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Molecular-dynamics (MD) simulations of pure Ag, Au, Cu, and Ni are reported. The NPT
(isobaric-isothermal) MD method is used in order to reveal the behavior of these metals at various
temperatures in the solid as well as in the liquid state. According to the embedded-atom method
[M. S. Daw and M. 1. Baskes, Phys. Rev. B 29, 6443 (1984)] the interactions in metals are assumed
to be composed of the pair component (caused by cores overlapping) and the cohesive many-body
term (gluing term). The scheme for the empirical N-body potentials derivation proposed by Ack-
land et al. [G.J. Ackland, G. Tichy, V. Vitek, and M. W. Finnis, Philos. Mag A 56, 735 (1987)] is
used. The potential parameters have been derived exclusively on the basis of the room-temperature
properties (the equilibrium lattice constant, elastic constants, the cohesive energy, the stacking-fault
energy, the unrelaxed vacancy-formation energy, and the volume-pressure dependency). The vari-
ous quantities describing the temperature-dependent behavior of the simulated systems (thermal-
expansion coefficients of solids and liquids, specific heats of solids and liquids, the volume change on
melting, and the enthalpy of melting) as well as the radial distribution functions at various tempera-
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tures are derived. Generally, satisfactory agreement with the experimental data is achieved.

I. INTRODUCTION

There are some basic objections against the use of pair
potentials for the metallic systems. Any pure pairwise-
potential model gives, for example, the Cauchy relation
between the elastic constants C,, =C,,, which is seldom
the case in real metals (for Ag, C,,/C,4, =2; for Au, 3.7,
for Cu, 1.6; and for Ni, 1.15). The pair models also fail
when describing surface properties (e.g., surface relaxa-
tion) or defects. In general, the pure pairwise-potential
models do not work properly when the local environment
differs from the uniform bulk. The most important
failures of the two-body models are summarized in, e.g.,
Ref. 1.

An original and alternative approach, being a
significant improvement over the pair potentials, was
proposed by Daw and Baskes>? and Finnis and Sinclair.*
Daw and Baskes’ method, called the embedded-atom
method (EAM), has been successfully applied to many
problems, e.g., studies of surfaces,® liquid metals,’ al-
loys,%7 grain boundaries,? or melting processes.’

The scheme for empirical N-body potentials derivation
for metallic systems put forward by Finnis and Sinclair*
for the bcc metals and later developed by Ackland
et al.'® for the fcc metals can be regarded as a version of
the EAM. This scheme has been also successfully applied
for studies of surfaces,!' vacancies,!? interstitials,'> or
diffusion.'* The potentials of Ackland et al.'® have al-
ready been used in molecular-dynamics (MD) simulations
of pure copper.!® In the present study the potentials pro-
posed by Ackland et al. 10 are used, not the functions of
Foiles et al.,'® just because of a computational conveni-
ence.’

The main purpose of the present paper is to simulate
behavior of pure silver, gold, copper, and nickel over a
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wide temperature range using the many-body interac-
tions. Both the solid and the liquid states are simulated.
The majority of the results concerning copper has already
been published,'’ but an additional analysis is carried out.

The main question is whether the above potentials, de-
rived on the basis of exclusively one temperature proper-
ty of the solid phase, could describe correctly the
temperature-dependent behavior of the solid and liquid
metals. The molecular-dynamics studies result in various
quantities describing the temperature-dependent behavior
of the analyzed systems. The radial distribution func-
tions of the solid and liquid phase are also derived pro-
viding structural information about the phases and about
the melting phenomenon. Temperatures of the solid-
liquid transition are estimated. They must not be, how-
ever, interpreted as the real melting temperatures of the
systems, but rather as the temperatures of the mechanical
instability of the infinite single crystal. Melting has re-
cently been very intensively studied using the MD tech-
nique.>'> 1722 In Refs. 9 and 18 it is shown that the lat-
tice collapses at temperatures of the mechanical instabili-
ty given by the Born criterion. In other words, the upper
limit of superheating, when three-dimensional periodic
boundary conditions are used, is at a point in which the
lattice loses its mechanical stability.

In order to simulate the ordinary experimental condi-
tions (constant pressure) the NPT MD method is used.
This method allows the volume of the simulated system
to change; in this way the thermal expansions and the
volume change on melting can be easily estimated.

II. INTERACTIONS

The total energy U of a system is approximated by>*
U=33 3'u(R;)—3flk;), (1)
i i
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where i,j denotes atoms, R,-j is distance between atoms i
and j, u the pair potential, f the embedding function, and
ki=3,;6(R;;).

