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We present a new numerical method for the study of binding energies of particles in fermionic

systems.

Working with an imaginary chemical potential we can obtain results in the canonical

ensemble by simple modifications of standard numerical techniques. We applied the technique to
the two-dimensional Hubbard model observing binding of holes at half-filling on lattices of 4x4
sites. For U/t =4 we estimate that the binding energy is A= —0.10 + 0.02.

The two-dimensional Hubbard model is being studied
extensively in relation to the high-temperature supercon-
ductors,! and it appears to describe some of the features
of these new materials. However, it remains an open
question whether this model actually has a superconduct-
ing phase. Analytic studies of the Hubbard model are
difficult in the intermediate and strong coupling regimes
where perturbative and mean-field techniques are ques-
tionable. Numerical simulations are difficult at low tem-
peratures for the relevant band fillings because the in-
tegrands of the Feynman path integrals are not positive
definite. In this Rapid Communication we use a new nu-
merical technique to show that two holes in a half-filled
sea do bind for a 4x4 lattice. This result provides evi-
dence that an effective attractive interaction appears in
the U >0 Hubbard model. Previous numerical simula-
tions in the grand canonical ensemble have also suggested
an attractive pairing interaction in the d-wave channel for
this model.>> Our results do not constitute a proof that a
superconducting phase will appear at finite hole doping,
but the existence of a net attractive force between holes
makes that scenario more plausible. As the criterion for
binding we use the quantity,

A-(Ez—Eo)_z(El"Eo)-(Ez—El)_(El"Eo),
)

where E, denotes the energy of the ground state with n
holes (i.e., n less fermions than a half-filled band). If
there is a bound state of two holes then A <0. A calcula-
tion of A should be done in the canonical (C) ensemble
where the number of fermions is fixed, rather than in the
grand canonical (GC) ensemble. The Lanczos method
can be used for this purpose, and it has produced interest-
ing results for the z-J and Heisenberg models,* and very
recently for the Hubbard model.> However, it cannot be
used for large lattices. Stochastic methods have recently
been proposed for calculating ground-state properties with
fixed numbers of electrons.>® However, they suffer from
the sign problem mentioned above. In addition, they pro-
vide a direct calculation of the (extensive) energies E,.

4l

This is a problem in evaluating A, which is an intensive
quantity, since one must take differences of extensive
quantities, which requires high-precision measurements.
In this Rapid Communication we present an alternative
numerical approach, based on a simple modification of the
standard quantum Monte Carlo method used in calcula-
tions of the GC ensemble.>’ Although below we focus
our attention specifically on the Hubbard model, the
derivation is valid for a wide variety of Hamiltonians.

Consider a model defined by a Hamiltonian H. We
denote the partition function for the GC ensemble with
chemical potential 4 by Zgc(u) and the partition func-
tion for the C ensemble with n electrons above half-filling
by Zc(n). They are related by

. n=
Zoc(p) =trle PH=rN) | mebuN 3 oBunz (n) )
where N is the number operator and N the number of spa-
tial lattice points. For the Hubbard model the eigenvalues
of N ranges from 0 to 2N. Our approach rests on the con-
tinuation of Eq. (2) to imaginary chemical potential
p— ik. Since the canonical partition functions are in-
dependent of u,
1 2x/p
Zc(n) 228 Jo

The advantage of Eq. (3) is that for the Hubbard model,
and a variety of other models, exp(—iBAN)Zgc(u =i))
can be written as a path integral with a positive weight.
All the problems associated with fluctuating signs are con-
tained in the explicit phase factor exp(—ifAn) rather
than in an involved determinant phase as in previous for-
mulations.

We now specialize to the Hubbard model defined by the
Hamiltonian

ﬁ(t,U) - —1 E (C,'Ta(‘j,a‘i'H.C.)

{i,j),o

+U2(n,‘_t— ;-)(n;_i—%), (4)

d\e _im("+N)ZGc(u =i). @3)

where the notation is standard. To perform a numerical
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calculation we integrate out the fermion degrees of free-
dom. To this end we use a discrete Hubbard-Stratonovich
transformation,® introducing an imaginary time-depen-
dent Ising variable {s} at each lattice site. The spin-up
and spin-down electrons couple to the {s} fields in propor-
tion to n; , with opposite signs. Integrating out the fer-
mion degrees of freedom we write the GC ensemble parti-
tion function as a sum over configurations, {s} (Refs. 3
and 7),

ZGc(p)=§dctM({s},u)TdetM({s},u)1, (5)

where My and M| are the fermion matrices for spin-up
and -down electrons propagating through the configura-
tion {s} in a chemical potential 4. We now perform a
particle-hole transformation on the spin-down sector given
by cij— o (—1)"TY, i =0(iy,iy). Under this transfor-
mation the coupling of the spin-up and -down electrons to
the {s} field become identical and

uniy+n )— ulny—n;  +1).
Equation (5) can therefore be rewritten as
Zge(u) =e —”“N%‘,p({s} YdetM ({s},u)detM ({s}, — ),
)

where p({s}) is a positive function of the {s} variables.®
Now each term in the sum Eq. (6) is positive for u=ix,
since each determinant is the complex conjugate of the
other.

