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For one-dimensional (1D), 2D, and 3D finite clusters of Li atoms, numerous symmetry-broken
unrestricted Hartree-Fock (UHF) solutions are of lower energy than the symmetry-adapted one.
The lowest solution provides, after a localizing unitary transform, a set of interstitial singly occu-

pied molecular orbitals (MO's), each of them being essentially between a few atoms. These MO's

are very similar to those obtained by McAdon and Goddard from more elaborate wave functions

and support their proposal of a new picture of the electronic assembly in metallic clusters. In the

lowest UHF solution the spins are distributed among the interstices in order to achieve the best spin

alternation between neighboring interstices. Starting from these interstitial MO's, one may change
the spin distribution and obtain other UHF solutions of (slightly) higher energy, the spacing of
which is ruled by a Heisenberg Hamiltonian. On two Li6 clusters the exact MO-configuration-
interaction wave function in the basis was projected on the subspace of these various UHF solu-

tions; the norm of the projection is close to 1, and the projected eigenvector is the lowest eigenvec-

tor of a Heisenberg Hamiltonian. From the energies of the various interstitial UHF solutions, a
Heisenberg Hamiltonian may be obtained at very low cost and its diagonalization provides a good
approximation of the exact energy (in the basis set). This procedure will be used for infinite lattices
in order to calculate cohesive energies.

I. INTRODUCTION

A quite revolutionary description of the electronic
wave function of the bulk of alkali or noble metals has re-
cently been proposed by McAdon and Goddard. ' This
tentative picture proposes to use interstitial singly occu-
pied molecular orbitals (MO's) which are localized on
bonds for one-dimensional (1D} systems, on triangles for
2D triangular lattices and on tetrahedra for 3D compact
lattices. The physical support of such a description is
easy to understand as a compromise between the elec-
tronic delocalization, which diminishes the kinetic ener-
gy, but which is constrained inside a local region of
space, and the electronic repulsion, which is minimized
by avoiding electron pairing and using one domain per
electron. This proposal originates from ab initio
generalized-valence-bond (GVB) calculations on small
alkali-metal clusters in ideal geometries.

The GVB wave function is highly constrained. For an
n-valence-electron cluster of n atoms of alkali metal, the
valence wave function takes the form

/=A(a, b, c, . . . , n } g Crpsr
I

where a, b, c, . . . , n represent a unique set of nonorthog-
onal one-electron MO's (which means that the space part
of the wave function is unique) and where Psr represents
one member of the set of linearly independent n-electron
singlet spin functions. Both the content of the MO's,
a, b, . . . , n and the coeScients Cl are determined varia-
tionally. This wave function goes besides the Hartree-

Fock (HF) approximation, and for molecules it treats
quite satisfactorily the part of the correlation effects
which is inside the valence shell (internal or nondynami-
cal correlation). It is now well known that in ab initio
calculations of such clusters (i) correlation effects play a
crucial role for predicting correctly both energies and
structures, and (ii) the correlation within the s band is of
little effect; the main corrections come from double exci-
tations toward MO's built from the p band; the crucial
role of p atomic orbitals (AO's) in small clusters is not
essentially an s-p band mixing (a static hybridization) but
an energy lowering of the effective energy of ionic
valence-bond structures, as explained in some length in
Refs. 7 and 8; the Li Li+ structures are stabilized
by local s p double excitations which introduce the
angular correlation on Li, resulting in a strong lowering
of the effective interelectronic repulsion (the U parameter
of the Hubbard Hamiltonian). This effect was also ana-
lyzed by Goodgame and Goddard, who proposed to shift
the monocentric repulsion integrals in their so-called
modified-GVB scheme for completely different molecules.
One may wonder whether the compromise between delo-
calization and repulsion exhibited by the GVB calcula-
tions of Refs. 1 and 2, which disregard these dynamical
correlation effects, is not an artifact which would disap-
pear in more Aexible wave functions. In the GVB calcu-
lations the p AO's actually play a large role, through a
large s-p hybridization of the MO's (which may introduce
part of the dynamical correlation in an unclear and
biased manner); the s-p mixing is apparently surprisingly
high (s/p =1/1 for cyclic Li,o). One of the purposes of
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the present paper is to check the relevance of the intersti-
tial model by comparison with extensive ab initio
MO —configuration-interaction (CI) wave functions which
do not introduce any prejudice (except for the atomic
basis set limitation).

Rather than using a GVB approach, which is very
computationally expansive, and limited to small clusters,
we shall go through the use of symmetry-broken unre-
stricted HF (UHF) solutions. Actually McAdon and
Goddard have shown the existence of strong symmetry
breakings on one-dimensional cyclic chains of alkali- or
noble-metal atoms. ' One instability is a bond-centered
charge-density wave of singlet type leading to the Peierls
distortion; a second class of solution consists in atom-
centered spin-density waves (triplet-type instability, or
ASDW"), but the lowest solution is a bond-centered
spin-density wave. A localization of the UHF MO's of a
(or P) spin provides a set of singly occupied interstitial
MO's, located between two adjacent atoms. Section II of
the present paper is devoted to the study of interstitial
UHF solutions. We show that (i) such types of solutions
are not restricted to 1D systems, they also occur on 2D
or 3D systems, providing bond-centered, triangle-
centered, or tetrahedra- (or pyramid)-centered singly oc-
cupied MO s, and (ii} for a given cluster one may obtain
seueral UHF solutions for any value of S, (except for the
upper S, value, the highest multiplet where the UHF
solution is unique); these solutions are closely related,
their localized MO's are located on the same regions of
space, they essentially differ by the spin distribution over
the set of interstices. This variety of UHF solutions had
only been noticed previously for 1D cyclic chains and
atom-centered ASDW solutions, ' for which besides the
spin-alternated density wave, one may obtain UHF
atom-centered solutions with random spin distributions.

McAdon and Goddard have noticed, 2 for lD cycles at
least, that the UHF single occupied MO's of the upper
multiplet are practically identical to the GVB MO's of
both the upper multiplet and lowest (S,=0) solution. In
order to test the validity of the interstitial singly occupied
description we decided to project the best MO-CI wave
function onto the subspace generated by all the deter-
minants built from the UHF MO's by changing the spin
distribution and keeping a single occupation of these
MO's. This comparison is rather diScult to perform and
was limited to two Li6 clusters; the precise procedure and
the results are reported in Sec. III. They support the va-
lidity of the interstitial representation. Moreover the
projection of the exact wave function onto this subspace
of "neutral" structures appears to look like the solution
of a Heisenberg Hamiltonian, as also noticed in Ref. 2 for
cyclic systems. Actually one may see the electronic wave
function as obtained in a two-step procedure: first the
delocalization-repulsion balance defines the space part of
the function, and then the spin distribution is ruled by a
Heisenberg-type problem.

