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Curved-wave multiple-scattering contributions to XAFS (x-ray-absorption fine structure) are cal-

culated with use of an efficient formalism similar to that based on the plane-wave approximation,

but with scattering amplitudes f(8) replaced by distance-dependent "scattering matrices"

Fq q (p,p'). Here p= kR, k being the photoelectron wave number and R is a bond vector, while the

matrix indices k=(p, v) represent terms in a convergent expansion that generalizes the small-atom

approximation. This approach is based on an exact, separable representation of the free propagator
(or translation operator) matrix elements, GL L (kR), in an angular momentum L =(l, m) and site

basis. The method yields accurate curved-wave contributions for arbitrarily high-order multiple-

scattering paths at all positive energies, including the near-edge region. Results are nearly con-

verged when the intermediate A, summations are truncated at just six terms, i.e., (6X6) matrices.

The lowest-order (1 X l) matrix Fov 00 is the effective, curved-wave scattering amplitude, f (p,p', 0),
and yields a multiple-scattering expansion equivalent to the point-scattering approximation. For-
mulas for multiple-scattering contributions to XAFS and photoelectron diffraction are presented,

and the method is illustrated with results for selected multiple-scattering paths in fcc Cu.

I. INTRODUCTION

The standard theory of x-ray-absorption fine structure
(XAFS) used for structural analysis is based upon a
multiple-scattering formalism. ' In addition to the first-
order or single-scattering term needed to determine
nearest-neighbor distances, higher-order multiple-
scattering contributions are often important in quantita-
tive calculations of XAFS. They can be significant just
above the absorption edge in the XANES (x-ray-
absorption near-edge structure) region, as well as at high
energies, extending into the EXAFS (extended XAFS) re-
gion. Multiple-scattering terms are also required for ex-
tracting more subtle structural information such as
second- and third-nearest-neighbor distances and bond
angles.

Implicit in the standard theory of XAFS is the assump-
tion of a spherical muffin-tin scattering potential; i.e., the
potential seen by the photoelectron is composed of nono-
verlapping, spherically symmetric potentials around each
atom and is flat between the different atomiclike poten-
tials. The energies are usually chosen so that this flat re-
gion defines zero energy, i.e., the muffin-tin zero. Al-
though one can question the adequacy of this type of po-
tential for certain systems (e.g. , small molecules), espe-
cially at low or near-edge photoelectron energies, we will
ignore this point here. Instead, we shall simply assume
the canonical muffin-tin potential and concentrate on the
solution of the multiple-scattering problem.

There have been many approaches to the multiple-
scattering problem. ' In solving for the ground-state
electronic structure of solids and molecules, e.g., one typ-

ically reduces the problem to an exact diagonalization
based upon some assumed wave-function basis set. A
similar approach has been used for XAFS calculations
with excellent results using both cluster and band-
structure methods, particularly in the near-edge region
where multiple-scattering effects are expected to be
strongest. At energies high above the absorption edge
(the EXAFS region), the excited electron has high kinetic
energy that in turn requires either many plane waves or
many orbital angular-momentum components (or both)
for an adequate representation. This dramatically in-
creases the size of the matrices that need to be diagonal-
ized (for which the computational time scales as the cube
of the matrix size) until such calculations exceed the
capabilities of present computers. This sets an upper lim-
it to the energies for which such an approach is feasible.

An alternative approach to the multiple-scattering
problem is based on perturbation theory' ' in the
strength of the scattering potential. We refer to this
method as a "path" approach, since the perturbation ex-
pansion can be expressed in terms of a hypothetical path
that an electron follows as it scatters and propagates
from atom to atom. Indeed, this is the basis for the stan-
dard XAFS formalism used for structural analysis, in
which the perturbation theory is truncated at the first
scattering term. The path approach works well in the
high-energy region, where multiple-scattering corrections
are weaker and where a simplifying plane-wave approxi-
mation becomes increasingly accurate. Its chief draw-
back has been that only relatively low-order (at most
triple-scattering ) terms have been possible to calculate
exactly in an efficient tractable form. The main goal in
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the present paper is to remedy this limitation and thus
permit calculations to arbitrary order.

One might expect that a path formalism would always
be inferior relative to the diagonalization approaches in
(low-energy) regimes where the usual basis sets converge
well. In that case diagonalization is virtually exact and
hence is equivalent to summing the path formalism to
infinite order, while a direct calculation using the path
formalism must necessarily truncate at some finite order.
This contrast shows up most transparently in the
Korringa-Kohn-Rostoker (KKR) band-structure method
for calculating the electronic structure of periodic solids,
where one can explicitly and analytically sum the paths
to infinite order to produce the KKR equations. What
makes the path formalism competitive for a number of
important positive energy applications such as XAFS and
photoemission are the various lifetime efFects that smear
out the exact results. In these applications only unoccu-
pied electronic structure is probed, i.e., electronic states
with energies above the Fermi energy. Final-state life-
time efFects then allow one to truncate the multiple-
scattering expansion such that only path lengths less than
a few mean free paths are retained. In practice, the im-
portance of long paths can be gauged by the Fourier
transform, j'(R)= f dk exp( 2ik—R )y(k), of the XAFS
spectrum, k being the photoelectron wave number. Each
path of total length L yields a peak in the Fourier trans-
form near L/2. For fcc Cu metal, for example, the
Fourier transform of the exact spectrum obtained by
band-structure methods is observed to truncate beyond
about six near-neighbor distances indicating that only
path lengths less than about twelve near-neighbor dis-
tances are important for the entire spectrum.

This smearing effect can be described somewhat more
picturesquely by considering a hypothetical series of cal-
culations, where one calculates the density of states
(DOS) of a solid (say copper) as a function of the path-
length cutoff. As this cutoff is successively increased,
more and more detail of the structure of the DOS ap-
pears, until, as one analytically sums to infinite order us-
ing the KKR equations, the ultimate degree of detail is
revealed. Because various lifetime effects smear out the
fine details of the structure, however, only a finite cutoff
is required. This same cutoff governs the validity of clus-
ter approaches to XAFS calculations. The size of the
cluster needed to represent XAFS for an infinite solid is
determined by the effective mean free path. Once clusters
are bigger than a few mean free paths, the broadened re-
sults of cluster calculations converge to a fixed answer,
independent of size, and hence only a finite-size cluster is
required.