We are primarily interested in calculating the binding
energy A and we wish to directly obtain the energy
differences on the right-hand side of Eq. (1) to avoid can-
cellations in subtracting two large quantities. This can be
done using the asymptotic result

Zc(n) —B(E, —Eq)
Zc(0) > .08 ’ ™

where d, ¢ is the ratio of degeneracies of the ground states
with n and O holes. A straightforward way to proceed
would be to generate a sequence of field configurations {s}
and complex chemical potential values A, with a probabili-
ty distribution P({s},1), proportional to p({s}) | detds ({s},
i1 |5 Ze(n)/Z(0) is given by the expectation value of
exp(—iBAn) in this distribution [particle-hole symmetry
implies that Z¢(n) =Zc(—n), so it is only necessary to
measure cos(BAn)]. However, because a gap exists in the
single-electron density of states, the fermion determinant
is nearly A independent at low temperatures. Then, we
can simply generate the field configurations for A =0, just
as one does in GC ensemble calculations at u=0. We
then have

Zc(n)
Zc(0)
1 a/p | detM ({s},id) |2
= P ,0 _— d?» ipAn N
E (s} )27;[3 J:) ¢ | detM ({s},0)4|?

®)

We do not need to explicitly evaluate the integral over A
in Eq. (8). The absolute square of the fermion deter-

minant is simply the partition function for electrons in the
presence of the {s} field, so we can write in analogy with
Eq. (2),

| detM ({s},ir), |2 N
|detM ({s},0), |2 co(ls}) +2n§1 cos(Brn)c,({s}),
)

where we used the fact that the left-hand side of Eq. (9) is
even under A— —A. Clearly Z¢(n)/Zg(0) ={c,) where
the average is over an ensemble of {s} configurations gen-
erated by the probability P({s},0). To obtain the gaps
Apm =E, — E,, we then need

Zc(n) _ {cn)
Zc(m) ey

Since each Zc(m)xexp(—pBE,) and Zgc(0)
«<exp(—BE,) for large B, Eq. (10) involves intensive
quantities, and no large cancellations occur. To obtain the
¢p for a given field configuration, we evaluate the fermion
determinant for an arbitrary set of A; and invert® Eq. (9).
Numerical calculations cannot be carried out at arbitrari-
ly low temperatures since the quantities Z¢(n)/Zgc(0)
fall off exponentially with 8 in part because the ¢, become
small configuration by configuration, and also because of
the cancellations between configurations (¢,>¢ can be
negative for some configurations of {s}). The latter effect
introduces noise that eventually makes the calculations
impractical. For example, for 4x4 lattices we are re-
stricted to 8 < 6. What we have done is to perform calcu-
lations for that range of 8, and then perform fits to obtain
the gaps. Finally we remark that the approach outlined
here can be used to calculate the expectation value of any
operator in the C ensemble. '°

We checked our technique on a 2% 2 lattice where exact
results can be obtained. We used a time step Ar=0.075
and between 2000-5000 iterations after thermalization.
Numerically evaluating —In({c;)/{c2)) vs B the agree-
ment with the exact results at each temperature was ex-
cellent. The asymptotic regime Eq. (7) is easily reached
and from there we obtained A;; =1.16 £0.01 (in units of
t) while the exact result is 1.1640. For the case {c;)/{co)
special care must be taken. Although the agreement with
the exact values at each temperature is also excellent, the
asymptotic regime is not easily reachable and important
deviations from it can be seen even at relatively low tem-
peratures. The reason is that in the half-filled subspace
there is an energy level very close to the ground state (that
can be mapped into the spin wave of strong coupling) per-
turbing the asymptotic result Eq. (7). The remedy to this
problem is to fit the data including this “spin-wave” (SW)
level, which is threefold degenerate, with its energy (Asw)
as a free parameter, as

zi_te
Zo (co B>

(10)

—BpA
dl,Oe BAo

14 3¢ Posw

After this improvement the data can be fit very well (Fig.
1) using d1,0=4 (see below). The prediction for the gap is
Aj0=1.24 + 0.01 while the exact result is 1.2383. The nu-
merical spin-wave gap is Asw =0.29 +0.01 (exact result
Asw =0.2815).