Taking advantage of this remark, Sec. IV proposes to
use the energies of the various UHF solutions in order to
determine the effective interactions of a Heisenberg Ham-
iltonian. The resulting energies compare very we11 with
the exact energies. The simplicity of such a procedure

immediately suggests a possible extension to the study of
the metallic bulk by obtaining a few symmetry-broken ab
initio UHF solutions, and defining from them effective
spin interactions, the solution of the infinite Heisenberg
Hamiltonians may be approached finally by perturbing
the most spin-alternated single determinant by the less
spin-ordered ones.

II. MULTIPLICITY
OF INTERSTICE-CENTERED UHF SOLUTIONS

A. Method

In this section one shall consider that the energy of a
single determinant

n

co=a g~s;

(where y; is an orbital and S; is an a or P spin function)

E,=&a,laic, ) a&a, la, )

is a function of both the MO parameters and interatomic
distances.

Unexpectedly this function possesses a very large num-
ber of minima, each corresponding to a self-consistent
solution of the Hartree-Fock problem. This section illus-
trates this point through ab initio calculations on Li„
clusters of various dimensionalities; in general the inter-
atomic distances will be kept equal to 6 bohrs (which is
close to the bulk nearest-neighbor distance}. The core
electrons are left out of the problem, their effect being
treated through a nonempirical I-dependent pseudopoten-
tial the valence basis set involves two s atomic orbitals
and one p atomic orbital.

From interstitial trial vectors, it is quite easy to obtain
the lowest-energy UHF solution for S,=0 (with most al-
ternant spin distribution} or for S, =n/2. A Boys local-
izing unitary transformation' is applied successively on
the sets of a and then P occupied MO's. This process
consists in maximizing the distances between the cen-
troids of the orbitals, or in minimizing the second mo-
ment of the electronic position operator

r,'= & y; l~lg; ),
& g, l(r —r,')'lp, ) =min .

same spin

One then obtains equivalent localized MO's q,
' for both

the lowest S, =O and the S, =n/2 solutions, and one
verifies that these MO's are similar, i.e., defined on the
same region of space. Then one may reach other
symmetry-broken UHF solutions by using these localized
MO's as space parts of the trial vectors and changing the
spin distribution. One hopes to be in the drainage basin
of an other variational solution which is reached itera-
tively. The eigenvectors of the new solution are again lo-
calized through the Boys procedure, and compared to the
preceding ones in order to check that they only differ by
small deviations. The 1D problem is exhaustively de-
scribed through the simple case of the cyclic Li6 problem.
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The generality of the phenomenon will be illustrated less
intensively on a few typical 2D and 3D systems.

B. j.D cyclic problem

A regular circle of Li6 will be taken as a basic example.
As shown in Refs. 2 and 10, (i) the bond-centered upper
multiplet S,= 3 UHF solution is bounded with respect to
the atoms, while the S, =3 atom-centered solution is

strongly repulsive (Fig. 1 gives the evolution of the corre-
sponding energies as functions of the interatomic dis-
tance); (ii) the bond-centered alternant spin-density wave

S, =0 UHF solution is very stable. It presents a
minimum close to 6 bohrs. The corresponding atom-
centered solution is much less bounded and disappears as
a real minimum for r (5. 8 bohrs (cf. Fig. 1).

We have obtained the two other S, =O bond-centered
UHF solutions which correspond to less-ordered spin dis-
tributions; the solution in which four spin alternations
between adjacent bonds are kept, and the one which only
preserves two spin alternations. Of course, the larger the
number of spin alternations is the lower the UHF energy

1s.
The Boys criterion gives highly localized equivalent

MO's, since the largest coefficient outside of the con-

ENERGY
(au)

—1.17

cerned bond is always smaller than 0.05. The main
coefficients (those on the concerned bond) are given in
Table 1(a). The p components of these MO's are almost
tangent to the circle, pointing Out of the bond. The ideal
angle between a tangent p orbital and the bond would be
30' for a hexagon; the calculated ones are slightly smaller
(19'—27'} [cf. Table 1(a)]:

From Table 1(b) one might distinguish two types of hy-
brid atomics orbitals, according to the neighborhood; if
the atom is involved in two bond MO's of parallel spin,
the hybrids have a larger p component (0.32—0.350) than
when the atom is located between two bonds of different
spins ( C -0.280—0.290 }. The self-consistent hybrids

appear to be essentially sensitive to the spin-alternated or
spin-frustrated character of the concerned atom.

The connection between the MO's cp, (3) obtained for

S,=3 and those qr, (0) of the alternant spin-density wave

S, =0 may be studied through the overlap matrix

(y~(3) ~y;(0) ) of the occupied MO's (Table II). The pro-
jection of the y, (0) MO's onto the subspace Vect

I y, (3)j;, 6 is very large:

g (y;(0) ~y, (3) )'=0.9979,

—1.21

—1.23

—1.25

—1.27

5.50

x EXACT

I

6 50 7.50 B 50 9.50

(a. U. I

FIG. 1. SCF energies of cyclic Li6 as a function of interatom-
ic distances (in a.u). Solid line denotes RHF. The three curves
dissociating into ground-state atoms concern atom-centered
UHF solutions, with three different spin distributions: solution
with 6 spin alternations (abcdef ); solution with 4 spin alterna-
tions (abcdef ); and solution with 2 spin alternations (abcdef )

The four lowest curves (near 6 a.u. ) concern bond-centered
UHF solutions. One is the S, =3 ferromagnetic solution and
the three others are S,=0 solutions with, respectively, 6 UHF1,
4 UHF2, and 2 UHF3 spin alternations.

