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Localization problem in optics: Nonlinear quasiperiodic media
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We have presented a detailed numerical study of the localization problem in a nonlinear quasi-
periodic structure for normal incidence of plane-polarized light. The main conclusions are as fol-
lows. Strong surface localization, which is observed for forbidden states (transmission coefficient
T=—0) in the linear theory, is strongly affected even by weak nonlinearity, resulting in inhibition of
localization, while the extended states corresponding to allowed regions (T=—1) in the linear theory
retain their distribution pattern. Depending on nonlinearity, forbidden regions may exhibit
critical-state behavior. The evidence of bulk localization is apparent from the nature of solitonlike
Beld distributions for allowed regions. The bulk localization, which is a result of a delicate interplay
between dispersion and nonlinearity, persists for a very large number of layers in contrast to linear
theory. The bulk localized states have been shown to be self-similar.

I. INTRODUCTION

Quasiperiodic structures, i.e., structures that are inter-
mediate between periodic and random systems, have been
the subject of considerable theoretical investigation in re-
cent years. The problem of the propagation of electrons
in one-dimensional quasiperiodic structuresl-i2 has re-
vealed new kinds of generic exotic features, such as weak
localization and scaling, and concurrently depending on
the strength of coupling and total energy the role of lo-
calized, critical, and extended states has come into the
picture in the context of conductivity and the associated
phenomena. These theoretical studies have received ear-
ly impetus from the experimental discovery of the quasi-
crystal phase in metallic alloys, ' which was followed by
another realization of quasiperiodic superlattice structure
by Merlin et al. '

Recently an analogous problem in optics was addressed
by Kohmoto, Sutherland, and Iguchi' in which the prop-
agation of transverse electromagnetic waves through a
stack of dielectric layers, which is constructed using two
types of dielectrics arranged in a Fibonacci sequence, is
considered. The transmission coefficient as a function of
optical path length was demonstrated to be multifractal
and displayed scaling behavior (i.e., scaling of dispersion).
Subsequently, some variants' ' of this linear theory have
also been reported. In a recent communication' we have
presented a nonlinear generalization of this theory in
terms of a nonlinear-characteristic-matrix formalism'
taking full account of the nonlinearity of the boundary
conditions. The theory is extremely simple and, in prin-
ciple, can handle any number of layers. The theory was
applied to two coupled nonlinear Fabry-Perot resona-
tors' and as a general case to a nonlinear Fibonacci mul-
tilayer' to calculate the power-dependent transmission
coefficient in the context of optical bistability and multi-

stability. For weak incident intensity one can get back
the linear results of Kohmoto, Sutherland, and Iguchi. '

However, when the incident light intensity comes into
play, nonlinearity profoundly affects the system because
of multistability. In fact, the transmission coefficient as a
function of input intensity offers a wide variation ranging
from almost null transmission to complete transmission
for different values of linear optical path length. ' ' Also
if we note that since we are taking care of both dispersion
(only dispersion was considered by Kohmoto et al. '

) and
nonlinearity, one can expect to observe a delicate inter-
play between the two in some restricted situations. '

With this in mind we address the following questions.
What is the nature of state (by state we mean spatial dis-
tribution) of the electric field intensity corresponding to
null and complete transmissions? How do these states
change as functions of light intensity?

Before any further elaboration, we bring forth the anal-
ogy with the electronic problem where we have encoun-
tered localized, extended, and critical states depending on
the strength of coupling and total energy. Let us recall
that by an exponential or critical state we mean that if
itt(x), the wave function for an electron, or E, an electric
field, describes an envelope function, then ~lb(x)~ or
~E(x)~ varies asymptotically as exp( —gx) for an ex-
ponentially localized state or as x ~ (g) 0) for a critical
state. Another way of realizing these states is in terms of
Landauer resistivity. R /(1 —R ), where R is the
reAectivity for a classical electron. It has been shown
that R /( 1 —R ) becomes exponential or power-law
bounded function as a function of material length x for
localized and critical states, respectively. For an extend-
ed state the transmission coefficient is given by a constant
or a bounded function of x. It is quite natural that in op-
tical problems, optical analog of Landauer resistivity
R/(1 —R) (or R/T, since T=1 Rw—here, T is the
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transmission coefficient) is being employed. '

Now the question regarding the nature of electric field
distribution (or state) has been asked in the context of
linear theory by a number of workers' ' in the recent
past and it has been shown that in the limit when the
number of layers become large all the observable states
studied are exponentially bounded surface states. How-
ever, for a reduced number of layers some states appear
to be critical (i.e., power-law bounded} but cross over to
exponentially localized as the number of layers increases.
Hence, although the theory indicates the existence of al-
lowed states in such material, the energy width of such
states goes over to zero as the length of the material goes
over to infinity. Allowed states form a Cantor set of
Lebesque measure zero. '