1)
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FIG. 1. —TIn({c1)/d1of{co)) vs T for the 2x2 lattice with
U/t =4. The solid line is our extrapolation using Eq. (11) with 6 T I T I T
d1,0-4.
U=4
Is the factor d; ¢ relevant in the fits? Suppose we in- 4 — N=4x4 —
correctly guess its value using a degeneracy d;,. The —~ 02,=0.88+0.02
correct gap at T =0 will still be obtained but with a finite o —
temperature correction ~7'In(d}0/d},0) ina —TIn(cy)/ 3
di0lco’) vs T plot. Then, minimizing the slope of this g =2 —
[

linear term in T we can also predict the relative degenera-
cy of the states under study. Following these ideas we
found for the 2x2 lattice that d; 0= 4 in agreement with
the exact result. d5; can also be deduced numerically fol-
lowing the same procedure. For the 2x2 lattice we
correctly found that the ground state with two holes is not
degenerate. For a 4x4 lattice it is known'! that the one-
hole ground state has a degeneracy 12 since it can have to-
tal spin * 5 and momentum k=(=* $r,+ +7) or
(7,0),(0,7). On the other hand, the ground state in the
zero-hole subspace is not degenerate. So we expect that
d10=12 will produce the best fit in Eq. (11) for a 4x4
lattice.

Now we present results for the 4 x4 lattice. For the gap
Ajo we follow the same technique used for the 2 x 2 lattice.
In Fig. 2(a), we show

() (1+3e ~Pasw)
dolco

vs T at U/t=4 for different degeneracies. If the fit is
reasonable and if d ¢ is correctly selected then Y should be
approximately constant as effectively happens for d, o
== 12 in agreement with our expectations. Our numerical
results are A;p=0.98 £0.02 and Asw=0.47+£0.03. In
Fig. 2(b) we show —In({c)/{c|)) vs Bat U/t=4. A good
straight-line behavior is observed obtaining a gap
Ay =0.88 £0.02. The optimal value of d, is = 1.5 im-
plying that the two-hole ground state is highly degenerate
or that many other levels are very close to it. Combining
these results we predict A=—0.10+0.02 at U/t =4.

We have repeated this procedure for many values of
U/t with results for A shown in Fig. 3. We can safely con-
clude that A is negative for U <7 on? 4x4 lattice. Our
technique works better at intermediate values of U/t since

Y——Tln[

FIG. 2. (a) Y= —TInl{c;)(1+3e ~?*%)/d, o{co)] as a func-
tion of T for the 4x 4 lattice with U/t =4. (b) —In({c2)/{c1)) as
a function of B for the 4 x4 lattice with U/t =4.

T I I
6

8

FIG. 3. A as a function of U/T for the 2x2 (long-dashed
line), V8x+/8 (short-dashed line), and 4x4 (continuous line)
lattices.
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for U/t <1, Asw, and the energies of other levels are very
small affecting the extrapolation to 7 =0 while for
U/t> 1 the fluctuations are very strong. For comparison,
in Fig. 3 we also show exact results for a 2x2 lattice and
Lanczos results for a v8x+/8 lattice.'? Both are very
close to the new results on a 4x4 lattice suggesting that
we may be already near the bulk limit.!> However, note
that at least for U/t =4, A seems to be smaller for the
sixteen-site lattice than for the eight-site lattice. Then our
result |A| =0.10+0.02 is perhaps an upper bound for
the bound-state energy. For large U/, A is positive mean-
ing that the holes prefer to be separate as much as possible
in the small lattice we studied (in the bulk limit A cannot
be positive). That roughly happens for values of U/t = 8
where the holes may prefer to form independent fer-
romagnetic polarons. So the interesting regime in this
model appears to be U/t=4—35 rather than larger
values.