which means that the "valence" subspaces of all the
determinants built from the six MO's q, (0) or from the
six MO's y (3) are almost identical. However, the over-

lap between the MO's built on the same bond,

( y, (0}
~ qr, ( 3 ) ) =0.9667,

is much smaller. The difference between y;(3) and y;(0)
may be understood as follows. One may notice that the
y;(3) are orthogonal and may be considered as an or-
thogonal localized basis for the "valence" space. The
S, =O y;(0) a-spin MO has important overlaps (0.339)
with the adjacent bond MO's of /3 spin. One may consid-
er the y, (3) MO's as the result of an S '~ orthogonali-
zation of the y, (0) MO's. It is well known that the S
orthogonalization is a localizing transformation. ' The
orthagonal set g&;(3) may be considered as a bond-
minimal monoelectronic basis set, from which we may
define neutra1, singly ionic, and doubly ionic structures in

a VB language which uses bond MO's instead of AO's.
Now it is clear that the apparently neutral S, =0 deter-
minant

UHF=lq &( )y2( )q3(0)q~(0)q~(0)q6(0)l

incorporates ionic components and is significantly
different from

@'= ly, (3)g p(3)g 3(3)@4(3)g5(3)g.(3)
I

which is really neutral. The importance of the change in
the bond MO s, i.e., of the incorporation of ionic com-
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TABLE I(a}Main components of the localized MO's of Li6 (r =6 bohrs) on the s, s', and p AO. a is the angle of the p components

with respect to the axis of the bond. (b) s and p component on atoms involved in two bond MO s, The numbers are the minimum and

maximum coefficients, respectively.

(a)
OM ij S(' Si SJ.

y s-3t 0.325 0.098 0.351 21' idem

=0 4 all 0.358 0.112 0.273 24' idem

I~~ 12

f 23
0.374

0.309

0.354

0.125

0.079

0.105

0.286

0.321

0.268

24'

24'

21'

0.315
0.379

0.362

0.090
0.136

0.119

0.322

0.291

0.273

22'

27'

23'

12
t

2 3

0.379

0.331

0.134

0.104

0.287

0.340

23'

26'
0.305 0.078

idem

0.322 19'

S

0.350-0.380 0.105-0.136 0.268-0.291

0.305-0.331 0.078-0. 104 0.321-0.351

ponents in the S,=0 solutions may be seen by comparing
~4 IHI@ ) = —1.192331 a.u. and (@„„FIHI@„„F~
= —l.251 122 a.u. at r =6 bohrs. This is a very large en-
ergy difference. One may notice that (4 iH i% ) is even
htgh« than (@UHFIH I@UHp)= itp, (3)y2(3)p(3)q&4(3)ys(3)ps(3)i), the corresponding
energy being —1.212899 a.u. Since both determinants
(4 and 4U„F) are written with the same set of orthogo-
nal MO's, their energy difference reduces to the exchange

integrals +&i. Kii where 1 and I' are adjacent MO's. One

may deduce that XII. is about 0.0034 a.u. The same pro-
cedure may be repeated for the other spin distributions;
the corresponding mean energies appear in Table III,
showing an almost constant energy spacing. Of course,
the delocalization introduced by the variational adjust-
ment of the MO's reverses the energy ordering, produc-
ing energy splittings of opposite sign, but as regular as
the previous ones, which may be translated by the use of

TABLE II. Overlap matrix of the S, =0 and S,=3 UHF MO's.

a-MO's

P-MO's

—0.9667
—0.0156

0.01S6

—0.1773
—0.0046

0.1773

0.0156
0.9667
0.0156

—0.1773
0.1773
0.0046

0.0156
—0.0156
—0.9667

0.0046
0.1773
0.1773

—0.1773
0.1773
0.0046

—0.9667
—0.0156
—0.0156

—0.0046
—0.1773

0.1773

—0.0156
—0.9667

0.0156

—0.1773
—0.0046
—0.1773

0.0156
—0.0156

0.9667
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TABLE III. Energies of bond-centered UHF solutions R =6 bohrs, in a.u.

S,
Spin

alternations
UHF
MO's

—1.251 122
—1.239 838
—1.227 722
—1.212 899

Upper multiplet
MO's

—1.192 331
—1.198 745
—1.205 449

an effective negative exchange integral K' between adja-
cent bonds.

The bond-length dependence of those various UHF
solutions appears in Fig. 1. They all present a minimum
close to 6 bohrs, r;„being slightly smaller when the
number of spin alternations increases. One might wonder
whether and when the various S,=0 UHF solutions lose
their symmetry breaking to join the symmetry-adapted
restricted Hartree-Fock (RHF) solution. One may ob-
serve that when r tends to infinity the UHF S, =O and
RHF wave functions keep a different character; if one
uses a minimal s basis set the energy asymptote will be
the same (3U/2, where in the Hubbard Hamiltonian ter-
minology U is the monocentric bielectronic repulsion),
but the RHF wave function introduces some VB com-
ponents such as

+'

+)(
or

with nonvanishing coeScients, ' which are necessarily
absent from the spin-alternant bond-centered UHF solu-
tion; the identity of the asymptote does not imply a
matching of the wave functions. For nonminimal basis
sets the identity of the asymptotes is questionable; it de-
pends on the relative energy of the Li+Li ionic pairs
with respect to that of the Li'(2p )+Li(2s ) neutral pairs.

When r tends to zero the system tends toward a united
atom limit Z=18 (Ar atom), which certainly has a
closed-shell ground state without HF instability. In prac-
tice, when r becomes too small the overlap of the atomic

orbitals leads to numerical troubles and the core poten-
tials begin to overlap and to become meaningless. We
have simply verified that for r =2.5 bohrs the UHF solu-
tion remains below the RHF one.

An extensive study of the HF instabilities in such a
small highly symmetrical problem would be welcome; it
would require the use of enlarged basis sets, and a careful
study of the appearance of other symmetry-broken solu-
tions. We have found, for instance, UHF solutions which
involve alternant-bond-centered MO's in a region of the
molecule and almost closed-shell MO's in the other parts
of the molecule.

C. 2D problem

Li& is known from accurate ab initio MO-CI (Ref. 17)
and from local-spin-density (LSD) (Ref. 18) calculations
to have a rhombic planar structure; the restricted
Hartree-Fock determinant is built from two doubly occu-
pied MO's of a, and b2 symmetries, respectively. We
found (cf. Table IV) two distinct UHF solutions; one in-
volves two types of singly occupied MO's located on ei-
ther triangles or atoms; this symmetry breaking only sta-
bilizes the energy by less than 0.1 eV. The other solution,
which doubles the cohesion energy with respect to the
RHF one, implies a peripheric spin-density wave sup-
ported by bond MO's. This solution is directly related to
the GVB description obtained in Ref. 2.