The main difference between cluster calculations and
the path formalism is that an exact cluster approach is
equivalent to carrying the path formalism to infinite or-
der under the restriction that the paths only involve the
atoms in the cluster (instead of all of the atoms in the
infinite solid). Again, this difference is usually of little
concern, provided the multiple-scattering expansion con-
verges, since any additional fine details of a cluster calcu-
lation would be washed out by lifetime effects. It is, of
course, possible that the multiple-scattering expansion

will fail to converge, e.g., near resonances or singular
points of the absorption spectrum. In those cases lifetime
effects will still smear out sharp features of the spectrum,
but some differences with respect to cluster or exact cal-
culations may remain. The path method is thus comple-
mentary to exact or cluster methods in that convergence
of the multiple-scattering expansion is implicitly as-
sumed. This assumption can be checked, for example, by
monitoring the convergence of the multiple-scattering ex-
pansion in the course of a calculation. Also, it may be
possible in some cases to approximate resonances by
analytically summing selected classes of paths to infinite
order.

A straightforward, exact evaluation of the path forrnal-
ism quickly runs into very complicated summations over
angular momenta. As discussed in Ref. 5, each succes-
sive term involves an additional angular-momentum com-
ponent (I, m) that must be added to the existing sums.
Thus, single-scattering contributions require combining
two angular momenta and hence a Wigner 3j symbol;
double-scattering terms involve combining three angular
momenta and 6j coeScients; triple scattering involves 9j
coefBcients and so on. To date the exact treatments have
been limited to at most triple-scattering terms. If one
views the resulting complexity in terms of the number of I
and m sums required, double scattering requires five I and
six m sums and triple scattering seven I and five m sums.
Moreover, I,„ is usually large except at low energies;
typically l,„-k,„R, for XAFS studies is between 10
and 30 (RMr is the muffin-tin radius). Although some
standard angular-momentum identities can be used to
eliminate some of these sums (to five 1 and one m for
double scattering and seven I and two m sums for triple
scattering), it is clear that the algebraic coinplexity of the

FIG. 1. Schematic four-leg multiple-scattering path with
three scatterers. Each bond represents a Green's-function prop-
agator, GI L(k(R —R')), and each node {except for node 0 =
node 4) a scattering center. The dashed lines in the figure
represent "cuts" that effectively separate each propagator into
sums over the factors I z(p)l q (p) in the separable representa-
tion of Eq. (8).
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formalism is so severe that only low-order terms are prac-
tical for XAFS calculations.

This straightforward but computationally demanding
path expansion (or curved-wave theory) is in marked con-
trast with its asymptotic high-energy form. Then all of
the outgoing spherical waves that the theory requires can
be approximated by plane waves, yielding the plane-wave
approximation' (PWA). This approximation completely
eliminates all of the couplings between different partial
waves and hence all the coupled I and m sums.

Within the PWA the contribution to the polarization-
averaged E-shell XAFS spectrum y' "(k) from a
multiple-scattering path with N legs (i.e., N 1—scatter-
ers) is given by a simple product over scattering ampli-
tudes f(0) in which the summation over angular momen-
ta that is carried out at each site combines with the t ma-
trices to produce ordinary scattering amplitudes. When
the absorbing atom is at the origin RO=R& and the
scatterers at R„R2, . . . , RN &

(Fig. 1), the N-leg contri-
bution is given by

y' -"(k)=Im
l(P~+PP+ ' ' ' +P~ i+2l5]

e

P 1P2 PN
(P&'PN )fN —1(0N —1} f2(02}fi(0i }

where k is the photoelectron wave number, f, (0, ) is the
dimensionless plane-wave scattering amplitude at the ith
scatterer, p;=k(R;+, —R;) is the dimensionless bond
vector, and 0; =cos '(p, p;+, ) is the scattering angle at
site i. In terms of partial-wave phase shifts 5I, the ampli-
tude f(0), which differs from the usual definition by a
factor k, is given by

f(0)= g (21+ 1)tiP, (cos0),
I

(2)

f(p, p', 0)= g (21+1)tici(p)ci(p')Pi(cos0) .
I

(3)

This result is equivalent to the point-scattering approxi-
mation" (PSA} and is also obtained if one truncates the
scattering matrices F& &, to lowest order, i.e., to (1X1)
matrices. Although quite good for nearly collinear paths
and a significant improvement on the PWA, the PSA is

where ti =exp(i5t )sin(5t ) is the dimensionless scattering t
matrix, and Pi(cos8) is a Legendre polynomial of order I.
The quantity in large parentheses in Eq. (1) is essentially
the PWA for the contribution to the Green's function
from this N-leg path; more precisely, y' "(k }

=Im[[e 'l(21+1)]g Gi' i "(Ri, . . . , RN)I. We will

show that the multiple-scattering expansion for the
Green's function, and hence y' "(k), can be cast into
the form of Eq. (1) exactly, provided the scattering ampli-
tudes f;(0;) are replaced by certain scattering matrices
F~ ~"

The simplicity of the plane-wave approach is obviously
very desirable. Unfortunately, the validity of the PWA
breaks down rapidly as one approaches the absorption
edge, where curved-wave effects become increasingly im-
portant. For single scattering, one can go beyond the
PWA and define effective scattering amplitudes that take
spherical-wave effects into account exactly. However,
we believe this prescription cannot be generalized to
multiple-scattering calculations of arbitrary path length.
Perhaps the best one can do is to replace f(0) in the
PWA of Eq. (1) with effective curved-wave scattering am-
plitudes,

not reliable at low energies for general 0 (see, for exam-
ple, Sec. IV B). It is for this reason that it is necessary to
find a systematic method for going beyond both the PWA
and PSA. In Eq. (3), ci(p) is the dimensionless polynomi-
al factor that multiplies the asymptotic form of the spher-
ical Hankel functions, i.e.,

e'p
hi'+i(p) =i ' ci(p) .

p
' (4)

These "spherical-wave correction factors" play an impor-
tant role in this paper. They may be generated efficiently
by the Bessel function recurrence relation,

ci+&(p)=ci, (p)+(21+1)—ci(p) (1)1),
p

1co(p)=1, c,(p}=1+—

For large p one can show that ci(p)=exp[il(1+1)l
2p][1+1(1+1)/2p ]'~ . This implies that the PWA is
valid in the limit p))l(1+1), and also that the phase
correction in c,(p) cannot be neglected in the intermedi-
ate energy range. In these equations and throughout
this paper it should be noted that we have adopted the
phase conventions and notation of Messiah" for spheri-
cal Bessel functions, spherical harmonics, Legendre poly-
nomials, and rotation matrices (see the Appendixes of
Ref. 11).