After completing Fig. 3 we received a paper by Parola
et al.” in which Lanczos and stochastic results for the 4x4
lattice are presented for two and zero holes at U/t =4.
The Lanczos result for this gap is Ayo=1.8784 while our
prediction is A=Az +A;0=1.87%£0.02 in excellent
agreement within statistical errors. The stochastic result
of Parola er al. is'* Ayy=1.76 +0.08, which was obtained

by directly measuring the extensive energies rather than
energy differences. '

Summarizing, in this Rapid Communication we pre-
sented a new numerical method to study binding of holes
in fermionic systems. In particular we have shown that on
a 4x4 there is a bound state of two holes in the two-
dimensional Hubbard model at half-filling. Although
from the existence of a bound state of two holes at half-
filling we cannot show the existence of a superconducting
phase at low temperatures, '® nevertheless, it is gratifying
to observe an effective attractive force coming out of the
repulsive Hubbard model. An analysis of the symmetry of
the state as well as extensions to larger lattices and other
models'” are in progress.

We thank M. Randeria, J. R. Schrieffer, Y. Shapir, and
P. Stamp for helpful conversations and J. Riera and A. P.
Young for sending us their results shown in Fig. 3. This
work was supported by National Science Foundation
Grants No. PHY86-14185 and No. PHY82-17853, sup-
plemented by funds from NASA, and by Department of
Energy Grant No. FG03-85-ER45197. The computer
simulations were performed on the Cray-2 of the National
Center for Supercomputing Applications (Urbana, IL).

1J. G. Bednorz and K. A. Miiller, Z. Phys. B 64, 188 (1986); P.
W. Anderson, Science 235, 1196 (1987).

2S. R. White, D. J. Scalapino, R. L. Sugar, N. E. Bickers, and
R. T. Scalettar, Phys. Rev. B 39, 839 (1989).

3S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gu-
bernatis, and R. T. Scalettar, Phys. Rev. B 40, 506 (1989).

4E. Dagotto and A. Moreo, Phys. Rev. Lett. 63, 2148 (1989); E.
Dagotto et al., Phys. Rev. B (to be published).

5A. Parola, S. Sorella, S. Baroni, R. Car, M. Parrinello, and E.
Tosatti (unpublished).

6S. Sorella, S. Baroni, R. Car, and M. Parrinello, Europhys.
Lett. 8, 663 (1989).

R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev.
D 24, 2278 (1981).

8J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).

9The ¢, fall off rapidly with n at low temperatures, so the sum
can be truncated, and the fermion determinant need only be
evaluated for a limited number of A; (on the 4 x4 lattice we
needed only five terms).

191f 4({s}) denotes the value of the operator A4 in the field
configuration {s}, then in analogy to Eq. (9) one can write

| detM ({s},ir) |2

AUsh | detM (1s},0)1 |2

N
=ao({s})+2 Y cos(Brn)a.({s}).
n=1

The expectation value of A in the C ensemble is then given by
(A)n=(an)/{c,) where the expectation values on the right-
hand side are taken with the probability P({s},0).

IE. Dagotto, A. Moreo, and T. Barnes, Phys. Rev. B 40, 6721
(1989), and references therein. This result was obtained in
the ¢ —J model (strong coupling limit of the Hubbard model)
and is supposed to persist for any value of U/t smoothly con-
nected to the strong coupling region.

12J. Riera and A. P. Young, Phys. Rev. B 39, 9697 (1989).

13We do not expect phase separation in this model based on the
results for an eight-site lattice of Ref. 12.

14We follow the convention that the error bars of a sum of ener-
gies is the biggest of the two error bars.

In this model A is very small compared with the energies
themselves and high accuracy (< 10%) is necessary. Then
the 2D Hubbard model is a particularly rigorous test of our
technique. For the ¢-J, multiband Hubbard, or U <0 Hub-
bard models where A is expected to be larger, our technique
should work very well.

16The two-body potential producing this bound state may be
screened by a finite density of holes, although for large U/t
the bound states are expected to be small in size and that
effect may not be relevant. But even neglecting that effect it
is not clear how to relate A and T. since the pairs may exist
even for T > T. at large U/t [see, for example, A. J. Leggett,
in Modern Trends in the Theory of Condensed Matter, edited
by A. Pekalski and J. Przystawa (Springer-Verlag, Berlin,
1980), p. 14].

7We reiterate that the present method can be applied to a wide
range of Hamiltonians, like those appearing in lattice gauge
theory, where the fermionic determinant is complex at finite
density [I. Barbour er al., Nucl. Phys. 275, 296 (1986)]. In
fact, in the context of particle physics, Eq. (3) has been previ-
ously derived [N. Weiss, Phys. Rev. D 35, 2495 (1987)] and a
method similar to ours has been applied to the study of phase
transitions at finite quark density in the C ensemble [see I.
Barbour, C. Davies, and Z. Sabeur, Phys. Lett. B 215, 567
(1988)]. Considering sectors with different quark numbers
one could hope to calculate hadronic masses, at least in strong
coupling.