With these linear results' ' in mind we now investi-
gate the nature of field localization within a given optical
quasiperiodic structure in the nonlinear regime. We
show that nonlinearity has a variety of significant e6'ects
on the field intensity distribution corresponding both to
almost null and complete transmissions. Moreover, the
delicate interplay between dispersion and nonlinearity
leads to the emergence of bulk localization of a given
structure which, in sharp contrast to linear theory, '

stays even in the limit of a large number of layers. Some
preliminary results regarding these bulk localized states
and their self-similarity were reported earlier in the con-
text of systems with smaller number of layers (55 and
233}. In this paper we supplement those results with cal-
culations involving as many as 2584 layers.

One important aspect regarding the problem of locali-
zation in nonlinear media may be in order. Although the
problem bears its origin in solid-state physics in connec-
tion with the theory of electrical conductivity in disor-
dered and in quasiperiodic media, subsequent realization
that almost any wave equation with random (or quasi-
periodic) potential may possess localized (or critical) solu-
tions has made the field quite general. For the electronic
problem the wave equation we deal with is the usual
Schrodinger equation which i.s essentially linear in na-
ture. For the analogous problem in optics we employ the
classical Maxwell equation and as such we are not neces-
sarily restricted to linear situations. Because of this non-
linearity we expect the Maxwell wave equation in non-
linear quasiperiodic media to admit a variety of new
physical features in localization problems. The self-
similar bulk localized solitionlike field states (in addition
to localized, critical, and extended states) and the
enhancement of delocalization due to the increase in non-
linearity are two such features as discussed in this paper.

The outline of the paper is as follows. In Sec. II we re-
view the nonlinear transfer-matrix method' ' ' ' for the
propagation problem and give the relevant quantities,
such as expression for field intensities, transmission
coefficient, and Landauer resistivity. We present detailed
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FIG. 1. A schematic view of the multilayered medium.

numerical results for the problem in Sec. III. The paper
is concluded in Sec. IV.

II. TRANSMISSION FROM A NONLINEAR
MULTILAYERED MEDIUM

In this section we review the results obtained earlier
for the refiection and transmission coefficients from a
nonlinear multilayered medium. ' ' The nonlinear mul-
tilayered medium consisting of 1V nonlinear plane-parallel
slabs is embedded in a linear medium of dielectric con-
stant e (see Fig. 1}. Let a TE-polarized plane wave be in-
cident on the Nth slab from the left. Let the nonlinearity
of the jth slab given by the following displacement vec-
tor:

D~ "=e)y)[AJEJ(EJ EJ"}+BJE"(E E }], (2.1)

where Ej'and y, are the linear dielectric constant and the
constant of nonlinear interaction, respectively; E is the
electric field vector and the constants Aj and 8 define
the strength and the type of nonlinear interaction. In the
slowly varying envelope approximation, the solutions of
Maxwell equations for the electric field EJ in the jth slab
can be expressed as follows:

E, =A, +exp(ik, +x)+A exp( —ik, x) . (2.2)

kj+=ko(ej )' (1+U ~+2U + )'~2 (2.3)

with ko=~/c and

(2.4)

Henceforth we assume that the slabs have the same non-
linearity constants, i.e., o. . =a for all j. Following the
method discussed in Ref. 19, one can calculate the dimen-
sionless intensities U.+ by solving the coupled sets of
nonlinear equations given by

In Eq. (2.2), AJ+ (AJ ) is the constant amplitude of
the forward (backward) wave. k + (kj ) is the field-

dependent forward (backward) wave vector given by'9'25

U+
U
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where U, is the normalized transmitted intensity (treated
as a given parameter in our theory); M„ is the nonlinear
characteristic matrix defining the propagation properties
of the kth slab. The explicit expression for the charac-
teristic matrix has been given in Ref. 19. Equation (2.5)
enables one to obtain the characteristic matrices recur-
sively for all the slabs. The total characteristic matrix is
given by

linear optical path length (5) serves as a guideline for
where to expect exponential, critical, and extended state
behavior (as an illustration, Fig. 2 of Ref. 18 may be not-
ed}. Drawing again an analogy with electronic wave
function one might observe that a band of energies corre-
sponding to almost null transmission (T—=0) may be con-

M =M~M~ ) M2M (2.6)
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The relevant experimental quantities which are re-
quired for subsequent discussion are the reflection (R)
and transmission (T) coefficients which can be expressed
in terms of the elements of the total characteristic matrix

The optical analog of the Landauer resistivity R and
the incident intensity U;„are given by
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In order to obtain the linear results we allow U, to as-
sume vanishingly small values.