The method we introduce here overcomes many of the
difficulties of exact multiple-scattering calculations while
retaining much of the simplicity and tractability of the
PWA. With our approach, for example, a multiple-
scattering expansion of the XAFS spectrum y analogous
to Eq. (1}is obtained, but with each scattering amplitude
f; (0;) replaced by a "scattering-amplitude matrix" (or
"scattering matrix" for short} Fi„z.(p, p'). Also the
method can be improved systematically by varying the
dimensionality of the matrices, leading to generalized
small-atom approximations. The lowest-order term is a
(1 X 1) matrix or scalar function which is just the effective
curved-wave scattering amplitude f(p, p', 0) of Eq. (3).
Consequently, all of the PWA multiple-scattering formu-
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las for XAFS, e.g., those used by Arvenitis et al. ,
' can

be converted straightforwardly to exact curved-wave ex-
pressions, with a greater range of validity.

Our method is based on a new separable representation
of the free Green's-function matrix elements
GL I (p)=(L, R~G~L', R'), where p=k(R —R'). These
propagator (or translation operator) matrix elements
GL L also appear in the addition formula for the transla-
tion of screened spherical waves' ' as well as in
multiple-scattering expansions. ' ' The theory of such
functions has an extensive, if relatively obscure literature;
a historical survey is given in Ref. 13. Like other
researchers in this area, we have occasionally found some
of our results in the literature only after having first
worked them out independently by ourselves. However,
we believe our approach is the first attempt at a direct se-
parable representation of the propagator GI L. and an
elucidation of its properties.

The separable approximation, which becomes exact if
summed over its full (finite) range of indices, is made pos-
sible by two steps: (1) successive rotations of the coordi-
nate system that take bond directions p into the z axis;
this step is similar to the strategy of Ref. 13 and yields re-
suits in terms of the simpler "z-axis propagators"
GL L.(pz); and (2) a separable expansion in powers of 1/p,
analogous to a Taylor series, for the z-axis propagators.
This multiple-scattering matrix formalism then permits
independent summations at each site over all intermedi-
ate angular-momentum variables ( i, m ), as in the calcula-
tion of f(8), thereby avoiding the computational
bottleneck posed by large l,„. We show below that this
approach is rapidly convergent at all energies, leading to
essentially exact results, provided the multiple-scattering
expansion converges.

Somewhat analogous scattering matrices have been in-
troduced in a multiple-scattering formulation by Barton
and Shirley, but our treatment differs from theirs in
several respects, and they do not explicitly introduce a se-
parable representation. We believe the present approach
has better convergence and formal properties. For exam-
ple, as noted above the dominant [(1X1) matrix] term in
our expansion is the effective, spherical-wave scattering
amplitude f(p, p', 8) defined in Eq. (3) and is symmetrical
in p and p'. Thus our lowest-order approximation is
equivalent to the asymptotic high-energy theory of Ref. 7
and to the point-scattering approximation of Refs. 1 and
10. By comparison, the zeroth-order term of the scatter-
ing matrices of Barton and Shirley is asymmetrical and
independent of the magnitude of p'. Also, the form of
our separable expansion leads to somewhat faster conver-
gence of the remaining terms.

The remainder of this paper is organized as follows.
The separable representation of the propagator is derived
in Sec. II and applied to scattering matrices in Sec. III.
Section IV contains applications to single- and double-
scattering XAFS and single-scattering contributions in
photoelectron diffraction. Details of the derivation of the
separable representation are contained in two Appen-
dixes. An application of this approach to a detailed
treatment of multiple-scattering contributions in Cu is
reserved for a separate paper. '

II. SEPARABLE REPRESENTATION
OF THE PROPAGATOR

The multiple-scattering expansion for spherical scatter-
ers is conveniently formulated in terms of (diagonal)
scattering t matrices and matrix elements of the free
propagator GL L.(p}=(L,R~G~L', R') in an angular
momentum L =(l,m ) and site basis ~L,R). Here, k is
the wave number which is related to the free-particle ki-
netic energy by e= —,'k, and p=k(R —R') denotes the di-

mensionless (bond) vector between two sites. Throughout
this paper we will use hartree atomic units, e =5=m = 1.
In this section we derive an exact separable representa-
tion of these matrix elements; they may be defined as the
coefficients in the expansion in spherical waves of the di-
mensionless outgoing free propagator, G(r, r', e)

exp(—ik ( r —r'~ )/4n k
~
r —r'

~, about fixed sites R and
R':

G(r, r', e)= g jL(r —R}jL'(r'—R')GL L (p) .
L,L'

j t(kr )jl.(kr')
Xj&(&2er )jI (v 2e. r') (7)

where r and r' are arbitrary displacemenfs. Equation (7}
may be generalized for complex energies (i.e., inelastic
losses) by adding an imaginary part to the energy:
a+i 0 ~c.+i A. With the normalization convention
adopted above, GL L. has the expansion in spherical
waves given by GL L (p)=4m+I (YL YL .

~ YL )h~-(r),
where hL (r)=i'hI+'(kr)YL (r), and the t-matrix elements
are dimensionless: t, =exp(i5I)sin51. The coefficients
GL L also appear in the addition formula for the transla-
tion of spherical waves, ' " hL(r)=gt GL t.(kR)jL (r—R).

