barrier satisfy Fermi-Dirac statistics. Let p, and p2
denote the chemical potentials on the left- and right-hand
sides of the barrier, respectively, and let P= I /ka T where
ka is Boltzmann's constant and T is the temperature.
Then, the occupation functions for the left- and right-
hand sides of the barrier are, respectively,

I2 () v'2(x)
Jp2=Jp(!2)+ f 4 %dx .

Bx
(2.24) 1

P1 1 P[& +E(k )]
(k )=

e ' '+1 (3.1)

The limits of integration are chosen to include the region
where V2(x) is not constant. The first term on the right-
hand side of Eq. (2.24) is the momentum current of the
electrons after they have crossed the barrier. The second
term accounts for the momentum delivered to the right
electrode by the force it exerts on the electron.

The momentum manifests itself as a change in the tun-
neling current as the tunneling probe masses move.
Hence, in terms of characterizing the transducer noise,
the momentum current of interest is the measured
momentum current

(2.25)

and

1
P2 2 p[)M +E(k )]

(k )=
2 2 + 1

We will need the following expectation values:

& a„(k„)a,(k, ) & =5„,5(k„—k, )p„(k„)

and

& a„(k, )a, (k, )a„(k„)a,(kb„) &

=[5 5,„5(k„—k, )5(k, —k„)

(3.2)

(3.3)

where H is the same filter function that appears in Eq.
(2.16). The mean &p & and variance (bp) of the tnomen-
tum deposited into the right-hand electrode during a time
~ is thus

(2.26)

and

—5 5,„5(k„—k„)5(k, —k, )]p„(k„)p,(k, ), (3 4)

where r, s, u, and v are elements of I 1,2I.
Using Eqs. (2.5)—(2.7) for the form of 4, and Eqs. (2.11)

and (2.16) for the definition of J, one can write the mea-
sured momentum current in the following form:

(2.27)

where 8 is the filter bandwidth, as defined in Eq. (2.19).
We now have the basic expressions required for

evaluating the position-momentum uncertainty product.
In evaluating this uncertainty product it is important to
keep in mind that some of the momentum fluctuations
may be correlated with the tunneling current Auctua-
tions. This correlated noise can be eliminated by stan-
dard techniques. Hence, it is the component of the
momentum noise that is uncorrelated with the current
noise that is of interest. Let r denote the correlation
coefBcient for the particle and momentum current:

J = g f dk„f dk,
'

A„,(k„,k,')
7

ks )'
X h (co'k, —cgk„)e

X a„(k„}a,(k,'),
where

B@,(k,', x)
A„,(k„,k,') = . g„*(k„,x)

21 teal BX

8@„'(k„x}
P, (k,', x)

(3.5)

(3.6)

(2.28)
The function h (co) is the Fourier transform of the filter
function H(t),

The variance (bp„) of the uncorrelated momentum noise
is then h(co)= f H(t)e' 'dt . (3.7)
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Since H (t) is real, h (co) satisfies the relation h(0)=1 . (3.9}

h (co)=h'( —~) (3.8)

and, since H (t) is a unit response function, one also has
Similarly, the momentum-current operator J has the
form

J,.= ' y f "dk„f "dk,'8„,(k„,k,')h(co„,, c—ok„)e "" "'' at(k„)a, (k,'),Pm 2 P
(3.10)

where

8„,(k„,k,') = aq„'(k„x) aq, (k,', x)
4m c)x c)x

c) Vi(x)+ f P,*(k„,x )f, (k,', x)dx

c) f„"(k„,x)
f, (k,', x)

Bx

(3.11)

If we take expectation values of the particle current and momentum current, Eq. (3.3) can be used to collapse one of
the two integrals appearing in the equations for J and J [Eqs. (3.5} and (3.10)]. The corresponding expectation
values are

and

2

(J ) = g f dk„A„„(k„,k„)p„(k„)
277 „) 0

1
2

( J~ ) = g f dk„B„„(k„k„)p„(k,} .
2TT „] 0

(3.12)

(3.13)

Similarly, we use Eq. (3.4) to collapse the integrals for the variances and correlation. ~e find

g f "«„f "dk,' A„,(k„,k,')8„(k,', k„)p„(k„)[1—p, (k,')] ~h(~&, , —~k„)~ . (3.14}pm 2 y

t

The expressions for (b J ) and (bJ~ ) have a form similar to Eq. (3.14), but with A„,(k„,k,')8,„(k,', k„) replaced by
A„(k„,k,') A,„(k,', k„) and 8„,(k„k,')8,„(k,', k„), respectively.