For a given quasiperiodic structure one can have evi-
dent field localization in two ways: by calculating
logia(F7) as a function of the number of layers N with all

other parameters fixed, or by following the intensity dis-
tribution throughout the structure. We define the sum
intensity U as

4.00-

3.00

R
C

~200C

(b)

U=U +U (2.9)

and consider it as a measure of intensity in the jth slab.
Note that in the slowly varying envelope approximation
both U + and U for fixed j are constants, and can be
calculated using Eq. (2.5). In the next section we resort
to both of these methods for our numerical investigation.

III. NUMERICAL RESULTS AND DISCUSSION

Let us now apply the theory reviewed in the last sec-
tion to a Fibonacci multilayer constructed recursively by
two nonlinear slabs A and B (with linear dielectric con-
stants e „and ea and widths d„and dpi, respectively) as
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with Sa=(B) and Si =(A). Thus Sz=(BA).
S3=(ABA), S~=(BAABA}, etc. We also assume that
the medium on the left as well as on the right is hnear
with dielectric constant e and also that the linear optical
paths are the same for both the slabs, i.e.,

E
040

0.20
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1597 layers
We consider various generations S„constructed using
(3.1) and define e; as e, =e„,@2=A~, @3=A„,e4=e„, and
so on. For all of our numerical calculations we have as-
sumed the following parameter values: e~ =4, e&=9,
and @=1 (same as in Ref. 15 except e}.

Examination of transmission spectra as a function of

FIG. 2. Sum intensity distribution in a forbidden region for
6 = 1.23m and for various U, values. (a) Linear case,
U, =1.0X10; (b) nonlinear case, U, =1.0X10; and (c)
U =2.0 X 10 (scale ln arbltl al'y units). The inset ls log ip(R )

as a function of Fibonacci layer numbers.
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sidered to be a forbidden region or band gap where the
electric field intensity is expected to decay exponentially
with increasing distance into the structure producing a
surface-localized state. On the contrary, a band of ener-
gies corresponding to almost complete transmission
(T= 1)—is considered to be an allowed region where the
extended states are likely to be observed. The transition
regions correspond to critical states.

A. Linear results

In order to make a fair comparison with nonlinear re-
sults, let us first consider the linear properties of the sys-
tem. This implies that we assume U„ the normalized
transmitted intensity, to be vanishingly small. Figure 2(a)
shows the spatial distribution of the sum intensity U
over 1597 layers for a typical forbidden region (i.e., T—=0)
corresponding to 5=1.23m and U, =1.0X10 . The en-
velope in Fig. 2(a) exhibits an exponential decay as ex-
pected. The inset in the figure displays the plot of the
logarithm of optical Landauer resistivity for the same 5
as a function of the numbers of Fibonacci layers. The
plot is a straight line indicating the strong surface locali-
zation of the field. In Fig. 3(a) the spatial distribution of
the sum intensity U over 1597 layers is plotted for an al-
lowed region (T= 1} corres—ponding to 6=1.9139973m.
and for U, = 1.0X 10 ' (i.e., for weak nonlinearity). It is
immediately apparent that the field distribution is close
to periodic over the length of the material. The calcula-
tion of the transmission coefficient shows that it is finite
and fluctuates around a constant mean value as a func-
tion of Fibonacci layer number indicating the extended
nature of the state.

The linear results displayed here are in conformity
with those of the earlier workers. ' ' It has been
shown' that in the limit when the number of layers be-
comes large all the observable states studied are exponen-
tially bounded surface states. For a reduced number of
layers some states appear to be critical, i.e., power-law
bounded, but cross over to exponentially bounded states
as the number of layers is increased. Secondly, although
the theory indicates the existence of allowed states in
such material, the energy width of such states goes to
zero as the length of the material goes to infinity and all
observable states in the material are surface states. Also
the allowed states form a Cantor set of Lebesque measure
zero. '

B. Nonlinear results

1.4xlp

l. 2 =
0

1.0: ~
' '-". .'

~ Q.8-:'""
Qp

Q 6=.

'I' .
V)

Q.4-

Q.2=

P,Q

(a)

~ %

0

~ ~ ~

~ 4, , ', ~

'I' ' ~

~ '

' ~ ~ v. r,'" . ~ ~

~ ~ Q

,h \, "\'

I ) I 1 i ) I I I ) I I ) ) I ) 1 I 1 1 I 1 I 1 1 1 I I I I I I I 1 I 1

;r
~ '

1 597 layers

1.P —.