The approach adopted in this paper for calculating
GL L,(p) is to seek a convergent separable representation,
i.e., a representation of the form

IP
(p)= g & (p)1 (p),

where successive terms in A, are of decreasing
significance, as discussed below. This is achieved in two
steps.

(1}The first step is similar to that adopted in Ref. 13;
one applies to Eq. (7) rotation matrices, " here denoted
R' .(0 ), which rotate the bond direction p onto the z

P
axis. More precisely, the argument 0 represents the

P
Euler angles for this rotation, namely, (a,P, y}
=(0,8, m. —P), where (8,$) are the spherical polar coor-
dinates of p (see footnote 1, p. 1073 of Ref. 11) and a is

Here, jL (r) =ij'&(kr) YL (r) are free spherical waves that
are defined in terms of spherical Bessel functions j,(kr)
and spherical harmonics YL (r), and GL L,(p) is defined by
the integral'

(4n ) I d k Yz'(k) YL (k)e'"'
GL, L, (p}=-

(2m. )' s ,' k'+i 0—+—
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set to zero. With this convention, the spherical harmon-
ics transform as YL(k)=g~ Yt (k')R ~ (0-), and k' ismm

along z when k is along p. These rotation operations
separate GL t.(p) exactly into energy-dependent radial
and purely angular-dependent terms as follows:

ip I

Gg L,(p) = y R „(np ')gIP '(p)R „(np),
I= —I

(9)

x /zp l p

(p ~0) . (10)

In Eq. (10), Nt&=[(21+1)(l—p)!/(1+@)!]'~ are
spherical-harmonic normalization factors, z = 1/i p (i
=&—1), and PI'(cos8) are associated Legendre polyno-
mials in cos8=(1 —x). A derivation of Eq. (10) is
presented in Appendix A. In this derivation only the out-
going wave is selected by the poles in Eq. (7) at
k=2(2z+i0+)'~; the integration contour in Eq. (10)
has been chosen to give only this outgoing part in a
manner siinilar to that used in Eq. (29} of Ref. 13. The
quantity gI/" (p) is similar to the spherical wave factor in
the Hankel function analog HIt (p) defined by Nozawa'
in his Eq. (4.3); specifically HIt (p) =(e' Ip)g~/'(p) I
Nt„Nt.„. Nozawa shows that an integral similar to Eq.
(10) but over the range —1&cos8&1 gives the Bessel
function analog JI't (p); we find that changing the contour
of Nazawa's integral to the range' [i ~, 1] in cos8 yields
the outgoing part, which is Nozawa's function HI't (p).
The choice in Eq. (10) of the contour [0, m ] in x yields
the same result, which can be verified by comparing
series expansions. The introduction of rotation matrices
and z-axis propagators simplifies considerably exact
multiple-scattering calculations, since Gt L (pz) is then
diagonal in m. This point has been emphasized both by
Danos and Maximon' and by Barton and Shirley. '

Moreover, we find that truncating the sum over p yields
accurate approximations; p,„&2 is usually sufficient.
With step (1) alone, the summation of the multiple-
scattering expansion requires only l,„p,„ intermediate
terms at each site, rather than l,„(l,„+1)terms in the
exact case. While this reduction works well for paths
with a small number of legs, it is still insufficient to make
arbitrarily-high-order multiple-scattering calculations
practicable, as successive I's are still coupled. The next
step in the separation of GL I (p) overcomes this limita-
tion.

(2} In the second step we derive a separable representa-
tion of the z-axis propagators. Specifically we find that
one can express gIj '(p) as

min I I, I' —p, I

gt'/" (p) = g y„'„(p)y„'„(p) (p 0),

where Q denotes the inverse rotation operation Euler
P

angles (a,P, y) '=( —y, —P, —a) =(P—
m, 8—,0), and

gIP' '(p) is a reduced, dimensionless, z-axis propagator
given by

at" (p)=pe "Gt„,I„(p}

where minI 1,1'I denotes the minimuin of I and 1' .The
details of this form are given in Appendix B. From Eq.
(B10) the spherical expansion coefficients y„(p) and

y„(p) are given, respectively, by series in inverse powers
ofp,

C(P+v)(z )
y'„(p) =( —1}"Nt z"+",

pv Ip
( + )~

(12}
(21+1) Ct' '(z)

Ip, V.

Here, z = 1 lip, Ct'"'(z ) =(d "/dz")Ct(z) is a polynomial of
degree 1 —v, and on changing variables from p to z, Ct(z)
is identical to ct(p), which is the degree-1 polynomial fac-
tor of the spherical Hankel function in Eq. (4).

To examine convergence properties, we make use of
the approximation Ct(z)-exp[ —l(1+1)z/2] and find
Ct"=O(l "). Thus each term in the expansion in Eq.
(11) converges roughly as (1 /p) "+". We remark that p
is generally greater than unity even at the smallest bond
lengths and energies above threshold, as the near-
neighbor distance R„„ is always several atomic units and
k kF, the Fermi momentum, which is of order unity in
atomic units. Convergence with respect to 1 is controlled
by the partial-wave t-matrix elements. The mean value of
1 suitably averaged over t, , which we call 1, is characteris-
tic of the "size" ro of the scatterer and is generally much
smaller than I,„. This maximum value of l may be
defined as that for which the classical turning point is
outside the range of the scattering potential, i.e.,l,„(k)-kRMT. For 1 )1,„, 5I becomes exponentially
small. Provided 1 is sufficiently small, the expansion pa-
rameter 1 /p=(RMT/R)(l /1,„) will also be small.
While it is not evident this will always be the case, we
have found in practice that it is usually sufficient to retain
only the leading terms in Eq. (11), e.g., p, &2 and v& 1.
Barton and Shirley' argue that the physical reason for
the convergence of such expansions is that the higher
"magnetic sublevels" p have less overlap with the scatter-
ing potential; they also suggest that the number of sublev-
els needed for convergence is related to ro/R To see this.
one may picture gf/' as the overlap (jt „(r—R z) ~ht „(r))
of an outgoing wave at the origin and a scattering state at
Rz; the outgoing wave has angular lobes at sin~8~ -)M, /1'
and the state j t &

has a mean radius of roughly rt-1/k.
Thus there is significant overlap only when p&ll'/kR.
For scattering to be significant, 1 &1 and hence p &1 /kR
which is just the small expansion parameter noted above.
As a consequence, one can view truncations of the expan-
sion in Eq. (11) as generalized small-atom approxima-
tions, which become increasingly better for smaller
scatterers or larger k.