We can simplify these expectation values further in a practical experimental situation. Since the bandwidth over
w»ch one inight measure these small currents is less than 1 GHz, the energy scale E =fico over which h (co) is nonzeto
is small compared to energy scales over which A„, 8„,p„and p, vary. Hence, to a good approximation, Eq. (3.14)
reduces to

'2

g f dk„A„,(k„,k, )8,„(k„k„)p„(k„)[1—p, (k, )]f dk, Ih (cok, —cok„)~i,
t

(3.15)

where k, and k„are given by Eq. (2.4).
Since the particle dispersion relation outside the bar-

rier is

A' k'
S

'ANp +V2'

So, one finally obtains the following expression for the
cross-correlation between the current and momentum
current:

one has

m
dk =,dc()k's

Ak,
' (3.17)

g f dk„A„,(k„,k, )8,„(k„k„)2' „0
't

Xp„(k„)[1—p, (k, )] . (3.20)

and the dk, ' integral of the correlation function [Eq.
(3.15)] can be approxiinated as

Similarly, the current variance is given by

f dk, '
ih (cok., —cok„)i = 4irB,

0 S

(3.18) (b.J )~= g f dk„A„,(k„,k, )A,„(k„k„)2' „, 0
t

where B is the filter-function bandwidth

8 = f den ih(co)i' . (3.19)

Xp„(k„)[1—p, (k, )],

and the momentum-current variance is given by

(3.21}
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(b J )'= g f dk, 8„,(k„,k, )8,.„(k„k„)

Xp„(k„)[1—p, (k, )] . (3.22)

Before applying this formalism to specific examples, we
make one more approximation, the zero-temperature ap-
proximation. The occupation functions p„(k„),defined in

Eqs. (3.1) and (3.2), then become Heaviside unit-step
functions

p„(k„)=e(kF„—k„),
where

(3.23)

1 for x)0,
e(x)=, —,

' for x =0,
0 forx (0,

(3.24)

and kF, is the Fermi momentum for the rth electrode
(r E ( 1,2} ) of the tunneling probe. Let us take the Fermi
energy to be higher in electrode 1 than in electrode 2,
then all the p„(k„)[l—p, (k, )] in the variances and corre-
lations [Eqs. (3.20)—(3.22)] are zero except when r =1 and
s =2. Equations (3.20)—(3.22) thus reduce to

g, {ki,x)= '

Ek
l
x

for x &l],lk
l
x

e +M11e
ik~k

M2 e ' for x)l2, (4.2)

and

Iklx
M1 e ' for x (l1,

$2(k~, x)= '

ik~x
e -' +M„e ' for x)l2. (4.3)

pressions for ( J ) and (AJ ) . The usual shot-noise for-
Ik

l
x

mulas can then readily be derived. Let A 1e
' and

ikzx
A2e ' be plane waves approaching the barrier from

lk
l
x +&k2x

the left and from the right, and let B,e ' and B2e
be the plane waves leaving the barrier on the right and
left, respectively.

The amplitudes B, and B2 are related to A, and A 2

via the scattering matrix M:

B
1 M11 M12 A

1

(4.1)
B2 M21 M22 A 2

In terms of the M, , the wave functions it i(x) and lt2(x)
are

(J.J,.) —(J„,)(J,.)

B Flf dk, A, 2(k, , k2 )B~, (k2, ki ),
2m kLl Ak2

B kFl m(AJ ) = f dk, A„(k, , k, )A„(k2,k, ),
2m. kL l Rk 2

(3.25)

(3.26)

The M, are not independent; they are constrained be-
cause the scattering of a particle off the barrier is elastic,
and we assume particles are neither created nor des-
troyed.

