
PHYSICAL REVIEW B VOLUME 41, NUMBER 12 15 APRIL 1990-II

Properties of a substitutional and/or interstitial surface hydrogen atom
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The ground state of a substitutional and/or an interstitial hydrogen atom at the surface of solids
is studied theoretically under the half-confinement approximation. The resultant wave function is
not spherically symmetric, thus resulting in a nonzero dipole moment which points toward the
solid, and the binding energy of the electron of the impurity-hydrogen atom is significantly lowered.
The chemical activity of the confined atom and of the surface of solids is therefore greatly enhanced.

I. INTRODUCTION

Many surface properties, such as adsorption, catalysis,
and etching are related to the various defects of the sur-
face. ' In this paper, we investigate a simple but impor-
tant type of surface defect, namely, the impurity atom
trapped in a vacancy at the surface of solids. The results
will also be applicable to a description of the impurity
atom at an interstitial position of surface. We will give a
quantitative discussion of the behavior of the trapped
atom in the hope that it will be helpful in the understand-
ing of some chemical and physical processes at the sur-
face.

Obviously, the properties of a substitutional (or an in-
terstitial) atom are determined by its mutual interaction
with the neighboring substrate atoms. Such interaction
changes the wave function and energy of the impurity
atom. Generally speaking, the interaction is rather corn-
plicated. However, the problem may be greatly simplified
for solids in which the host atom or ion has a closed-shell
structure. This is particularly true for molecular crystals
which are formed from inert gas atoms. Taking the solid
of an inert gas such as Ar as an example, if a surface Ar
atom at a lattice point is replaced by a H atom impurity,
or the H atom is located in an interstitial position, the
neighboring Ar atoms mainly exert Pauli repulsion, re-
stricting the region of motion of the electron of the hy-
drogen atom. Similar arguments should apply to ionic
crystals such as NaC1 when a Na+ ion is replaced by a H
atom. As for metal crystals, minor modification may be
necessary due to the free electrons.

We can formally introduce some repulsive potential to
simulate the action of host atoms on the substitutional or
interstitial atom. In fact, similar approximations have
been successfully used to describe the properties of a
trapped hydrogen atom in solid o.-quartz. In the orig-
inal application by Mickels et al. , a model of a hydrogen
atom confined in a spherical box with an impenetrable
wall was made by adding to the normal Hamiltonian an
infinite potential at radial distance larger than the radius
of the box. There is no difficulty in principle to extend

such a model to describe the substitutional or interstitial
surface atom if the substrate atom is closed-shell one.
The main modification now is that the box is opened.
Following Mickels et al. , we replace the infinite potential
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FIG. I. The geometry of the surface vacancy and the con-
tours of probability density of electron of the half-confined
hydrogen atom in ground state in the vacancy
(vl =1,v, =O, m =0). The shape of the potential wall of repul-
sion is approximately represented by a paraboloid of revolution.
go is approximately equal to the nearest-neighbor distance of the
solid. ~, the nucleus of the impurity-hydrogen atom; 0, the
host atom.
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by an equivalent boundary condition of the wave func-
tion. The wave function of the electron of the impurity
atom is required to vanish at the impenetrable wall of the
vacancy. We prefer to use an upward-opened para-
boloidal wall rather than a hemisphere one to describe
the geometry of the surface vacancy (Fig. 1) because it
leads to simple analytic solution of the Schrodinger equa-
tion. We note that the dashed line in Fig. 1 represents a
segment of the fictitious wall which has very little effect
on our calculation because the wave function is very
small there.

The paper is organized as follows. In Sec. II, the
Schrodinger equation of half-confined atomic hydrogen
at the surface of a solid is solved. We obtain a simple
wave function of the ground state and we use it to corn-
pute the dipole moment. The ground-state energy is also
computed. In Sec. III some general properties of the sub-
stitutional or interstitial surface atom and their conse-
quences are discussed.

The calculation of atomic hydrogen is not only for the
sake of simplicity, but also for the following considera-
tions: (1) a hydrogen atom exhibits high surface mobility;
therefore, it may be easier for it to be trapped in a surface
vacancy; (2) hydrogen atoms are particularly important
in astrochemistry, due to the abundance of the element
hydrogen in the universe (about 90%).

We would like to emphasize the substantial difference
of the present discussion from the conventional one.
Here the substitutional hydrogen atom located in a sur-
face vacancy or the hydrogen at an interstitial position of
surface is a half-confined atom which is only weakly
bound. Its behavior is quite different from that of the
bonding atom such as H-W, H-Si, and H-Pb at the sur-
face of the solid. We believe such surface atoms are
much more active in chemical processes than the bonding
atoms.