Both MO-CI (Ref. 17) and LSD (Ref. 18) calculations
predict that Li5 will adopt a planar conformation built
from three fused nearly equilateral triangles. We ob-
tained easily three UHF solutions below the RHF one (cf.
Table V), which may all be seen as built from bond MO's
supported by the five external bonds (some delocalization
takes place in the internal triangle). The most stable

TABLE IV. HF instabilities on rhombic Li4.

a-spin
MO content

P-spin Net charges
Atomic spin

densities
Energy
(a.u. )

Binding energy
per/atom (eV)

RHF al bg —0.8028 0.115

UHF1 —0.8059 0.136

UHF2 —0.8186 0.222
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MO content

TABLE V. HF instabilities of Li&.

Atomic spin
densities

Energies
(a.u. }

Binding energy
per atom (eV)

RHF a, b, a', a, b, a', —1.0189 0.199

UHF1 —1.0323 0.272

UHF2

UHF3

—1.0300

—1.0214

0.259

0.212

UHF solutions present four spin alternations between ad-
jacent bonds. The upper one has only two such spin al-
ternations. Three other UHF solutions corresponding to
other spin distributions on the external bonds might be
searched.

One of the two nearly degenerate stable conformations
of Li6 is a planar equilateral triangle built from four fused
nearly equilateral triangles. ' ' This problem has been
studied in more details than the preceding ones, in order
to compare with the cyclic Li6 case. The RHF MO's may
be transformed into three equivalent MO's, each one be-
ing located in one of the external triangles, with negligi-
ble tails (largest coefficient inferior to 0.04 on the other
atoms) and a larger amplitude on the external atoms, re-
sulting in non-negligible net charges (0.19e on those
atoms). This structure is strongly ionic in the VB sense, '

and it is much more stable than the cyclic conformations;
this is certainly why we only found two UHF solutions
belo~ the RHF one. One is a product of two bond-
supported singly occupied MO's on the two sides of a
summit atom, two triangle-supported MO's on the two
other external triangles, and two atom-supported MO's
on the external atoms. It lies 0.21 eV below the RHF
solution; the other one (UHF1 of Table VI) is still lower
(0.29 eV below the RHF solution), it is a purely bond-
centered spin-density wave on the external bonds, and it
keeps more or less the same content as for cyclic Li6 as
noticed in Ref. 2. The amazing fact is that starting from
the localized MO's of this last solution (which are
equivalent) as trial vectors of the UHF self-consistent
process and changing the spin distribution one may reach
a whole family of stationary points of the energy. Keep-
ing S, =O we have obtained two other UHF solutions
(UHF2 and 3) which destroy a certain number of spin al-
ternations between adjacent bonds and which are higher
in energy than the RHF one. We also have changed the
number of a electrons and have obtained UHF solutions
for S,= 1, 2, or 3, always composed of localized singly oc-
cupied bond MO's (cf. Table VI). The comparison be-
tween the MO's of the lowest S,=0 UHF solution
(UHF1 in Table VI) and those of the S, =3 UHF multi-
plet (UHF8 in the same table) may be judged from the
overlap matrix of Table VII. The norm of the projection

TABLE VI. UHF instabilities of triangular Li6.

MO content

RHF (a, }'(e)'

Energy

—1.2304

S,
Number of

Ri fz

UHF1 —1.2410

UHF2 3R~E —1.1987

UHF3 —1.1988

UHF4 ARP —1.2188

UHF5 —1.2170

UHF6 g gL —1.1513

UHF7 RPi —1.1864

UHF8
r~

&RAN
—1.1420

of the MO's of the spin-density wave solution onto the
MO's of the upper multiplet is very large, 0.9893, but the
overlap of the bond MO's, (y&(1)~g,(8) ), is much small-
er (0.8923). This multiplicity of solutions will be exploit-
ed in Sec. III.

A planar Li,o cluster built of fused equilateral triangles
has been studied in Ref. 2 in a GVB approach and has
been investigated here through UHF solutions. The clus-
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TABLE VII. Overlap matrix between the spin density wave (S,=0) UHF solution and the S, =3
solution.

=3

a-MO's 0.8923
0.0333

—0.0173

—0.0173
—0.8923
—0.0333

—0.0333
0.0173
0.8923

—0.1275
—0.0055
—0.4060

0.4060
—0.1275
—0.0055

—0.0055
—0.4060

0.1275

P-MO's 0.1275
—0.4060

0.0055

—0.0055
—0.1275
—0.4060

0.4060
0.0055

—0.1275

—0.8923
—0.0173
—0.0333

—0.0333
—0.8923

0.0173

—0.0173
0.0333

—0.8923

ter involves ten triangles and one might imagine that one
will reach a triangle-supported spin-density wave:

tetrahedra are left empty. The spin distribution is chosen
in order to insure the maximum number of spin alterna-
tions, minimizing the contact surfaces between equal
spins. The following scheme,

empty

Starting the self-consistent procedure from such localized
MO's one obtains an UHF solution 1.42 eV below the
RHF one; four of the a-spin Boys-localized MO's are ac-
tually localized on external bonds, while the last keeps a
triangular character on the internal triangle (cf. Fig. 2).
The P-spin MO's occupy the complementary interstices.
Starting from those MO s and changing the spin distribu-
tion, one may reach 42 other S, =0 UHF solutions. We
did not perform an extensive study of those solutions but
found some of them (see Table VIII) as examples. All of
them except one (UHF9 in Table VIII), which exhibits
the maximum number of spin frustrations, are stable with
respect to the RHF solution. Even with its very unfavor-
able spin distribution, UHF9 is only 0.0027 eV above the
RHF determinant. The upper multiplet S,=5 can also
be reached, starting from the lowest S, =0 MO's. Its
Boys-localized MO's remain located on the eight external
bonds and the two internal triangles. With an energy of
—1.9999 a.u. it is higher in energy than the RHF solu-
tion but remains weakly bound with respect to the atoms
(by 0.0958 eV per atom). The s-p mixing is bigger than
for the S, =O solution, the coefficients being of 1/1 for
S, =5 instead of 3/2 for S, =0.