The constraints on the M; are most easily derived as
follows: Let ND be the difference in the number of elec-
trons that eventually arrive at + ~ and —~:

and ND= J xdt . (4.4)
Fl

(b Jp. )2= dki- 812(kl, k2)82i(k2, kl) .
2~ kLl Ak2

(3.27)

The lower limit of integration, kL, , is determined by the
Fermi energy EF2 on the right-hand side of the barrier,
&.e.,

Clearly this difference does not depend on the position x
at which one chooses to evaluate ND. Substituting J
[Eq. (3.5)] into Eq. (4.4), one obtains

ND = g f dk„A„,(k„,k, )a„(k„)a,(k, ),. (4.5)
P', S S

where

&F2=
Ak Ll

2m
(3.28)

k, = k, + (V, —V„)

1/2

(4.6)

From Eqs. (3.25)—(3.27) one sees that states which are
filled or empty on both sides of the barrier do not contrib-
ute to Auctuations. Going back to the definitions of J
and Jz [Eqs. (3.5) and (3.10)], one sees that the noise
arises from expressions containing the products
a (k, )a~(kz) and az(kz)a, (k', ). The noise can thus be re-
garded as resulting from the interference of vacuum fluc-
tuations coming in from the right-hand side of the barrier
with the electrons that tunnel through the left-hand side
of the barrier.

M11

(k2/k, )'i M~,

(k, /k~)'i M, 2

M22
(4.7)

It follows that A„,(k„,k, ) must be independent of posi-
tion. Hence, evaluating A„,(k„,k, ) on both sides of the
barrier using its definition [Eq. (3.6)] and the wave func-
tion outside the barrier, Eqs. (4.2) and (4.3), one finds that
the matrix

IV. SHOT NOISE

In this section we make use of the properties of 1(, and
tt2 outside the barrier region to further simplify the ex-

is unitary.
Useful relations that easily follow from the unitarity of

the matrix equation (4.7) are

(4.8)
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and

1 2

(4.9)
that for such a barrier an uncertainty product of A/2 can
be realized. This is the minimum dispersion in position
and momentum allowed by quantum mechanics. The
barrier is taken to have the form

'
/M»/2.

1

The 3„,evaluated for x & 12 are

(4. 10)
V forx &I, ,

V(x)= . V1, for l, &x & l2,
V for l &x .

(5.1)

and

A„(k„k2)=
A'k2

~ 22 ( k 2 ~ k 2 )
Ak2

(1—M» ~'),
m

Ak,
~ 12(k 1 ~ 2 ) M21M22

(4.11)

(4.12)

(4.13)

Note that Eq. (2.2) specializes to V1= V2 = V. Such a po-
tential can be expected to give a reasonably good descrip-
tion of low-voltage tunneling between electrodes made of
the same metal.

When the energy E of the tunneling electron is less
than Vb, the wave functions in the region I, &x & lz have
the forms

221(k„k2)= Ak2
M2~M2) .

m
(4.14)

—kbx kbx
tl2=R2, e +R22e

(5.2)

Using Eqs. (4.8)—(4.12), the expression for the mean
current [Eq. (3.12)] can be put into the form

Ak)f dk2 IM 12
I' [p1(k1)—p2(k2)] .

(4.15)

where

( Vb E)—' 1/2

(5.3)

If we match f and g' at l1 and l2, using Eqs. (4.2), (4.3),
and (5.2), we obtain

Again, taking the zero-temperature limit, this can be ex-
pressed as

(J )= f„L1
(4.16)

kF1

L1
(4.17)

A similar substitution [Eqs. (4.13) and (4.14) into Eq.
(3.26)] yields the variance of J

M„=i (k +k1, )sinh[kb(l, —l2)]e '/D(k),
lk (11 —

l~ )

M12=M21=2kkbe ' ' /D(k),

and

M22=i(k +kb)sinh[kb(11 l2)]e '/—D(k),
where

D(k)=2kkbcosh[kb(1, —l2)]

(5.4)

(5.5)

(5.6)

When the transmission probability through the barrier is
small, which is generally the case in scanning-tunneling
microscopy, the reflection coefficient ~M22~ is very near-
ly unity and one has

kF1(aJ. )'= f„d—k, ~M»(Z) ~2 .
L1

(4.18)

If we compare this equation with that for the mean
current, Eq. (4.16), we obtain the usual shot-noise formu-
la

i (k„——k )sinh[kb(l, —l2)] . (5.7)

(5.8)

In writing Eqs. (5.4)—(5.7) we have used the fact that
V1 V2 V which implies k i

=k 2
=k.