II. BASIC FORMULAS AND CALCULATIONS

We assume the impenetrable potential wall of surface
vacancy has a paraboloidal shape, as illustrated in Fig. 1.
The nucleus of a hydrogen atom is located at the focus of
paraboloids of revolution. To describe the motion of
atomic hydrogen, it is most convenient to use the para-
bolic coordinates (g, 11,p )

tion of the electron of the hydrogen atom with the solid is
represented by the requirement that the wave function
vanish on the impenetrable potential wall,

4(0o n 9»=0 (3a)

where go is a parameter characterizing the shape of the

vacancy. "
Another natural condition is, of course,

$(g, vl, k)~q „=0 . (3b)

f(g, v1, cp) =cfi(j)f1(rl)f3(V ) (4)

into Eq. (2), we obtain the following equations:

pi~ 4 d d m~

2V

4pI
f, =Ef, , (5a)

4 d d

2p 7J d'g d 7/
7I

d 2f = —m f, ,

4p~ f, =Ef~, (5b)

(5c)

where the parameters p, and pz satisfy

p, +p1= —,'e

The solution of (5c) is

f3(y)=e™~,
with the magnetic quantum number m =0,+1,+2, . . . .

For bound states E (0, we introduce the dimensionless
variables

pr2aov
'

2aov

0

where ao =—h /pe =0.53 A is the Bohr radius. v corre-
sponds to the principal quantum number n of a free hy-

drogen atom.
Equations (5b) and (5c) can now be written as

The Schrodinger equation (2) with the boundary condi-
tions (3a) and (3b) can be solved in a similar way as for
the free hydrogen atom. We briefiy outline the pro-
cedure. Inserting

x =&f11cosy', y =&(11sing, z =
—,
' (1)—g),

where g and 1) range from zero to ~ and y ranges from
zero to 2m. The surfaces of constant g (or 1)) are upward
opened (or downward opened) paraboloids of revolution
about the z axis normal to the surface of a solid. The
Schrodinger equation of atomic hydrogen in parabolic
coordinates is

df, 1 df,

dp pi dpi

+ 2 fm/+1 +v;
Pi

with

Pl —1 f, =0, i =1,2
4p2

(9a)

4 a a a a 1 a'

zi g+~ ag ag a~ "aq

28
++11

(2) and

v, = vP, ——I()m[+1), i =1,2=2
e

(9b)

According to the discussion given in Sec. I, the interac- v, +vz+~m~+ 1=v . (9c)
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The asymptotic solution of Eq. (9) behaves like e ' atP,

large p; and like p; at small p;. Therefore, we assume

f (p;)=e 'p,' 'w (p, ) . (10) 6.0-

The equation for w;(p; ) is obtained by combining (9)
and (10),

d W; dW;
p, +(imp+1 —2p;) +2v;w;=0 .

dp] dpi

The solution of Eq. (11) is the well-known confluent
hypergeometric function'

5.0-

4.0-
O

C3S 30-
CL

2.0-

-5.0

—- IO.O

w;(p;)=F( —v; Iml+1, 2p, ),
where

(12)
I.O-

- I3.6

a z a(a+1) z +
P 1! P(P+1} 2!

(13)

Xe " "F(—v„~m~+1, 2p, )

XF( —v2, [m~+1, 2p2)e' (14)

Therefore, the solution of the Schrodinger equation is

4(C n m) =«ptpz)!

I0 20 30 40 50

&O(00)

FIG. 2. The dipole moment I' and the ionization energy E of
the half-confined hydrogen atom in the ground state at the sur-

face as a function of the focal distance go. , the relation of
P vs $0; ———,the relation of E vs go.

The boundary condition (3b) demands that vz take only
non-negative integers v2=0, 1,2, . . . .

The boundary condition (3a) is equivalent to

vhth

dv= ,'(g+rl)d—gdgdy . (16b)

F( —v), ~m~+1, 2p, )~ O=0.
PI PI

(15)

f g'ezfdv
P=P, =

f f'gdv
(16a)

2p, —=gol(aov) are therefore the zeros of the function F.
Only positive v, is possible to satisfy Eq. (15}. This is be-
cause when v, & 0, each term of the function F in (15) is
positive [see Eq. (13}].

We summarize the above results as follows. The eigen-
functions of the Schrodinger equation (2) are expressed in
Eq. (14). Each state is labeled by three quantum numbers
(v, , vz, m). m =0,+1,+2, . . . ; vz=0, 1,2, . . . ; for a given
focal distance go, v, is obtained by solving (15), v, &0.
The solutions of Eq. (15) form an increasing monotonic
series v, =vt, v„. . . . The energy of state (v„vz, m ) is
given by E =e l[2ao( vt+ vz+

~
m

~
+ 1) ]. v, is in general

not an integer.
Our main interest here is the ground state of the half-

confined hydrogen atom. It corresponds to v2=m =0,
and v, is such that 2p, is the first positive zero of function
F in (15}. In practice it is easier to determine go for a
given v, . After obtaining the first positive zero (2p&) of
Eq. (15), the focal distance go=vao(2p, ) and the energy
are determined.