One may notice (cf. Table VIII) that all solutions lead
to positive net charges on the internal atoms (-0.4e to
0.2e ). The most negative charged external atoms in an
UHF solution are those which bear a spin alternation
(-O. le to 0.2e ). Regarding spin densities, they are
important on the external atoms which bear a spin frus-
tration (p-+1.0e ).

cx, Sp3.D

~~ ~ P spin

gives a clear picture of the spin distribution, the external
surfaces defining unequivocably the corresponding
volumes, the last summit being the central atom. The re-
sult of the self-consistent procedure is the corresponding
surface spin-density wave; the coefficients of the MO's on
the internal atom are oscillating and introduced by the

T5. 0

D. 3D problem

We studied a Li,+3 three-dimensional cluster, a frag-
ment of an hcp lattice. We hoped to see the appearance
of tetrahedra-supported singly occupied MO's. The trial
vectors involved six tetrahedra-supported (three a and
three P spins) MO's and six square-pyramid-supported
MO's (again with three a and three P spins). Two

—15.0

-15.0 l,5.0

FIG. 2. Density map of a-spin electrons in the lowest UHF
solution (UHF1) of planar Li]o (T =6 bohrs).
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TABLE VIII. Some of the UHF solutions for Li,o, a-MO, and P-MO.

MO Content —(Net charges)
Atomic

spin densities
Energies

(a.u. )

Binding energy
per atom (eV)

RHF

-16 -03 -10

. j-~~s.N., —2.0462 0.222

16 .Q3 .18

UHF1 'U iM
++A
.13 J)2 F13 .30 A)5 .30

—2.0985 0.364

UHF2 '~L .12 -.04 .19

~14/ -37 -39 %.10
A, P,,&,Q —2.0856 0.329

.12 -A)4 .19 ~ 22 -.20 -.34

UHF3

11 04 .11

.12j -.29 -.29
A, + P

--22 -.SS -.22

&0&0+ —2.0813 0.317

.11 .04 -t1 -22 .se .22

UHF4

.Q7 0 .02

2, y -y1 -&0 —2.0548 0.245

UHF5

07 0 .02

.1e .Oe -.04

- 1. -.14 92

-.1e o .76

,8j is3 .Sa X.18 —2.0764 0.304

UHF6

UHF7

UFH8

i'd+,

.os .1e

.12 -.04 .09
R,

1e/ -.33 -.33

.09 -.04 .12

.04
A

.2S/ --37 -.37 S

.04 .04 A)4

, 21 -.05 .12
A,

p3/ -.32 .32 i p3

,12 .05 .21

-.7e o .18

.27 .34 1.03

-1.03 -.34 .27

- 1.02 -.2e -1.02

.14,2Q,11

9S / .40 40 i 98

,11,20,14

—2.0672

—2.0628

—2.0710

0.279

0.267

0.289

UHF9 1 i ~ (

Flo A~XI/lE

0 .22 0

97/ -.20 -.20 i g7

0 .22 0

.17 .pg p3

-.p3 / —37 -.34 %.18

.8$ -.01 -.83

.57/--» -» 4~7

~ 83 .01 -.85

.02 -.37 -.61

A
93/ .Q4 .72

—2.0461

—2.0757

0.222

0.302

.15 .04 .15 —.19 —.12 —.17

g~, i a j1UHF11

.12,04,'I2r
p «e33 «,33 p3

-.08, 'gg —.QS

gg / ~1$ -,1$ i gg —2.0735 0.296

O .16 —.20 -.13 —.20

UHF12

,14 0,18

A
,14/ - 38 "40 i 02

—.29 -.0$ —.21

02j -.21 .oe X 97 —2.0837 0.324

S, =5 1.OT

1.0».16 1,O3

1,07 —1.9999 0.096

1, 03 1.18 1.03



41 TOWARD A MAGNETIC DESCRIPTION OF METALS IN TERMS. . . 8101

orthogonality constraint; this atom does not bear any
valence electron, either in the RHF or in the UHF solu-
tions. The binding energies per atom are, respectively,
0.37 eV for the RHF and 0.45 eV for the UHF solution.

The surface character of the Boys localized MO's may
be appreciated from the distance of the centroids of these
MO's (y; ~r~y; ) to the corresponding surface planes,
which are 0.38 bohrs inward for the square-supported
MO's and 0.02 bohrs for the triangle-supported MO's.

This UHF picture di6'ers significantly from the approx-
imate GVB description proposed by McAdon and God-
dard, which suggests a double occupation of the axial
tetrahedra (empty in our model), and uses singly occupied
tetrahedra and bond MO's, with a lower symmetry than
ours. We failed to obtain the corresponding UHF solu-
tion, but we do not claim that better solutions could not
be obtained. In such a small cluster, the ratio between

the number of electrons and the number of interstices
remains large, much larger than in the bulk, and this re-
sults in some ambiguities, which will not necessarily
occur in infinite systems.

The electronic population of a metallic cluster exhibits
local maxima of the total electronic density between
atoms, either on bonds or triangles, according to a recent
study of Li„clusters calculated in an ab initio MO-CI
approach. The existence of such interstitial maxima is a
unique feature, in contrast with normal covalent systems,
where the maxima are on atoms. It is interesting to no-
tice that the number of interstitial maxima is lower than
the number of GVB or UHF interstitial MO's. For in-
stance, in the triangular Li6 Ref. 20 exhibits three maxi-
ma located inside the outer triangles, while the interstitial
MO's are located on the external bonds [cf. Fig. 3(a)].
This is not in contradiction, since the superposition of the
a and P e densities will restore the density maxima
(three in that precise problem) inside the triangles as
shown in Fig. 3(b), which only diff'ers from Fig. 6 of Ref.
20 by the neglect of core electrons. A confrontation to
the MO-CI wave function cannot rest on such a qualita-
tive similarity and requires a precise study, performed in
the next section.

III. COMPARISON BETWEEN THE
INTERSTITIAL PICTURE AND ACCURATE

MO-CI WAVE FUNCTIONS

As mentioned in the Introduction, we thought it neces-
sary to compare the relevance of RHF and symmetry-
broken solutions. The former keeps symmetry and its
coefficient in the exact (or nearly exact) MO-CI correlat-
ed wave function is given by the CI expansion itself:

Coko+ g C
I eXClted

FIG. 3(a) Density map of a-spin electrons in the lowest UHF
solution (UHF1) of triangular Lif, (r=6 bohrs}; (b} Electronic
density map for the same wave function.