Under low-bias voltage conditions the difference hk in
the Fermi momenta on the left- and right-hand sides of
the barrier will be small compared to the scale on which
M," vary. Hence, the integrals for the expectation values
of the current [Eqs. (4.16) and (4.17)] become

(&J )'=2&(J ) . (4.19)
and

(bN) =(N) . (4.20)

Using the relations between J and N [Eqs. (2.18) and
(2.19)], one finds that the variance is equal to the mean
for the number of particles crossing the barrier in a time
interval ~:

&(~J.)'&= — fM»/2/M22)2~k . (5.9)

Using Eqs. (2.18) and (2.19) to connect J and N, one ob-
tains

V. THE RECTANGULAR BARRIER

In this section the position and momentum uncertain-
ties for a rectangular barrier are evaluated. %e show

and

&N &
= ]M„/'n (5.10)

(5.11)
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where

Akbk~n=
27Tm

(5.12)

4k 2k 2(X)=,n
ID (k) I'

(5.13)

and, using Eq. (2.20) to deduce the inferred position noise
from AX,

ID(k)I
4n' kkb(kb+k )cosh[kb(l, —12)]

(5.14)

can be thought of as the number of electrons attempting
to tunnel across the barrier in the measurement time ~.

If we insert the expressions for M [Eqs. (5.4)—(5.6)] into
Eqs. (5.10)—(5.12), we obtain

$2

2m
(5.22)

In obtaining Eq. (5.22) use was made of the relationship

(k' —kb)IMi2I =(k +kb)Re(M2~e '), (5.23)

$2
(J ) = f dk (k' —kb)IM„ I'[p, (k)+p, (k}] .

(5.24)

which can be derived from Eqs. (5.6) and (4.10).
The expressions for the A„, [Eqs. (4.11)—(4.14)], the B„,

[Eqs. (5.20)—(5.22)] and M [Eqs. (5.4)—(5.7)] can now be
substituted into Eq. (3.13), the general expressions for
(J~ ), to obtain the mean momentum current flowing
across the barrier. The mean momentum transferred is

For kb(l i
—l2) ))1, these expressions simplify to

(~)=16k k e (5.1 5)

Similarly, one also finds that the real part of the cross-
correlation equation (3.25) between the particle current
and momentum current is zero:

and Re((J J ) —(J )(J ))=0. (5.25)

(k+k )e'
hl=

8n' kk b

(5.16}

From Eq. (5.15) one sees that the mean number of parti-
cles crossing the barrier decreases exponentially with the
barrier width l. From Eq. (5.16) one sees that uncertainty
in the inferred barrier width increases exponentially in l,
but decreases as the square root of the number of parti-
cles that have crossed the barrier.

For the square-well potential, as defined in Eq. (5.1),

BV (x)
b

= —( V —V}5(x —l ) .2 (5.17)

J~(l2 )=Jp(lg+ )
—(Vb —V)+ (l2)iI'(l2) . (5.18)

The above equation may be compared with the expres-
sion for the momentum transferred into the right elec-
trode [Eq. (2.24)] to find that

J~2=J~(12 ), (5.19)

that is, J&2 is the momentum current through the barrier.
We are now in a position to evaluate the B„which ap-

pear in the expression for J [Eq. (3.10)]. We can substi-
tute expressions for the wave functions outside the bar-
rier [Eqs. (4.2) and (4.3)] into Eq. (3.11), which defines the
8„„to get

We integrate Eq. (2.15) from x, =12—e to xz =li+e and
take the limit e~O to obtain

Hence, the correlation coefficient r [Eq. (2.28)] is zero.
Thus, for the square barrier potential, Eq. (5.1), the tun-
neling current and the momentum current are uncorrelat-
ed. Again, we obtain the variance of J by substituting
Eq. (5.21) into Eq. (3.27):

8 Ak

&& [(k'+ k')' —(k' —kb )'IM22 I'] (5.26)

We next use Eqs. (5.5) and (5.6) to supply M2, and M&2,
and Eq. (2.27) to relate the momentum transfer to the
momentum current. The momentum uncertainty is
found to be

2n' irikk (k +k }
bp cosh[kb(l, —li)] .