The wave function of a half-confined hydrogen atom is
no longer spherically syrnrnetric but pushed out of the
surface somewhat. As an example, the ground-state wave
function for v, =1 is shown in Fig. 1. With such a wave
function, a dipole moment is induced,

Note in (16a} the integration limits in variable g are from
zero to go.

The ground-state energy and the dipole moment are
presented in Table I (Ref. 12), and in Fig. 2. As the focal
distance from the large value of the free hydrogen atom
limit decreases, the energy is increased, and so is the di-

pole moment.

III. DISCUSSION AND CONCLUSIONS

Unlike the spherical symmetric wave function of a free
hydrogen atom, the ground-state wave function of a
half-confined substitutional or interstitial atom is
lengthened in the direction normal to the solid's surface.
The first consequence of this deformed wave function is
the appearance of the dipole moment. The existence of
the dipole moment increases considerably the possibility
of the interaction of the surface hydrogen with other
atoms in the ambient atmosphere. Positive charged ions
such as N + and 0 + are particularly attractive to the
confined hydrogen atom.

The second consequence of the deformed wave func-
tion is the lowering of the binding energy of the electron.
Therefore, a half-confined atom is more easily ionized
than a free atom. From Table I we see that a more
confined atom has a smaller binding energy. We expect
experimental verification of this. In the discussion of the
chemical reaction at the surface of solids, the energy as
well as the change in the wave function should be taken
into consideration. Therefore, a greatly enhanced chemi-
cal activity of the surface hydrogen is expected.

Strictly speaking, the vacancy at the surface of a solid
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is not electric neutral, but with a weak excess of negative
charge which is neglected in the Hamiltonian in Eq. (2).
This negative charge tends to adsorb atoms with dipole.
The Coulomb force will cause a half-confined hydrogen
atom with the dipole pointing toward the surface to be
fixed in the vacancy rather tightly. Therefore, our model
of the surface hydrogen is quite realistic. Taking the ion-
ic crystal, e.g. , NaCl, as an example, the estimation of the
order of magnitude of the interaction energy of the im-

purity hydrogen with its surroundings (i.e., adsorption
energy) can be made as follows. When a surface Na+ is
replaced by a H atom, the neighboring Cl ions provide
a net charge —e (charge of an electron). Under the ap-
proxirnation of homogeneous charge distribution on the
surface of a hemisphere with radius go, the order of the
strength of electric field at the center of the sphere is

e/go ——e/12 a. c(The radius of Na+ is (o=3.5ao; ao is
the Bohr radius. Detailed calculation gives -e/2g uzi. e.,
only a difference of a factor of 2.) The dipole of the sur-
face H atom corresponding to (o=3.5ao is P=0.5eao
(Fig. 2). Therefore, the adsorption energy is
—

p E=e /12ao—- 1 eV. As for the metal crystals (e.g.,
Na), the electric field induced by the dipole p of the

TABLE I. Energy E and dipole moment P of the ground
state of the half-confined surface hydrogen atom as a function of
the parameter go.

confined H atom at surface can be estimated by the
mirror-image method. The order of image dipole is
p'=p. Therefore, the adsorption energy (p'-p interac-
tion) is also of the order of -eV. The magnitude of the
average adsorption force pointing to the inside of the
solid is F, = —d/dz ( p.—E)=pEz/(c=10 dyn. Here
the approximation is due to the fact that the energy
—p E= pE—, is nearly zero at a lattice distance -go
above the solid's surface. The microscopic pressure ap-
plied to the surface vacancy would be P =F, /2tr(2o=10"
dyn/cmz= 10 atmospheric pressure, which may be help-
ful to understand the strong body adsorption of some
metals (e.g. , Pd crystal) to the hydrogen and/or deuteri-
um atoms.

Except for the vacancy, there are also other kinds of
defects such as the ledge and kink, etc. , at the surface of
solids. Although the quantitative treatment of the im-

purity atoms in these locations is comparatively more
complicated, the qualitative behavior remains the same.
We expect the deformation of the electron cloud, nonzero
dipole moment, and lowering of the ionization energy in

general.
Finally, the study of surface atoms may be potentially

important for astrochemistry. There is evidence suggest-
ing the existence of small solid particles in the interstellar
medium. ' It seems to us that the surface atoms should
play an important role in the formation of molecules.
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