One may wonder whether the energy stabilization ob-
tained by leaving the symmetry constraint in the UHF
procedure is not gained to the detriment of the wave
function, by taking components on excited eigenstates of
low energy (but of other symmetry than the ground
state). For the two Li6 isomers (cyclic and triangular) we
have calculated (besides Co) (i) the overlap between the
lowest UHF solution 4uHF and g, and (ii) the overlap be-
tween g and the normalized symmetric combination of
the two equivalent UHF solutions, i.e., the resonance of

I

the two spin-density waves 4&HF and 4&HF.

tJHF+ uHF)P(1+ ~ @uHF~@uHF ~ )~

These numbers appear in fable IX from which it is clear
that the overlap with the exact wave function is better for
4RHF than for the UHF solution or the resonant com-
bination of the two UHF solutions. In that sense one
may say that the UHF energy gain is obtained through a
bias of the wave function. The relevance of the intersti-
tial MO's could be judged more properly by considering
subspaces of determinants built from those interstitial
MO's only. One might choose one of the following stra-
tegies.
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TABLE IX. Overlap between the exact MO-CI wave function and RHF or UHF single determinants

of Li6 clusters.

cyclic
triangular

0.8024
0.9211

0.5185
0.6586

(@UHF+@UHFIP~

&2(1+S)
0.7307
0.8550

(p y~yl 1/2(b)

0.9208
0.9414

'Symmetric combination of the two lowest equivalent UHF solutions.

Norm of the projection of the exact wave function onto the subspace of "neutral" determinants de6ned

m +UHF MO

(i) One might consider the subspace S& of all the S, =0
UHF solutions, consisting of different spin distributions
on the bond MO's; these configurations may be seen as
variational neutral-like VB determinants, each bond bear-
ing one and only one electron.

(ii) One might consider the subspace Sz of all the deter-
minants built from the MO's of 4UHF' , among these (C6 )

determinants, only C6 are neutral-like in the VB sense.
(iii) One may finally restrict the subspace Sz to the sub-

space Sz of the last C6 neutral-like determinants generat-
ed from the MO's of HUH„, we adopted this criteria for
the sake of simplicity and because it is rather severe. Cal-
ling Ps, Pz, and P, the projectors on the subspaces

1 2 2

S„S2,and Sz one may be sure that

and one may expect that

The difference between the MO's of 4UHF and 4UHF,
which is not apparent from their spatial shapes [Figs. 4(a)
and 4(b)] plays a crucial role and one cannot follow Mc-
Adon and Goddard when they say that their GVB MO's
are almost the same as those of the UHF upper multiplet.
It is more likely to suppose that the GVB MO's are close-
ly related to those of the lowest S, =0 UHF solution.

Actually the GVB wave function and Ps g are a singlet
2

linear combination of neutral-like VB structures incor-
porating correctly the components on the ionic struc-
tures.

It is interesting to analyze the projection of the exact
wave function onto the subspace of the neutral-like VB
structures, i.e., for instance, Ps g. The determinants

2

spanning Sz have been symmetrically orthogonalized, the
S ' transformation keeping the spin localization on the
various bonds. The coeScients of Ps f on that basis

2

since in S, the spin-frustrated determinants are variation-
ally determined while they are not in S2. The results ap-
pear in the last column of Table IX and one may see that
combining the neutral-like VB structures obtained from
HUH„gives a better overlap with the exact wave function
than the 4RHF solution. This result is a support in favor
of the physical meaning of the interstitial MO's, even
when they are determined from a symmetry-broken solu-
tion.

In order to see the importance of the delocalization
tails introduced in the localized MO's of 4UHF, we have
repeated the preceding calculation using the MO's of the
upper multiplet, which are orthogonal. Let us call Pz

3

the projector onto the neutral VB determinants built
from the MO's of this upper multiplet. Now it turns out
that the projection of g onto that subspace is very weak:

(/~Ps g)' =0.5996 for cyclic Li6.

(a

This result demonstrates the key role of the delocaliza-
tion tails of the 4„„„MO's,i.e., of their nonorthogonali-
ty. If one remembers (cf. Sec. II) that the MO's of NUHF
are linear combinations of those of S, =3 UHF deter-
minants, one may sat that they define the same "valence"
space S3 (neutral plus ionic) =S', . The failure of Ps P is

due to the lack of ionic components in S3, which are
correctly incorporated in Pz /through the .MO tails.

2

,b,

FIG. 4. Density map of a self-consistent localized bond MO
of cyclic Li, (r =6 bohrs). (a) Associated with the lowest S, =0
solution; (b) associated with the S, =3 solution.
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show the leading role of the spin alternation since for cy-
clic Li6 the determinants with six spin alternations ap-
pear with a coefficient 0.451, those with four spin alterna-
tions have 0.181, and those with two spin alternations
with 0.090. These numbers have to be compared with the
coefficients of the lowest eigenvector of the Heisenberg
Hamiltonian for a cyclic system, which are 0.479, 0.208,
and 0.063, respectively. Therefore the components of the
exact wave function onto the neutral-like VB subspace
are ruled by a spin Hamiltonian. Calling + the lowest
eigenvector of the Heisenberg Hamiltonian one may cal-
culate & &~ I Ps, f & ~IIPs, WIII= 996, which measures

quantitatively the similarity between the two vectors.
The comparison is straightforward for the cyclic prob-

lem since the eigenvectors of the Heisenberg Hamiltonian
(with effective exchange between adjacent cells only) are
independent of the amplitude of the effective exchange.
For a less regular system such as the triangular Li6, two
different exchange integrals have to be considered, de-
pending on the relative orientation of the adjacent exter-
nal bonds (colinear or adjacent on a summit atom) and
the lowest eigenvector depends on the ratio between the
two spin couplings. The determination of these two pa-
rameters from our UHF energies will be explained in the
next section. Using these values we obtained
(+IP& f) IIIPs /II=0. 9989, which shows that the pre-

vailing role of the spin ordering among the neutral-like
determinants is not limited to the highly peculiar case of
1D cyclic systems. The connection between the GVB
solutions and a Heisenberg problem had been noticed for
the 1D cyclic problem in Ref. 2. We believe that the ex-
istence of a Heisenberg Hamiltonian written in terms of
interstitial units is a general feature and that one may ex-
ploit the variety of UHF solutions to determine the am-
plitude of its matrix elements and to approach the final
energy, as will be explained in the next section.