D(k)
(5.27)

The position-mornenturn uncertainty product can now be
evaluated by multiplying Eqs. (5.14) and (5.27). One ob-
tains

b.l hp =A'/2 . (5.28)

This is the minimum position-rnomenturn uncertainty
product allowed by quantum mechanics. A vacuum tun-
neling probe can thus perform position measurements
with the smallest allowed dispersion in p.

fiB„(k,k)= (k —k )IM2, I

B,2(k, k)=B~, (k, k)

$2

2m
(k +k )M*e

b

g2+ (k kb )M~,M2~, —
2m

(5.20)

(5.21)

VI. TUNNELING IN THE PRESENCE
OF AN ELECTRIC FIELD

In this section we evaluate the position-momentum un-
certainty product for the more realistic case when a
nonzero electric field is present between the two elec-
trodes. It is shown that for realistic barrier parameters
the uncertainty product differs from A/2 by less than 1%.
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The potential is depected in Fig. 2 and is given by Vb~

V& for x & I&,

~br —~b]V(x)= (x —I&)+ V&, for I, (x (12,
I —/,

Vq for lq (x .

(6.1)

V

V)

Y&z

The slope in the potential between /& and lz is due to the
electric field appearing between the two electrodes. Since
the electrostatic attraction of the electron towards one
electrode is equal to the electrostatic repulsion from the
other, the interaction of the electron with the right elec-
trode, V2(x ), can be written as

Vp

FIG. 2. A rectangular barrier in the presence of an applied
voltage.

—,'( V&2+ Vz&) for x (I&,

l ~b~- ~b]
V2(x) =

2 l~ —I )

V~ for l~ &x .

(x —I, )+-,'(V„+V„,) for I, (x (12, (6.2)

V2(x) is defined in Eqs. (2.21)—(2.23). The B„„Eq.(3.11), can now be written in the form

B„,(k„,k,') =C„,(k„k,')+ — f g„*(k„,x)g, (k,',x)dx, (6.3)

where

Bp„"(k„,x) Otter, (k,', x) 3 1I,(k,', x) 8 p„'(k„,x)
C„,(k„,k,') = 2

" —g„'(k„,x) — g, (k,', x)
4m Bx Bx Bx

—( V~2
—V2)g„*(k„,12)g, (k,', 12) .

x=1+
2

(6.4)

Using the form of the wave function outside the barrier
[Eqs. (4.2) and (4.3)], the C„can be expressed in terms of
the M, . In particular, one obtains

I

appearing in Eq. (6.3). These we evaluated numerically.
The calculation was done by numerically integrating the
equation

and

C), (k„k, )=
fi kb + V2

—
Vt, 2 ~M2, (E)

~

2m

—I 2k
2 I2+ ( V2

—Vb2)M2, (E)e

C„(k„k,) =C2, (k2, k, )

Ak + V2
—

Vq2 M2) (E)M22(E)

(6.5)

(6.6)

dy' dy 2m [F.—V(x)] 2

dx dx
—k y, (6.8)

which has y =1Ie ""as its solution, where g is the wave
function in the Schrodinger equation (2.1). An integra-
tion across the barrier in each direction yields the infor-
mation necessary to calculate the scattering matrix. Ad-
ditionally, y was expanded in an (8—16)-term cosine
Fourier series inside the barrier, and the series expansion
was used to evaluate

l~j f„'g, dx

22 k2&k2)
Ak ' + V, —V„[1+~M22(E) ~']

m

+2( V2
—v/2)/e[M22(g)e ] . (6.7)