The energy composes of the standard pair term [the
first component in (1)] and of the many-body term (the
second one). The first term (mainly repulsive) is due to
the cores overlapping and the second describes the
cohesive effect of the conducting electrons. An interpre-
tation of k; is different in Refs. 3 and 4. According to
Daw and Baskes® k; is an electron density at atom i due
to the remaining atoms while Finnis and Sinclair* identify
k; with the second moment of the density of states. Al-
though the physical interpretation is different, in both
cases the formula (1) can be written.

If the Hamiltonian (1) is derived from the first princi-
ples, the distinction between the repulsive pair potential
and the cohesive many-body term is quite clear. When
dealing, however, with such a Hamiltonian in practice no
such distinction exists. The functions in (1) can be re-
placed by'

u(r)—u(r)+2ré(r),

flk)—f(k)+Ak , ()

where A is an arbitrary real number. After such a trans-
formation the energy of the system remains unchanged.
The N-body model given by (1) is invariant to the above
transformation. So no physical meaning should be at-
tached to u, ¢, or f separately.

When considering the formula (1) the force acting be-
tween particles / and j is the same as for the effective po-
tential given by

ueﬂ,ij(Rij):u (le)_[f,(k, )+fl(kj)]¢(le) (3)

provided that the second- and higher-order derivatives of
f are neglected (the second-order derivative is essential
for the Cauchy discrepancy C; —Cyy).

In general, this effective potential depends on the local
configuration and changes from one pair of atoms to
another. Only for the ideal periodic fcc structure
(without any displacement from the lattice sites) the
effective potential is the same for all pairs of the atoms in
the system. This potential does not change after the
transformation given by (2). From (2) it can also be con-
cluded that the case, when f is the linear function of K, is
equivalent to the pure pair model.

After'® the functions u and ¢ are assumed to be sums
of the third-order polynomials and f (k)=Vk. The form
of function f (the square root) is discussed in Ref. 10 but
it is rather an arbitrary choice when treating the fcc met-
als; on the other hand the functions derived by Ref. 16
can be quite well approximated by the square root.

The potentials parameters are derived on the basis of
the following: lattice constant, cohesive energy, elastic
constants (C,, C,,, and C4), vacancy formation energy,
stacking-fault energy, and the volume-pressure dependen-
cies [except Ni (Ref. 17)]. The lattice constant is the less
important parameter (when treating pure metals) because
it only provides the length unit.

No temperature dependency of these quantities is tak-
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FIG. 1. Pair potential (— — —) and the effective pair poten-

tial in the ideal fcc ( ) for silver.

en into account when deriving potential parameters. The
procedure is described in Ref. 10 and values of the experi-
mental quantities and the potential parameters are also
presented there.”> Shown in Fig. 1 is an example of the
pair potential and the effective pair potential for the pure
fcc structure of Ag calculated according to the formula
(3).

In all the simulations it is assumed that the potentials
are temperature and structure independent. It means
that the same functions describe the interactions at any
temperature in the solid as well as in the liquid state.
This approximation is commonly accepted and is also
justified by Foiles® studies of the liquid metals using the
EAM method. Even in the very recent paper Sutton,?*
when analyzing the temperature dependence of intera-
tomic forces, assumes that the potentials themselves are
temperature independent. It is also assumed that all
quantum effects are included in formula (1) and all fur-
ther calculations are purely classical.

III. MOLECULAR-DYNAMICS METHOD

When analyzing the system at various temperatures the
usual experimental conditions are generated by the NPT
method (with constant temperature and constant pres-
sure). In this way the thermal expansion and the volume
change on melting can be taken into account.

Anderson’s method?® of the constant-pressure molecu-
lar dynamics, in which computational cell size (and in a
consequence the lattice constant) is an additional dynam-
ic variable, is applied.

Two ways of keeping temperature constant are used.
The simplest method of velocities scaling (being a very
rough approximation of a canonical ensemble) and the
Nosé method?® with an additional degree of freedom cor-
responding to time scaling. The second method is well
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justified and gives proper canonical distribution in phase
space but is more complicated. The results using both
methods are very similar, so usually the first method was
applied (especially during the equalibrization). More de-
tails concerning the MD method used in the present
study (including equations of motion) are published else-
where.!?

It should be stressed that, while formula (1) gives a
much more accurate description of the metallic systems,
the equations of motion, in comparison with the pure
pair wise-potential models, are not much more complicat-
ed and the increase in computer time is quite small (addi-
tional summations are carried out at any iteration step).

The Ackland’s scheme'® gives potentials approaching
zero continuously. There are no cutoff radii. It is a great
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advantage of the above scheme from the point of view of
physical interpretation (otherwise the derivative is
infinitive at cutoff radius) as well as computational con-
venience.