~0.8

~~ p.6

~,

I

Although nonlinearity affects significantly the localized
states, it has little or almost no effect on the distribution
of the extended states corresponding to allowed regions
(T= 1—) as can be seen from Fig. 3(b), where U, has been
increased to assume a value of 1.0X10 for the same 6
as in Fig. 3(a).

Before we go into further calculations, special attention
should be given to the multivalued character of the
input-output dependence. Note that in most of our cal-
culations we treat U, as a parametrically given quantity.
In moderately nonlinear systems (i.e., for moderate or
higher values of U, } the output characteristics can be
multivalued as a function of the input intensity. It fol-
lows that certain ranges of the values of U, define the un-
stable branches of the input-output characteristics.
These branches are not realizable in an experiment.
Therefore, for any set of calculations, we make sure that
the chosen value or range of values of U, does not corre-
spond to the unstable branches. In what follows, we pay
attention to the input-output characteristics of the non-
linear system {for a typical curve see, for example, Fig. 3
of Ref. 18). It is interesting to see how the intensity dis-
tributions corresponding to different forbidden regions

In order to obtain the nonlinear results we turn on the
transmitted intensity parameter U, to assume an appreci-
ably larger value. Figure 2(b) shows the spatial distribu-
tion of the sum intensity U over 1597 layers for the same
forbidden region (i.e., the region forbidden in linear case
corresponding to 6 = 1.23~) for U, = 1 X 10 . It is ap-
parent that the envelope function is no longer an ex-
ponentially decaying function [compare with Fig. 2(a)].
A further twofold increase in the value of U, [Fig. 2(c)]
clearly shows the inhibition of strong localization ob-
served in the linear case.

0.2

0,0
"{ 59 icyer s

FIG. 3. Sum intensity distribution of an allowed region for
6= 1.913997 3' and for different values of U, . (a) Almost linear
case, U, =1.0X10 '; (b) nonlinear case, U, =1.0X10 (scale
in arbitrary units).
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(T=O) of the nonlinear system change as U, is changed
keeping the optical path fixed. To put this more precise-
ly, let us note, for example, that for 2584 layers and
5 = l. 16m. the forbidden regions (T—=0) appear for
U, =0.372 33 X 10, 0.441 83 X 10, 0.498 67 X 10
etc. The question is what is the nature of distribution in
these cases. Figures 4(a) —4(c) illustrate these distribu-

tions. It is interesting to note that these are like critical
states. This conclusion can also be inferred from the in-
sets in the figures, which show that optical analog of Lan-
dauer resistivity R is a power-law bounded function.
Also compare Figs. 4(a) —4(c} with Figs. 3(b) and 3(c) of
Ref. 17 and note the difference in the scale of the vertical
axis of the insets.
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FIG. 4. Sum intensity distribution in forbidden regions of the

nonlinear structure for 5=1.16m and for various values of U, .
(a) U, =0.37233X10;(b) U, =0.4418X10; (c) U, =0.49867
X10 (scale in arbitrary units). The insets are log&0(R ) as a
function of Fibonacci layer number.

FIG. 5. Sum intensity distribution in allowed regions of the
nonlinear structure for 5=2~ and for various values of U, . (a)
U, =0.413 36X 10; (b) U, =0.83X 10 '; (c) U, =0.577096
X 10 (scale in arbitrary units).
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We have extended the above numerical analysis to
study the allowed regions (T= 1—) also. We observe that
for 2584 layers and 6=2+, the allowed regions appear for
U, =0.413 36 X 10, 0.83 X 10, 0.577 096 X 10, etc.
In Figs. 5(a)—5(c) sum intensity distributions have been
plotted for several values of U, for all of which T is al-
most equal to unity. For comparison, we have repro-
duced Fig. 2(b) of Ref. 21 in Fig. 6, which shows the same
distribution. It is interesting to observe that for lower
values of U, (i.e., nonlinearity) bulk localization appears
in the structure [see Figs. 5(a) and 6]. As one goes over
to higher values of U, the states acquire more and more
extension in character. It was pointed out in Ref. 21 that
the distributions corresponding to the lowest nonzero
value of U, and T —= 1 can be fitted by a sech dependence.
The fit is almost exact. Thus the total transparency of
the nonlinear system is explained in terms of the excita-
tion of these solitonlike distributions. Note that excita-
tion of such objects are known in nonlinear periodic sys-
tems. In fact, theoretical proof of the existence of soli-
tons in a nonlinear periodic system for normal incidence
was given by Sipe and Winful. Solitonlike objects have
also been reported in nonlinear periodic systems for
oblique incidence. However, the transparency of the
system for oblique incidence is explained in terms of the
nonlinear supermodes of the structure.