The zero-temperature variances and cross-correlation
for the particle current and momentum current can now
be obtained from Eqs. (3.25)—(3.27), provided one knows
the scattering matrix elements M; (E) and the integral.

for use in Eq. (6.3).
The parameters used in the analysis are those depicted

in Fig. 3. A spacing of 5 A was chosen between the bar-
rier walls. The potential difference as one crosses from
the interior of an electrode to the vacuum space is 5 eV.
The Fermi energy in each electrode is taken to be 1 eV.
The bias voltage across the electrodes was varied from 0
to 4.0 V. The results of the uncertainty-product calcula-
tion are displayed in Fig. 4(a). Note that over the range
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FIG. 3. This figure depicts the parameters used in the numer-

ical calculations of the uncertainty product (Fig. 4). EF denotes
the Fermi energy.

of bias voltages applied, the uncertainty product differs
from fi/2 by less than l%%uo. Since there is generally some
correlation between the momentum current and the par-
ticle current, Eq. (2.29) was used to determine the part of
the momentum noise uncorrelated with the tunneling
current. Figure 4(b) displays the correlation coeScient.
Although it is nonzero, it is small compared with unity.

The results described here were obtained by integrating
over the Fermi sea. The results are not appreciably
different from those that would have been obtained from
the tunneling of a monoenergetic beam of particles at the
Fermi energy. This results from the fact that the proba-
bility of tunneling rapidly increases as the electron energy
increases. Energy levels near the Fermi energy thus con-
tribute most to the tunneling current.

The numerical results presented here indicate that tun-
neling probes used as position transducers could come
close to optimum performance even with a sizable bias
voltage across the electrodes.

VII. TUNNELING THROUGH AN ATOM

V,

V(x)= V,

Vd

V,

for x &l, ,

for l, &x &l2,
for I2 &x & l3,
fOr l3 &x &l4,
for l &x.

(7.1)

L

We will consider the case when the energy E of the tun-
neling electrons satisfies V, &E & V&. An energy eigen-
state then has the general form

ik x —ik x
a le

' +a2e ' for x & l, ,
—kbx kbx

b, e +b2e for l, &x & l2,
ik, x ikc xg= 'c, e ' +cze ' for 1z (x (l3
—kdx kdx

d, e +d, e for l3 &x &l4,
ik, x —ik,, x

e1e ' +e,e ' for /4&x .

(7.2)

Matching the wave function and its first derivative at the
boundaries, one obtains transfer matrices relating the am-
plitudes at the boundaries. For example, at x =I, one
obtains

a1

Q2

T11 T12 b1
(7.3)

The forces that result from the exchange of electrons
across a barrier can be either attractive or repulsive.
These covalent-bonding forces can be detected by
measuring the momentum imparted to one of the elec-
trodes. To determine the kind of information available if
one measures p, tunneling through a square-well barrier
with an atom attached to one wall will be evaluated here.
The atom is modeled as a rectangular well within the bar-
rier. The potential is depicted in Fig. 5 and is given by

where

0.50m — (o)

~ 0,502—
c3

0,500 —-

0.12 — (b)O

0.08—
UJ

0.04—
O
O 0'

0 2
BlAS VOLTAGE (V)

V

Vp

Vb

0) b&

Vd

C) dq e)
+-

+
cp dp 82

V'e

FIG. 4. (a) The position-momentum uncertainty product and
(b) the correlation coefficient for the particle current and
momentum current evaluated for the potential of Fig. 3. Note
that the uncertainty product differs from A/2 by less than l%%uo

even when the bias voltage is as high as 4 V.