IV. CALCULATIONS

The equations of motion are integrated using the
modified “leap-frog” algorithm. Trajectories of 256
(sometimes 864) particles with the mass equal to the mass
of the investigated element are calculated using the
three-dimensional (3D) cubic periodic boundary condi-
tions. The lattice constant for crystal or a specific
volume for liquid at each temperature are determined us-
ing Anderson’s constant-pressure method. For any ele-
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FIG. 2. Lattice constant dependencies on temperature
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ment the MD simulations are carried out at various (at
least 15) temperatures. At any temperature the initial
configuration has the pure fcc structure with the random
velocity distribution corresponding to the required tem-
perature. After the preliminary equilibration (about 1000
iterations) the time averages of the various quantities (the
internal energy, the lattice constant, the radial distribu-
tion function) are calculated over 5000-20000 steps.
The iteration step is equal 10~ '*s. All simulations are
carried out under atmospheric pressure.

V. RESULTS

There is no difference in the results of 256 and 864 par-
ticles simulations except fluctuations. Only at few select-
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ed temperatures the 864 particles system has been simu-
lated.

After about 50 steps at any temperature, the lattice
constant and the internal energy reach their equilibrium
values around which they later oscillate. Of course it is
only the gross adjustment; it is too short a time, e.g., for
density fluctuations to percolate through the system.

The normalized to 0-K lattice constant dependencies
on temperature are shown in Fig. 2 and the internal ener-
gy (per atom) versus temperature curves are presented in
Fig. 3. The radial distribution functions at selected tem-
peratures are shown in Fig. 4. The well-marked structur-
al transformation from the solid phase to liquid phase is
visible for any element. It corresponds to the rapid
change in the volume, the internal energy, and the radial
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FIG. 3. Internal energy dependencies on temperature.
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distribution functions (the peaks corresponding to second
and fifth coordination zones disappear). From the above
curves the thermal-expansion coefficients (a,; linear for
solid and a,; volume for liquid), the volume change on
melting (AV'), the enthalpy of melting (AH,, ), the tem-
perature of solid to liquid transformation (T), and the
specific heats for solid (C,) (at 1000 K) and liquid (C,;)
(just above melting) can be estimated. The temperature
T, is well defined. It means that, for example, copper at
temperature 1570 K melts after a few iteration steps and
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at 1560 K it remains solid even during long simulations
(40 000 iterations); quantities like the lattice constant or
the internal energy oscillates about the means without
any steady drift.

All the above-mentioned quantities, together with the
available experimental data, are listed in Table I. The po-
sitions r, of the first peak of g (#) and values of g (r,) just
above the melting point are also shown. These two
values provide some quantitative description of the liquid
state.
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FIG. 4. Radial distribution function at various temperatures. Dotted lines denote coordination zones for ideal fcc at 0 K. The g
coordinates correspond to the lowest plot. The remaining plots are shifted up by 0.5 relative to a previous curve.
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TABLE 1. Simulated and experimental data for silver, gold, nickel, and copper (see text for symbols).
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Ag Au Cu Ni
expt. MD expt. MD expt. MD expt. MD
ay 19.1¢ 25 14.1° 26 17.0¢ 22 13.3¢ 10.5
(107¢ K™
a, 0.98¢ 1.2 0.69¢ 1.3 1.0¢ 1.0 1.51¢ 1.5
(107 K™Y 0.98¢
T, 1234° 1465 1336° 1475 1356° 1565 1728¢ 2115
(K)
B 1.19 1.10 1.15 1.22
AV, 3.8° 5.1¢ 4.2° 4.5¢
m . 7.4
(%) 35 O3 5.5¢ 61 3960 M g3
AH
(kJ/mol) 11.14¢ 12.3 12.8%¢ 13.2 13.0%¢ 13.0 17.2¢¢ 19.2
r,® 0.694¢ 0.69 0.689¢ 0.68 0.696° 0.70 0.701¢ 0.70
g(ry) 2.58¢ 2.70 2.77¢ 2.75 2.76¢ 2.50 2.36¢ 2.60
Cps
(kJ/mol K) 29.9¢ 29.3 28.6° 27.6 28.7¢ 29.9 33.0° 31.6
Cy
(kJ/mol K) 33.5¢ 39.1 33.4¢ 36.7 32.7° 325 43.16° 42.3

=T, (MD)/T,, (expt).

®Lattice constant at O K is used as a length unit.
“Reference 28.

9Reference 27.

“Reference 29.