Figures 5(a) and 6 answer one pertinent question that
may arise in the context of whether bulk localization can
persist even if we increase the number of layers for same
5 but for different values of U, scaled appropriately ac-
cording to system size. For example, we note that at
5 =2m, T= 1 regions a—ppear for 55, 233, and 2584 layers
for U, values 0.0195, 0.0046, and 0.413 36 X 10 ', respec-
tively. The following relation for U, holds:

1 yUs5 1 yU233 1 yU2584

55 233 2584
(3.3)
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233 laye~s

FIG. 6. Same as in Fig. 5, but for 233 layers and for
U, =0.0046.

It is immediately apparent from Figs. 5(a) and 6 that
bulk localization of a given structure can persist for al-
lowed regions for appropriately scaled nonlinearity, i.e.,
U„even if we increase the number of layers to be very
large. Note that we have gone up to as many as 2584 lay-

ers. This is in sharp contrast to linear theory, ' where it
has been shown that bulk localization goes over to a state
localized at the surface with the increase in the number of
layers. The persistence of bulk localization characterized
by a solitonlike distribution is a typical signature of an in-
terplay between nonlinearity and dispersion. Another in-
teresting feature which should be noted from Figs. 5(a)
and 6 is their self-similarity. We have shown recently '

that the width of the bulk localized states scales as the
system size. Such properties are missing in nonlinear
periodic systems and presumably this is a consequence of
quasiperiodicity.

IV. CONCLUSION AND SUMMARY

In this paper we have presented a detailed numerical
study of a localization problem in a nonlinear quasi-
periodic structure for normal incidence of plane-
polarized light. The main conclusions can be summa-
rized as follows.

(a) Stong surface localization, which is observed for
the forbidden states (T=—0) in the linear theory, is
significantly affected even by weak nonlinearity resulting
in inhibition of localization. However, the extended
states corresponding to allowed regions (T= 1) in th—e
linear theory remain almost unaffected by it (except for a
scaling of the amplitude).

(b) The field distribution corresponding to different
values of U, (i.e., nonlinearity) for forbidden regions (i.e.,
for those U, for which T-=0) appears to exhibit critical
state behavior.

(c) The evidence of bulk localization is apparent from
the nature of field distribution corresponding to lower
values of U, (i.e., nonlinearity) for allowed regions (i.e.,
for those values of U, for which T= 1). For appropiately
scaled U, values the bulk localization persists even if one
increases the number of layers. This is in sharp contrast
to linear theory and the evidence of bulk localization is
an indication of the delicate interplay between nonlineari-
ty and dispersion and emergence of a new kind of struc-
ture.

(d) The bulk localized states can be self-similar.
The above discussion allows us to form a physical

mechanism behind one of the main conclusions, roughly
speaking, that increasing nonlinearity leads to decreasing
localization. The feedback at each layer makes the field
strongly dependent on the total phase shift. In the in-
tense field regime, however, the dispersive nonlinearity
renders the phase shift field dependent. Therefore, for
each turn around every layer gets one erratic wandering
of the field resulting in more and more loss of localiza-
tion.

One pertinent point regarding the present treatment
needs consideration. Since a great majority of the results
on the theory of localization are asymptotically valid, we
have tried to deal with a large number of layers. For
computational tractability we have relied on slowly vary-
ing envelope approximation which allows us to develop
the scheme in terms of a transfer-matrix formalism ( and
in this respect the treatment is akin to those employed for
quasiperiodic systems in the context of electronic prob-
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lem ) and is a good approximation in the intensity
range we are working. Nevertheless, it has to be noted
that too much increase in intensity may lead to the break-
down of this approximation.

Notwithstanding the computational limitations for
working with finite-size material, which puts restriction
on prediction of the results in the asymptotic limit, one
can hope to obtain a fair idea regarding the nature of
electromagnetic field states in the nonlinear regime in the
problem of localization in optics. Significant departures
from the linear theory, which are apparently generic in
nature, arise and one cannot conclude that all the observ-
able states are strong surface localized states in the non-
linear theory. The possible emergence of new structure

due to bulk localization which does not fit into any of the
category of states such as exponentially localized, extend-
ed, or critical states is amenable to new theoretical inter-
pretation.
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