IV. DETERMINATION OF A HEISENBERG
HAMILTONIAN FROM THE VARIOUS

UHF SOLUTIONS

One more argument in favor of the research of our un-
derlying spin Hamiltonian is brought by Fig. 1, concern-
ing cyclic Li6,' the spacing between the energies of the
UHF solutions with 6, 4, 2, and 0 spin alternations (cor-
responding to S2=0, 0, 0, and 3, respectively) is very
regular (E = —1.2511, —1.2398, —1.2277, and —1.2129
a.u. , respectively, at 6 bohrs) as would occur in a Heisen-
berg Hamiltonian which introduces 6, 4, 2, and 0 effective
exchange integrals on the diagonal energies of the deter-
minants.

One may therefore propose to introduce a Heinsenberg
Hamiltonian in terms of interstitial MO s. In principle,
Heisenberg Hamiltonians are effective Hamiltonians (in
the sense of the quasidegenerate perturbation theory) rel-
ative to a ha1f-filled band and spanned by an orthogonal
basis set of a model space, composed of all neutral-VB
determinants in which each cell (each AO in general, here
each bond MO) bears one electron and only one.

The upper UHF multiplet solution provides an orthog-
onal basis of interstitial MO's, and one may, in principle,

use them to generate the model space for any value of S,
by considering all possible spin distributions and the
same space part with one electron per interstice. The
first-order Hamiltonian for S,Wn /2 would suppress
some first-order (positive) exchange K integrals between
bonds of alternant spins and would couple determinants
which differ by one spin exchange between adjacent inter-
stices through the same exchange. At this level the spec-
trum would be unrealistic with high-energy singlet states.
The perturbative inclusion of the effect of the ionic VB
structures changes both the diagona1 and off-diagonal
matrix elements of the effective Hamiltonian, as shown
by Anderson. ' Considering a determinant in which the
bond i bears an a spin and is adjacent to a bond j bearing
a P spin,

~ ~ ~ g f o ~ ~I J

where the cpk's are the self-consistent MO's of the upper
multiplet. These MO's are eigenfunctions of a Fock
operator relative to this upper multiplet:

F gk Cgfk

with

F =h+ g(J„—Kl, ),

where h is the monoelectronic part of the Hamiltonian
and J and K are the usual Coulomb and exchange opera-
tors. Considering an adjacent ionic VB structure such as

aj a @z=
I

' ' '
0'2q2J

' ' '
I

~ ~ —. ~

then (41IHIa, a, @I) =(q2;IF Iq2), where F is the Fock
operator for the 41 determinant,

(eilelata;el) =(q; IF F lq ) =(q,—l rC, Iq, )—
if one neglects the effect of other exchange integrals lo-
cated on remote bonds. At first order on the wave func-
tion the variational treatment on the determinant 41
consists in changing cp; into y,':

&q; IF'Iq, &

q2r =q'z+ g ~E q'2 ~

J' adj n —i

where adj. denotes "adjacent" and AE„, is the energy
difference between neutral and adjacent ionic deter-
minants. The energy gain brought by the SCF process on
41 is at second order,

(a'„„„lain'„„,) —&e, IIII+, )= y y
&q, IF'Iq, &'

hE„
ad).

spin altern.

Similarly in the second-order QDPT treatment, the
effective energy of 41 becomes

adj

spin altern.
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so that at second order at least the diagonal matrix ele-
ment of the Heisenberg Hamiltonian may be taken as the
self-consistent energy of 4I

& +rlH' IC'r & = &@uHFIHI@UHF& .

This represents a procedure to reach the amplitude g; of
the effective Hamiltonian, which may be written as

H =&4 ~H~4 )+ gg; (a;a-. —a-,. a )(a, a- —
a-,.a ) .

1,J
adj.

Actually g, =E; +&cp, ~K;+E ~p ) ICE„, and it is
well known that one finds the same extradiagonal interac-
tion g; between determinants which exchange two spins
on the ij pair, i.e., between 4& and a; a-. a a-, +l.

The knowledge of a large enough number of localized
UHF solutions is suScient to build the Heisenberg Ham-
iltonian. This has been attempted on three different
problems.

For cyclic Li6 we had three different S, =0 solutions to
determine g, and we obtained

&@M HI@M& —
& C'OUHFIHIC'OUHF & =6g,

which leads to g= —0.00637 a.u. Knowing that the
lowest singlet eigenvector is —8.605 g below the upper
multiplet, one gets an evaluation of the exact energy of
—1.2677 a.u. If one defines g from the energy difference
between &4„„„~H~4„„„)and the S, =O UHF solutions
with four or two spin alternations one gets somewhat
difFerent values of g (

—0.005 64 and —0.005 85 a.u. , re-
spectively) but adding —2.605 g to the HUH„energy leads
to a final energy of —1.2615 and —1.2633 a.u. , respec-
tively, which is a rather stable estimate. The exact ener-

gy is —1.2919 a.u. ; if one remembers that the RHF ener-

gy was —1.1835 a.u. , this means that the use of a Heisen-
berg Hamiltonian built from the localized UHF solutions
brings 80% of the correlation energy (within the con-
sidered basis set).

One may repeat the procedure on less symmetrical
clusters, for instance on the triangular Li~ structure,
which involves two types of adjacent bonds. We used ei-
ther 4 or 4uH„, and UHF2 (cf. Table VI) and we get
gi = —0.0118, g2= —0.0212 and E = —1.2921. Using
two other combinations of S, =O and S,=1 solutions
gave us E = —1.3064 and —1.3030 a.u. The exact ener-
gy in the basis is —1.3027 a.u. , while the RHF was—1.2304 a.u. ; again our procedure gives more than 80%
of the correlation energy.