Given that the expansion parameter varies inversely
with p, it is perhaps surprising that the truncated expan-
sion is also accurate at low energies. The reason is that
only a few partial waves are significant at low energies
and all expansion coefficients y„', must vanish for ~p~,
v& l. It follows that only the indices ~p~, v&1,„(k) are
important. The convergence of the multiple-scattering
expansion with only a few terms (e.g. , three to six) of the
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separable expansion is observed numerically to be valid at
all energies.

For notational convenience we shall denote the expan-
sion indices (pv) by a single index A, . From Eqs. (8), (9},
and (11), the explicit form of the factors I ~(p) and I &(p)
in GL L are

I (p)=R'„(Q )y„„(p), I (p)=R„' (0-)y„'„(p) .

(13)

The separable representation in Eq. (8) with these
coeScients is exact. Truncations at small (pv) are accu-
rate both at large energies or at large bond lengths (i.e.,
small z= 1/ikR). Note that the lowest-order terms are

I oo=&4mYI'(8, $)c,(p) and I 00=V4m Y~(8,$)c&(p)
These terms are sufficient to obtain the point-scattering
approximation, and in the limit p~ ~ when ci(p) ~1, to
recover the PWA.

III. SCATTERING-AMPI. ITUDK MATRICES

With the separable representation of GL L (p)
developed above, the multiple-scattering expansion can
be reexpressed in terms of scattering matrices. Consider
for example the N path (Fig. 1) defined in Sec. I. The
contribution to the total propagator from this path with
X —1 scatterers is given by the exact multiple-scattering
expansion

L~,LO (Rl& ' ' '
& JV ) X LN, L~ ((PN !2( 2)GL~, L)(P2 l((R1)GL),L (apl

) & (14)

[p, +p, + +pN]

G,'","(R„.. . , R„)= ~o Lw
X ~x, ,x„(pi~pN)Fk~, p.~, (pN&pN —1)

p]p2 pN

where Lo and L~ denote fixed initial and final angular momenta. Substitution of the explicit expression for GL L.(p} in

Eq. (8) allows all the intermediate angular-momentum summations to be carried out formally. One can think of this
process graphically in terms of the cuts introduced in the diagram in Fig. 1. The cuts, each of which is associated with
an index k, separate the left- and right-hand parts of GL L and isolate the intermediate vertex indices. One thus obtains
the exact equivalent form

X XF„„(p,,p, )F~ ~ (p»p, ) . (15)

Equation (15) is one of the principal results of this paper.
It represents an exact formula for curved-wave multiple-
scattering which is a direct analog of the PWA expres-
sion given by large parentheses in Eq. (1). In Eq. (15), the
"scattering-amplitude matrices" F&& (p, p') at each site
are defined by the partial wave expansion

F„(p,p') = y t, r,'(p)l,', (p')
L

using Eq. (C.56} and (C.75) of Ref. 11. We obtain

a =arg[sin8 cos8 ' —cos8 sin 8'cos( p' —p )

i sin8'—sin( P' —P )],
P=cos '(P P')

=cos '[cos8 cos8'+sin8 sin8'cos(P —P' }], (18}

= g & y„'„(p)R„'„(Q-,)y' (p'}, (16)
y =arg [sin8 cos8'cos( P' —P }—cos8 sin 8'

+i sin8sin($' —P)] .
where p and p' are the bonds leading to and from the site
in question. The separable angular-momentum-
dependent termination matrix in Eq. (16) is

M„' "(p, ,p }=I (p, }l (p ) . (17)

This expression can often be simplified, e.g., when
L 0 =L ~', see Sec. IV A.

The composite rotation matrix R „„(0,) in Eq. (16) isPP pp'
equivalent to a rotation that first takes p into z and then
z into p'. Replacing the scattering angle in the PWA for-
mula are the Euler angles corresponding to this bond ro-
tation, (a,P, y ) =—0--,; they may be obtained by an expli-

PP
cit construction of the composite rotation matrix, for say
/=1,
R„'„.(Q--, )=JR',. (0, 8, m P)R'- .(P' —m. , —8—', 0),

m"

Note that these Euler angles depend only on three physi-
cal angles: 8, 8', and P —P'; they may also be calculated
in terms of the direction cosines of the vectors p and p'.
Since the rotation matrices can be factored as
R„'„.(a,P, y)=exp( —iap)r„„.(P)exp( —iyp'), the scat-
tering matrices can be expressed similarly,

F~,~(p p')=& ""f~,v(p p' P)e "" (19)

f~, ~ (P P P)= & ~iy„' (P)r„'„(I3)y„' (P')
1

(20)

This form considerably reduces the number of indepen-

Thus the energy-dependent scattering factors
fz z (p, p', P) now depend only on the bond lengths and
the scattering angle P [which is equivalent to
8=cos (p p')],
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dent computations of the scattering matrices. Further-
more the only additional angle needed in the calculations
is the combination g; =y;+u;+& at each scattering site i.
For comparison, the point-scattering approximation re-
quires bond lengths p; and scattering angles P, , and the
PWA only the scattering angles P;.