V1. DISCUSSION

The agreement between the simulated and the experi-
mental data (Table I) is quite reasonable. The main
disagreement concerns estimated temperature T, of
solid-liquid transition. In any case MD simulations pre-
dict the temperature too (at least 10%) high. It is due to
lack of a surface in the simulations (3D periodic bound-
ary conditions generate an infinitive single crystal). As it
has been already discussed in the Introduction, the es-
timated temperature should be treated as the temperature
of the mechanical instability of an infinitive single crystal.
The influence of a free surface, a grain boundary, and a
void on melting is analyzed in Refs. 9 and 18. Resulting
from MD studies, superheating above the thermodynam-
ic melting point T, (defined as the temperature at which
the free energies of the liquid and the solid are equal) can
be a significant fraction of 7,,."* In Ref. 9 authors also
carried out rather complicated calculations of the free en-
ergy of the solid and the liquid phase which made it pos-
sible to determine the T,,. Adopted from Ref. 19, the
scheme is complicated and the labor consuming and re-
quires some additional approximations. It has not been
applied here because the melting phenomenon itself is not
the only one task of the paper but the paper is focused on
the simulation of a variety of the temperature-dependent
properties of the metallic systems. The simulation of sys-
tems with surface is in progress®® and indicates that if the
surface is taken into account (via 2D periodic boundary
conditions) the simulated superheating is reduced. Simi-
lar MD studies of a system of Lennard-Jones particles
with 3D periodic boundary conditions revealed 15% su-
perheating.?? Authors carried out over 200 000 iterations

in order to melt the superheated Lennard-Jones crystal
(with 3D periodic boundary conditions) without any
effect. It has also been experimentally shown that when
the surface influence is reduced the metal (silver) can be
superheated.?!

Figure 4 gives some information about structure evolu-
tion with increasing temperature. At low temperatures
there are peaks at ideal fcc positions (dotted lines in Fig.
4). With increasing temperatures peaks are becoming
lower and wider. They are slightly shifted towards longer
distances. This effect of thermal expansion is not visible
for the first peak. It is probably due to the fact that with
increasing temperature atoms are more probable to
penetrate smaller interatomic distances. It can be noticed
that with increasing temperature the value of r for which
g (r)#0 decreases. The effect of thermal expansion is,
however, very easy to be seen from the shift of second
and third peak positions. At temperatures much lower
than the melting temperature (below 1000 K for Ag, Au,
and Cu; below 1600 K for Ni) the sixth peak disappears.
Just below melting point the fourth peak is not visible as
well, but the second and fifth peaks provide a way to the
localization of the melting point. Their existence seems
to be the clear indicator of the existence of crystal struc-
ture. Eventually, above melting point, an ordinary liquid
structure is attained.

The structures of the liquids just above melting point
agree quite well with experimental data (the height and
the position of the first peak in the radial distribution
function).

In Table I some further disagreements can be found
(e.g., the expansion coefficient for solid gold or heat of
melting and volume change on melting for silver). It is
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very difficult to find any reasonable explanation. For ex-
ample, the thermal-expansion coefficient for Au, resulting
from simulations, is about two times too big. On the oth-
er hand, taking into account very similar behavior of
silver and gold, the much smaller experimental value of
alpha for Au is difficult to explain. In general, however,
the agreement is quite good, much better than what
should be expected. The correct description of the high-
temperature behavior is very promising. The specific
heats of the solid and liquid metals agree very well (ex-
cept liquid silver) with experimental data. The fact that
the applied potentials describes properties of the liquid
metals quite well gives very strong support for the hy-
pothesis that these potentials work properly at high tem-
peratures as well.

The reasonable values of the simulated melting temper-
atures might have been expected because of well-known
correlations between the cohesive energy and the melting
temperature.”’ The cohesive energy itself is used as the
input data for the procedure of potentials parameters
derivation. There are also some other rules?’ correlating
various quantities but they are purely phenomenological.
There is no obvious reason that other properties like the
volume change on melting, the expansion coefficients, the
heat of melting, or the specific heats should be estimated
correctly by the simulations.

VII. CONCLUSIONS

Presented in this paper simulations can be treated as a
test of applicability of formula (1) and the potentials of
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Ackland et al.'® over a wide temperature range for a
description of solid and liquid metals.

The major conclusion from this work is that potentials
based on EAM, derived on the basis of only one tempera-
ture property, are capable of providing a quite good
description of the temperature-dependent behavior of the
metallic systems over a wide temperature range. The
same potentials can be used for crystals and liquids,
despite the very different local configurations.

Taking into account the other successes of the N-body
potentials (see the Introduction), this method seems to
give quite an accurate description of the metallic systems
and at the same time it is only slightly more complicated
than the standard pair approach, therefore it can strongly
be recommended for the computer studies of such sys-
tems.

The above-mentioned differences between simulated
and experimental data can be used in a procedure of
refining the potentials of Ackland et al., e.g., they can be
used to find the set of the potential parameters describing
more correctly the constant temperature as well as the
temperature-dependent properties.

Finally, the paper illustrates the usefulness of the NPT
molecular-dynamics technique for the studies of the
temperature-dependent behavior and phase transitions.
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