Finally we repeat the procedure for the Li&p cluster. In
the Heisenberg procedure one neglects the interaction be-
tween nonadjacent regions, in the two Li6 systems the
definition of the adjacent bonds was obvious but in the
present system one may consider different possibilities.
We make two types of Heisenberg calculations, one in-
volving four different g parameters and one involving six.
The first calculation is associated with the following dual
structure:

where the open circles represent the centroids of the bond
MO's and the dotted lines the considered interactions.
The five parameters are determined with some of the
UHF solutions, namely UHF1, UHF2, UHF4, UHF10,
UHF12 (referred to in Table VII). The four g parameters
are

gi = —0.008 346 a.u. ,

gz = —0.004580 a.u. ,

g3 = —0.006444 a.u. ,

g4= —0.009 865 a.u. ,

leading to the final energy —2.1243 a.u. One may notice
that the most stabilizing interaction is the spin alterna-
tion between the two MO's supported by the central tri-
angles which are the most overlapping ones. An evalua-
tion of the exact energy in the basis is —2.1966 a.u. , the
RHF energy is —2.0462 a.u. set, the Heisenberg solution
gives only 52% of the correlation energy.

Taking into account two more interactions, the dual
structure being

one obtains the g parameters

g, = —0.008 346

g2 = —0.007 705

g3 = —0.005 655

g4 = —0.008 230

gq =+0.002 279

g6 = —0.001 489

using the UHF1, UHF2, UHF4, UHF6, UHF10, UHF11,
and UHF12 solutions.

One may notice that (i) the g~ and g6 parameters
neglected in the previous procedure are much smaller
than the other ones, and (ii) g~ is positive —opposite the
sign of all the other ones —the spin frustration between
the two collinear MO's being more stable than the spin
alternation; this phenomenon can also be seen in the fact
that the UHF1 solution is of lower energy than the
UHF2. The Heisenberg final energy associated with
those g parameters is —2.1286 a.u. corresponding to 55%%uo

of the correlation energy.
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V. CONCLUSION

The present model rests on a two-step mechanism.
(i) The variational definition of singly occupied

interstice-supported MO's from an UHF procedure; this
step introduces a short-range delocalization of the elec-
trons, each one inside its interstice. This delocalization is
already present in the upper UHF solution (ferromagnet-
ic).

(ii) After this preliminary short-range delocalization,
the spin-distribution and fluctuation problem is addressed
through a magnetic treatment. The lowest UHF solution
corresponds to an antiferromagnetic spin-density wave,
i.e., a distribution where each interstice bearing an a elec-
tron is surrounded by P-electron interstices (as far as pos-
sible) and vice versa. The variational UHF treatment
brings a further electronic delocalization by including the
effect of one-electron transfers between adjacent inter-
stices. The energies of the various UHF solutions may be
used to define the effective diagonal energies of a Heisen-
berg Hamiltonian, and the effective exchange interac-
tions. Diagonalizing the Heisenberg Hamiltonian intro-
duces the spin fluctuations around the most-alternant
spin distributions (i.e., the Neel states).

The first step (the short-range delocalization) is abso-
lutely crucial, it brings the energy (even of the uppermul-
tiplet) below the energy of the separated atoms. This is in
strong contrast with the normal Heisenberg Hamiltoni-
ans, which for weakly delocalized problems are usually
supported by atomic orbitals, i.e., do not incorporate
delocalization at the zeroth order. The change of elemen-
tary cells to build the magnetic model is crucial, going
from the atoms to the interstices. The VB language,
which is at the basis of magnetic Hamiltonians, must be
translated, replacing atoms and atomic orbitals by bonds,
triangles, tetrahedra, or larger cells and the correspond-
ing MO of lowest energy (i.e., the most symmetrical one)
defined in the interstice. This change of building blocks
from the atom to the interstice may explain some ap-
parent contradictions, for instance the fact that some
clusters such as the triangular Li6 may be considered as
strongly ionic in an atomic-orbital VB approach' and
may nevertheless be treated in a Heisenberg Hamiltonian,
i.e., an essentially neutral picture, when one moves to
bond MO's (which may be polarized).

These remarks suggest a practical strategy for the
study of the bulk, consisting of the calculation of several
UHF solutions and the extraction of effective spin in-
teractions in order to define a Heisenberg Hamiltonian,
ultimately solved in an approximate manner. This pro-
cedure might, in principle, be applied to finite clusters,
but edge effects induce several difficulties: (i) the inter-
stices are of various dimensionalities (lower dimensionali-
ty on the surface than inside the cluster); (ii) the spin cou-
plings are therefore numerous and their extraction is
difficult; (iii) the architecture of the cluster is not easy to

guess and the independent-geometrical parameters are
numerous. A geometry optimization seems difficult in
that approach.

These di5culties disappear in the study of infinite regu-
lar lattices, since edge effects vanish and the interatomic
distance is the unique parameter. The method can be
developed in three steps. The first step consists of the
research of the optimal interstices. In our opinion, they
will be given by the largest most compact nonoverlapping
cells, each one bearing one unique electron in the most
bonding MO. For instance, on a two-dimensional regular
triangular lattice, we believe that the most relevant inter-
stice would consist in a rhombus since each atom will be-
long to four rhombi, which results in a one-electron pop-
ulation per atom (this is different from the suggestion by
McAdon and Goddard of triangle-supported interstices,
one triangle over two being empty, which would result in
a charge-density wave). In the second step these intersti-
tial MO's will be taken as trial vectors for the self-
consistent HF process on the bulk. Different choices of
spin distributions may be considered leading to different
self-consistent energies. The ferromagnetic solution (all
spins parallel) will give us a reference energy. The lowest

S,=0 UHF solution may be expected to be obtained by
considering a spin-alternation between the interstices; it
is likely that the privileged spin alternation occurs be-
tween interstices presenting the largest contact surface.
For instance in the two-dimensional regular triangular
lattice the largest effective spin coupling takes place be-
tween rhombi having one bond (two adjacent atoms) in
common rather than a single atom. By considering less-
ordered spin distributions and the corresponding UHF
energies it will become possible to evaluate the effective
spin interactions of the Heisenberg Hamiltonian. In the
ultimate step the lowest eigenvalue (or more precisely an
estimate of the cohesive energy) will be sought by consid-
ering the lowest UHF solution (i.e., a Neel state) as a
zeroth-order description and by perturbing its energy to
second or fourth order (see, for instance, Refs. 22 and 23)
under the interaction with the locally disordered struc-
tures.

This strategy will be exploited in collaboration with
Pisani and co-workers of the Torino University, who con-
ceived an UHF version of their crystal Hartree-Fock pro-
gram. It will be interesting to see which part of the
cohesive energy is brought by the symmetry breaking
through the lowest UHF solution, which part is brought
by the spin fluctuation (treated by the magnetic Hamil-
tonian), and which part is not attainable by this model
which essentially remains inside the valence shell.
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