The dependence of the coefficients y„'„(p) and y„'„(p)
on p implies that F&& (p,p')-(p) ' "+"'(p') ' "+"' for
large p, p', and hence, the dominant matrix element is
generally F0000. This is precisely the effective, curved-
wave scattering amplitude Fpp pp(p, p') =fpp pp(p, p', P)
=j(p,p', (3) as defined in Eqs. (16), (20), and (3), respec-
tively. Keeping only this dominant term is equivalent to
the pe~at-scattering approximation, and yields contribu-
tions to XAFS as in Eq. (1), but with the effective scatter-
ing amplitudes J(p,p', (3) replacing f(8), as we have not-
ed in the Introduction. The next level of approximation
consists of keeping all terms up to first order in 1/p. This
yields a (3X3) matrix containing only the terms
(pv) =(0,0), (+1,0). The second-order expression
correct to O(1/p ) is a (6X6) matrix that, in addition,
contains the terms (0,1) and (+2,0). In practice it seems
sufficient to retain terms only to second order. These ap-
proximations will be tested in the next section.

IV. APPLICATIONS

A. Single-scattering polarized and unpolarized XAFS

As a simple application we apply this formalism to the
normalized single-scattering XAFS amplitude for a poly-
crystalline material. One obtains' ' for the contribution
from a given subshell I

qI "(k)=Ime ' ' y G,'.",.(R„R,}, (21)

where Gi"'& (R„R2) is given by Eq. (14). Note that for
Lp =L~ in Eq. (14), the form of termination matrix
simplifies upon carrying out the trace over m. One then
obtains a result similar to Eq. (15), but with the matrix

LO, L~
M& & replaced by a form incorporating a composite ro-

tation matrix:

yI "(k)= —Im
e

2ip+216(
1

21+1P
I 1

y„'„(p)y„(p)f„„„„(p,p, m )

(23)

(pl ~pN }=y/ v(pl )R pp'(II" "„}yl'v'(pN ) .

By inspection M& z (p, p') is the 1th term in the partial-
wave formula of Eq. (16) for the scattering matrix
Fz z (p, p'), and may thus be calculated with the same
subroutine.

In the present case of single-scattering XAFS the com-
posite rotation corresponds to the inversion R~ —R, for
which the rotation matrix is diagonal: R „'z =( —I )'5„&.
Hence we obtain

where f„„„„(p,p, n }=+&(—I )'t&y„(p)y„,(p). The term
in large parentheses may be interpreted as an l-shell
effective back-scattering amplitude fI(p, rr). From the
form of the factors y„', one can show explicitly that the
quantity in large parentheses in Eq. (23) with /=I is
equal to the exact I( -shell, single-scattering, curved-wave
formula of Miiller and Schaich. We remark that Eq. (23)

may be useful in obtaining the contribution to the unpo-
larized XAFS from an arbitrary core level. Similarly, Eq.
(15}may be useful for the polarized case [see, for exam-

ple, Eq. (A16} of Ref. 1], as all the algebra special to a
given shell is automatically incorporated in the termina-
tion matrix M&'z of Eq. (15).

XFx q~(P2 Pt) (24)

where Mz~ z, is given by Eq. (22).
The necessary ingredients in the calculation of F& &

and MI z. are (a) the geometry-dependent rotation matrix
elements r' . (/3), where P is the scattering angle (a and

y are zero since the scattering vectors lie in a plane); (b)
the energy-dependent scatterin~ t-matrix elements; and
(c) the spherical-wave factors y„„(p) and y„(p). The ro-
tation matrix elements were calculated by recursion, us-

ing an iterated version of Eq. (4.4.1) of Ref. 18. The
energy-dependent factors were also obtained by recur-

B. Double-scattering XAFS

An important test of the method is the calculation of
multiple scattering in fcc Cu, which is an oft-used stan-
dard test case for XAFS theories. This metal has mostly
weak scattering in the first 50 eV above the edge, which is
one reason why it is often considered a free-electron-like
material in terms of its low-energy excitations. However,
the scattering strength begins to turn on strongly between
50 to 500 eV (k between 4 and 10 A ) as the energy goes
through the 4d, 4f, and other resonances. This is clearly
seen in the back-scattering amplitude as a function of en-

ergy or k [see Fig. 1(a) of Ref. 7(a) and the discussion of
the electronic structure of Cu in Ref. 4(b)]. Thus Cu ex-
hibits the full range of XAFS behavior as a function of
energy. At low energies above the edge, only the single-
scattering terms in the path formalism are required for
convergence. At higher energies a complete treatment of
multiple-scattering is required. Figure 2 of Ref. 7(a)
clearly shows the failure of single-scattering and shadow-
ing terms between 50 and 200 eV above the edge.

Therefore, we have applied our method to the contri-
bution from all relevant triangular (double-scattering)
paths to the E-shell XAFS of Cu metal. We have also in-
cluded this application because triangular paths are
sufficiently high order to be nontrivial, and tractable ex-
act formulas can also be used for precise comparisons.
For this case, the multiple-scattering contribution to g' '

analogous to Eq. (23) is

I (pl+ p2+ p3)+21 51

yI '(k)=Im
Pip&3

X —,
' g MI g (Pi,P3)Fg3 g~(P3~PQ)

I A, ( I
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FIG. 2. Contribution to the E-shell XAFS spectrum of fcc
Cu from 107 topologically distinct angular multiple-scattering
paths, with a total path length less than six near-neighbor (NN)
distances (RNN =4.80). Each of these distinct paths represent
between 12 and 48 symmetry-related degenerate paths that give
identical contributions to y(E). The dashed curves are, respec-
tively, results from (1X1), (3X3), and (6X6) scattering ma-
trices. For reference, the exact results are superimposed on
each of these curves as a solid line. The energy scale is relative
to the band-structure muffin-tin zero [Ref. 4(b}] and the solid
vertical line at 7.9 eV is the band-structure Fermi energy EF.
The y(E) for each of the plots is reduced by a factor of 4 below

EF to keep the different plots from overlapping each other.

second-order (6X6) matrix approximations. For com-
parison, the results of exact calculations based on Eq. (21)
of Ref. 3 are also presented. Note that the zeroth-order
calculation is already in fair agreement with the exact re-
sults, and that the result for (6X6) matrices is nearly
converged. The approximate run times on a Cray
Research, Inc. X-MP supercomputer at Los Alamos are
5, 11, 29, and 60 central-processing-unit (CPU) sec for
zeroth, first, and second order, and exact calculations, re-
spectively. Thus the method is indeed rapidly convergent
and accurate down to the edge.