Vc

Jp

FIG. 5. A rectangular barrier with a square-well atom.
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1T' =—
11

—ik I —k I
1 e a 1e b 1

ik,
(7.4)

1.5x10 5

1T' =—1—
12

kb —ik I k Ia1b1
ik,

(7.5)

&- 1.0—
I-

o 05
Q

—1.0

0.5
IX
0

and

ik I —k IT' =—1+ e ''e
2 ik,

(7.6) O
V) PP

V)
X

-05

0.0 I-
LID

O
-0.5

kb ik I k ITa 1
a1b1

2 i'k

At x =12 one obtains

(7.7) -10
0.0 0.2 0 4 0.6 0.8

ELECTRON ENERGY (eV)

I

1.0
-10

1.2

b bb] T]1 T12 C]

b2 T21 T22 C2
b b

where

(7.8)

FIG. 6. The transmission probability and the momentum
current as a function of electron energy for the barrier of Fig. 5.
Note the differing response of the transmission probability (tun-
neling current) and the momentum current as the electron ener-

gy is varied through the atomic resonance. See the text for the
parameters characterizing the tunneling barrier.

ik,
T =—1—

2 b

kb 12 lkc l
e e (7.9)

and

1 c kb t2 —tkc I2ik

2 k
e e

b

(7.10) T]2
M 22 T11

(7.18)

Tb 1 c —
kb 12 ikc Iik

1

b

(7.11)

and

ik,
T =—1—

2 k b

—k I —ik Ib2e c2 (7.12)

The scattering matrix M relating the incoming waves a]
and e2 to the outgoing waves a2 and e],

a2 M]1 M]2 a]
e] M2, M22 e2

is obtained from the transfer matrix via

(7.14)

One has expressions similar to Eqs. (7.3)—(7.7) or Eqs.
(7.8)—(7.12) at the remaining boundaries l3 and l~. The
overall transfer matrix relating e] and e2 to a] and a2 is
obtained by multiplying these transfer matrices together:

T]1 T12 T]1 T]2 T]1 T]2

T21 T22 T21 T22 T21 T22
b b

T

T]1 T]2 T]1 T ]2

T' T' T' T21 22 21 22

Once a2 and e] have been obtained in terms of a] and e2,
all the other amplitudes can be obtained using the
transfer matrices. By evaluating the expectation value of
J~(x) at x =!2—e, one can obtain the momentum current
transferred by an electron of energy F. as it tunnels to the
side of the barrier containing the atom.

Figure 6 shows the mean momentum current and the
mean tunneling current as a function of energy E for a
monoenergetic beam of electrons that propagate toward
the barrier from side 1. Here the parameters V, =0 eV,
Vb =4 eV, V, = —2. 1 eV, Vd =4 eV, V, =0 eV, 12

—l, = 8

A, l3 —12=2 A, and 14
—13=1.2 A were chosen. The

tunneling current goes through a maximum when the
electron energy matches an energy eigenstate of the atom.
The mean momentum transferred is negative for electron
energies below the atomic resonance energy and goes
through zero at the atomic resonance energy. The
momentum transferred approximates the derivative of
the tunneling current near resonance. One sees that in-
formation independent of that contained in the tunneling
current can be obtained from momentum-transfer mea-
surernents. A tunneling probe engineered to measure
momentum transfer would allow one to look at the ex-
change or covalent-bonding forces and thus would allow
one to look at the chemical properties of a surface.

T21
M]1 =

11

T]2 T21
M]2 T22 T11

1
M2, =

T]1

(7.15)

(7.16)

(7.17)

VIII. CONCLUSIONS

We have shown how to calculate the momentum
transfer resulting from electrons tunneling across a vacu-
um gap. Although the analysis was carried out in one di-
mension for particles satisfying the free-electron disper-
sion relation, the techniques should be generalizable to
more realistic three-dimensional models. We have shown
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that a position-momentum uncertainty product equal to
fi/2 can, in principle, be achieved. This suggests that ap-
propriately engineered tunneling probes can serve as po-
sition transducers performing close to the limit imposed
by quantum mechanics. If, as Bocko et al. ' have sug-
gested, a tunneling probe can be made sensitive enough to
detect momentum transfer, then such an instrument can
be used to measure covalent-bonding forces between the

electrodes and thus obtain information about the chemi-
cal properties of the surface. It should also be noted that
if one tunnels into a sufficiently loosely coupled object,
such as an organic molecule on a substrate, the momen-
tum noise can induce significant fluctuations in the mole-
cule. For instance, a molecule with a mass of 10 amu
will have position fluctuations which are comparable to
the 0.01-A position sensitivity of current microscopes.
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