On the basis of these results we may estimate that a
triple-scattering calculation with the separable approxi-
mation will require an additional factor of about 6 per
path, which is a significant improvement over the factor
of O(1,„)-100required for exact calculations. Finally
we note that the magnitude ~g~& '(k)/yI"(k)~ summed
over intermediate paths, can also be used as a conver-
gence monitor of the multiple-scattering expansion.

C. Single-scattering photoelectron diFraction

~ 2

g Goo L, "(R(, . . . , R~)mL, (e)e
L,N

(25)

The separable curved-wave multiple-scattering formal-
ism presented here is applicable to many other spectros-
copies that depend on the final state of the photoelectron.
For example, for the case of photoelectron diffraction,
the intensity at the detector is' '

sion, using Eq. (B9) of the Appendix. Finally the t-matrix
elements were those obtained by calculating the partial-
wave phase shifts from self-consistent band-structure po-
tentials, and are the same as those used in Ref. 4.

Calculations based on Eq. (24) were then carried out
summing over all 107 topologically distinct triangular
paths with a total path length less than six near-neighbor
distances using 10 phase shifts and 100 points in the ener-

gy range from 0 to 200 eV. The results are shown in Fig.
2 for zeroth-order (1X1) matrices, first-order (3 X 3), and

I

where the Green's function is given by Eq. (14),
mL, (a)=(QL(k)~a. r~gL, ) is the dipole matrix element,
and the sum is over the N-leg paths, R„=Rz,
R~, , . . . , 0, N=1, 2, . . . , where R„=kR„ is the vec-
tor to the detector. For a degenerate core level, an aver-
age over initial states PL, must also be carried out. Since
the detector distance can be assumed to be infinite, only
yoo(ao)=&2l+1 and y„'o(&c)=V21+1 are nonzero, so
that the expressions simplify. For the direct (N =1) and
single-scattering (N =2) terms, one obtains

de ikR (1—cos8)

dQ g mL, (a)e '
YL (k)+

L

2

(26)

where the terms in the sum over k are defined in Eqs.
(15)—(19). This sum can be interpreted as the effective
curved-wave single-scattering amplitude. Equation (26) is
formally equivalent to the cumbersome exact formulas of
Ref. 20 and, moreover, can be applied to an arbitrary
core level.
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APPENDIX A

In this Appendix we present a derivation of the re-
duced, dimensionless, z-axis propagator given by Eq. (10).
Our starting point is the conventional definition of the
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1 d k elk(r r')

G(r, r', e)=-
2&2e (2m)' s —

—,'k +iO+
(A 1)

Green's function: 6+(r, r', E)—= (r~(e —H+iO+ ) '~r'),
where H= —A' V' /2m. The Green's function actually
used in this paper is G= —G+/g, where the factor
g=(2m/fi )(2mc/A )' . In the atomic hartree units
(e =|»i=m = 1}used in this paper, )=2k, where k =&2s.
The advantage of this notation [where we follow Schaich,
Ref. 6(b)] is to make the Green's function dimensionless
as well as to remove an annoying minus sign in the final
reduced form for G. Furthermore, since the inverse of
this same factor g occurs in the t matrix, our t matrix [see
the definition just below Eq. (2)], which is the convention-
al t matrix multiplied by g, is then also dimensionless.
With these choices the product of Gt that naturally
occurs in the multiple-scattering expansion [see Eq. (14)]
remains invariant while allowing for dimensionless G's
and t's Equ.ations (9) and (10) of Ref. 2 show the factors
of g in G and t in a particularly transparent fashion.

By inserting a complete set of plane-wave states on ei-
ther end of (s —H+i0+) ', we can write the dimension-
less Green's function in atomic hartree units as

If we then rewrite

e =eik.(r—r') ik.(r—R) ik.(R—R') ik (r' —R')
e e (A2)

expand the first and last exponentials on the right-hand
side into spherical harmonics and Bessel functions [Eq.
(B.105), p. 497, of Ref. 11], and rewrite Eq. (Al) in the
form of Eq. (6) to pick off GL L.(p), we obtain Eq. (7).

We now need to manipulate the radial integral over

fdk k so that it extends from —~ to 00. To do this

we make two transformations that take advantage of
the symmetries: Yt ( —k) =(—1)'YL (k) and j((—p)
=( —1)(j((p). The first transformation is k~ —k. This
changes Eq. (7) by a factor of ( —1)'+' from the spherical
harmonics symmetry and changes the sign of the ex-
ponential argument. The second transformation is to
change variables in the radial k integral from k ~—k. If
we ignore the angular integral and other factors to focus
on this integral alone, we find from the Bessel function
symmetry

f j((«)j((«) (, o, ,„-„.„;,j((«j)((«)
dk k, + =( —1)'+' dk k e'"""

0 c.——'k +i0+ 00 c.——,'k +&0+
(A3)

Combining the two transformations explicitly demonstrates that the expression for 6 with the radial k integral from—00 to 0 is identical to that from 0 to ~ and allows us to write

Yt'(k) YL.(k)e'"'" "' j,(k»)j((kr')
dkk

2 2v'2s (2m) — e ,'k +iO—+ —j((v'2sr)j((&2sr') (A4)

The prefactor of —,
' takes care of the double counting

caused by extending the radial k integral to —~. To
finish the derivation of Eq. (10) we now specialize to the
coordinate system where R—R' is along the z direction.
Then k (r —r') =p~r —r'~, where p—:cos8,

1)m
YL, (k)= —&(~P( (p)e™~, m &0 (A5)

4m

and, since Y(" (k)=( —1) Y, (k), the factor of ( —1)
is missing in Eq. (A5} for m & 0 (and m ~

~
m

~
everywhere

in the equation. The normalization factor Ni is given
just below Eq. (10) in the text, where the associated
Legendre polynomials Pi are also defined. If we make
these substitutions, the integral over P gives 2a5 ~ and
the integral over k can be done by contour integration
(closing in the upper half plane for p & 0 and in the
lower-half plane for p&0). The same result occurs for
both positive and negative m if we substitute

~
m

~
for m

everywhere in all subsequent formulas in this Appendix.
In this specialized coordinate system we then have

r

l
GL L(c»)=fi &( &(

X f dpE(p)P, (p)P, . (p),

where

e'~" for p) 0,
&(p)= '

(+(
( —1)' e '('" for p &0, (A7)

APPENDIX B

Here we present a derivation of the separable represen-
tation of Eq. (11) using contour integration techniques.
The derivation is based on an identity relating the La-
place transform of a product a(x)b(x) to a "double Tay-
lor series. " A brief derivation is as follows. Define the
product transform I(z) as

and p =v'2c
~
R —R' ~. We can then use the symmetry

P( ( —p) =( —1)™P((p) to show that the integral from
—1 to 0 is equal to that from 0 to 1. After removing the
factor of e'('/p and changing variables to x =1—p and
z =1/ip, we then obtain Eq. (10), except that the integral
over x goes from 0 to 1. We have been able to show, in
analogy to the procedures used in Ref. 13, that the in-
tegral over the same integrand from 1 to 00 in x vanishes,
which enables us to write Eq. (10) with the integral ex-
tending from 0 to 00, as written.
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~ 8xI(z) = a(x)b(x)e
0 Z

dzi dz2 A (z( }B(z&)

C 27Tl C 27Tl Z&Z2 ZZ2 ZZ]
(B1)

erst I'I' ' factor in the integrand, which results in an
asymmetrical form for m %0, but yields finite polynomial
expansions for all m. Thus in Eq. (Bl) we define

a(x)=(2x —x ) P) '(1 —x)

where we have substituted the inverse transforms

dz A (z) „z, dz B (z)ax= e" ',
c 2m i 'z c 2ni z

P (1—x)PP(1 —x),
(2m —1)!!

b(x)=P) '(1 —x) . (B7)

(B2)

and the contour C is to the right of poles of A (z) and
B(z). The transform A (z) is given by Eq. (Bl) with
b (x)= 1. If a (x) has a Taylor series expansion about the
origin, a(x) =g„oa„x",the Taylor expansion of A (z} is
A (z)=g„on! a„z". Carrying out the integration over

zz in Eq. (B1}yields

The transform A(z) can be evaluated with the help of
Nozawa's Eq. (6.1) for n =m and the correspondence dis-
cussed below Eq. (10) between Hp& and integrals of the
form of Eq. (10). The transform of a(x) chosen above
corresponds to the function H& (p), and we obtain

e'~
HP ()() ) = (2m —1)!!A (z)

dz, A (zi )B[z2(z, )]
I(z) =

C 2&l Z& Z

lp 1+m !
z (2m —1)!!C)(z) (B8)

Z2
z2(z, )=z+ ZZ ]

Z] Z Z] Z

A'"'(z) B'"'(z)

() n. n.
(B4)

which we have termed a double Taylor series in analogy
with its functional form.

For the case of Eq. (10) this formula is simplest to ap-
ply when m =0, in which case one obtains

Substituting Taylor expansions for A and 8 about z, i.e.,
A (z') =g„A '"'(z)(z' —z )"/n!, where A '"' is the nth
derivative of A (z), and noting that only siinple poles sur-
vive the integration then yields

so that A(z)=[(1+m)!/(1 —m)!]z C((z). The trans-
form B(z) can be obtained directly from the Taylor
series expansion of C)(z) as follows: B(z)
=( —1) g'„:op(.„+ z", where p) „=(—1)"(1+n)!/
(1 n)!(2n)!! ar—e the coefficients of C)(z)=g„' ()p)„z".
Hence we obtain for the integrand in Eq. (B3)

A(z, )B[z~(z) )]=(—1);(z+5) C)(z+5)(1+m )!

X g p) „+ (z+z /5)"
n=0

1+ ) 5m=( —1)
' C)(z+5)

(I —m)! z

gI) '(p)= f P((1 —x}P)(1—x)
0 Z

XC)(z+z /5), (B9)

m&nil, )'} C "(z) C " (z)
nt ntn=0

(B5)

For the general case m%0 in Eq. (10) the associated
Legendre polynomials PP ~ (sin&) ~ PI ) each have a
factor (sin8) =(2x —x ) ~, and hence are not finite
polynomials in x f'or odd m. For this reason we And it
convenient to associate both of these prefactors with the

where 5=z) —z. In arriving at the last line of Eq. (B9) we
have rewritten (z+z /5)"=(z/5)"(z+5)" and combined
terms. The quantity C) =g'„p( „z"has the same Tay-
lor expansion as C)(z) beyond the mth term. Instead of
carrying out the derivatives of A (z) and B(z) as in Eq.
(B4), it is siinpler to redo the contour integration in Eq.
(B3) with the above integrand. Substituting Eq. (B9) into
(B2), again noting that the integration only counts the
single pole terms, then gives

min! ), )' —m ( C(n)(z} C(n +m)(z)f dx
e

—xizptj(1 }pp(1 x )
(1+m } y ( 1 }m

) )' 2n+m
0 Z (1—m )! o n! (n+m )!

(810)

where CI '(z}=d C,(z)/dz . Note that the overtilde is
not necessary in the term in C)("+ '(z) by virtue of their
common Taylor expansions beyond the mth term.

The quantities C)( '(z) can be computed efficiently at
each energy from recursion relations in terms of an auxi-
liary function C) (z) =C)' 'z /m!. By differentiating the
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recurrence relation d /dz [C(+,=C(,—(21+1)zC(],
one finds that

C(„——C(, (2—I+1)z(C, + C, , ),
(B1 1)

1 )m
(2m )(z

m, m 2m

(arguments suppressed), where the quantity C is ob-
tained from the Taylor expansion coefficients of C((z)
given above. Because the coefficients C, (z) depend on
bond length via the factors C(' '(z), their dependence on
p=kR is due primarily to a shift in the phase of order
l(1+ 1)/p and an amplitude factor of order p
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