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Method for the calculation of excitonic effects in the absorption spectra of some metals
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Due to the long-range screening behavior of electrons in metals, interactions between excited
electrons and their corresponding holes are weak and are generally ignored. In this paper, we at-
tempt to include this electron-hole interaction into the calculation by randomly choosing a finite
number of electron-hole states to represent the excitations and calculating the response of these
chosen electrons to the excited electron. In doing so, the Coulomb interactions are scaled to com-
pensate for the finite sample chosen. Calculations were done for lithium, sodium, potassium, calci-

um, and aluminum.

I. INTRODUCTION
A. Absorption spectra of metals

The absorption spectra of all metals have two main
contributions. The first contribution, called the Drude
absorption, has the form u(E,)=4man /[m{(E,)EL],
where p is the absorption coefficient, E,, is the photon en-
ergy, a is the fine-structure constant (zﬁ), n is the
valence-electron number density, mg, is the optical
effective mass, and 7(E 7) is the frequency-dependent re-
laxation time.! 7 is an approximately constant function
of E for most metals’ and is between 300 and 1500 for the
metals of interest at room temperature. (The atomic sys-
tem of units is used, in which e’=#=m =1.)

m,, can be measured from the real part of the dielec-
tric function, Ree=1—4wn /mop/Ef,, and is generally
between 1 and 2. Or, m_, can be calculated theoretically
from the band structure

op

mo, =3(2m) /] |f dkvﬁE(k)] '

where v is the volume of the unit cell, E (k) is the energy
of the valence band at k, and the integration is over the
Brillouin zone.’

The second contribution to the absorption spectra is
the direct interband absorption spectrum. It has the
theoretical value

WE, =473  /(a/E, )|V )g,(E,)

where |V, |) is the average optical matrix element be-
tween all final states |F ) and all initial states |I ) with the
same energy difference E; —E;=E, and g,(E,) is the
joint density of states at E.* (Of course, for direct optical
absorption, |F ) and |7 ) must have the same net spin and
the same net wave vector.)

Phonon-induced indirect transitions do play a role in
the absorption spectrum but are not considered here.
Generally, indirect transitions tend to broaden the spec-
trum (especially threshold edges and any threshold-edge
singularities in the spectrum).’

B. Excitonic effects

Usually the initial states |7) and the final states |F)
are assumed to be adequately described by independent-
electron (uncorrelated) bands.® But this is definitely not
the case for all metals. Threshold singularities (called ex-
citons) have been found experimentally in many metals in
the x-ray region. These singularities cannot be calculated
using any standard independent-electron theory and must
be calculated by some many-electron theory. The
method described here is an internally consistent way of
describing simultaneously the shape and size of these ex-
citonic features.

Excitons have been known to exist in semiconductors
but due to metallic screening the electron-hole interac-
tion in metals is weak and short range compared to the
electron-hole interaction in semiconductors. Due to
screening, excitonic bound states are not believed to
occur in metals,” but excitonic edge singularities (not
quite bound states) are known to exist, and it is these
singularities that are the topic of this paper.

Boisvert et al.® and Woodward’ have performed
finite-size cluster calculations for elemental metals and al-
loys. These calculations show the existence of a bound
localized excited state, an exciton, with energies just
below threshold (for the metals Mg, Na, and K). These
local excited states are believed to have high optical
absorption—thus implying peaks at the thresholds of the
appropriate x-ray spectra. But these cluster calculations
are incomplete since they only yield the localized excited

8037 ©1990 The American Physical Society



8038

state which stays within the cluster and is not heavily
screened.
Mahan® calculated the shape of the x-ray edges to be

WE,)=[Ey/(E,—E)]"f(E

where E is a typical bandwidth energy of magnitude e,
the Fermi energy; E, is the threshold energy; f(E, ) is a
slowly varying functlon of E,;and ©(E, —E,) is the step
function. Nozieres and De Dominicis® derlved a;:

)O(E, —E,)

xz

3 QU+1)28, /77,

I'=0

a,=(28,/7)—

where [ is the angular momentum of the valence state and
the &, are phase shifts calculated from the scattering of
the valence states by the electron-hole potential. So far,
calculations for the &, have yielded too high results
which must be scaled down to fit sum rules. The scaled-
down results for the 8, yield the correct signs for the a,,
but the actual values are only moderately accurate.'®-!#
The a, are normally obtained directly by fitting them to
the experimental data; the fitted a, give acceptable re-
sults for the shape of the edge. Mahan’s result is incom-
plete since it only states the shape of the edge in terms of
unknown or only approximately known parameters. The
results of this paper are consistent with Mahan’s results,
but represent an improvement in that the results of this
work have only one unknown parameter E,, the thresh-
old energy (which can be found for most metals in Ref.
15), versus three unknown parameters in Mahan’s theory.

More general theories of many-electron effects on x-ray
spectra can be found in Refs. 16 and 17. Kunz and
Flynn'® have proposed that since an electron-hole pair is
not an exact eigenvalue of the many-electron Hamiltoni-
an, it interacts with other electron-hole pairs of the same
total k vector through the nonaverage parts of the
Coulomb interaction. Thus, if one allows the excited
states to include Slater determinants containing other
electron-hole pairs (again, all such determinants must
have the same wave vector), a much better understanding
of the excitonic effects in metals can be obtained.

Results by Kunz and Flynn'® for magnesium have
shown much improved results (over all previous
independent-electron results) and have shown the possi-
ble existence of an excitonic resonant state in the mag-
nesium spectrum above the absorption edge. (See Fig. 1.)

Excitonic threshold singularities have been experimen-
tally found at the 2p-3s transition in sodium,? the 3p-4s
transition in potassium,*' the 4p-5s transition in rubidi-
um,?! the Sp-6s transition in cesium,’! and the 2p-3s (Ref.
22) and 3s-3p (Ref. 23) transition thresholds in magnesi-
um. In addition to these, we believe that excitonic
thresholds exist at all the p-s transitions in all the alkalis
and the 2s5-2p transition threshold in beryllium.

A possible excitonic peak exists in the 4s-4p transition
in calcium,?* but our results are consistent with this being
a nonexcitonic peak due to a large density of p states only
at the very edge of the interband threshold.

This research project deals with these excitonic thresh-
old effects in certain metals, particularly those metals
with convenient crystal structures, with known band

D. J. GROH, A. B. KUNZ, AND C. R. GIVENS 41
£
=
B
3
°
c
8
k]
B
o

0 2.0 4.0 6.0 8.0
Excitation energy (eV)
FIG. 1. Results by Kunz and Flynn (Ref. 18) for the correlat-

ed optical absorption spectra of magnesium for various values
of the electron-hole interaction (stated in the text as
(u',v'|Hlu,v)). In the upper right of the graph is a compar-
ison of the experimental results (dots) with the theoretical
values (solid curve) using an electron-hole interaction value of
—3.5 eV (which is an overestimate; —2.1 eV is a more reason-
able value but —3.5 eV gives a better comparison with experi-
ment).

structures, and with electron states that can be described
with only a few angular momentum states.

II. THEORY

A. Wave function

Electronic wave functions must be linear combinations
of Slater determinants, determinants of the independent-
electron wave functions.?> W/ will denote the wave func-
tion I; ¢ , will denote the Ath Slater determinant; and ®;
will denote the ith independent-electron wave function,
which includes a spinor. Since the systems dealt with are
crystalline, these may be Bloch sums of local orbitals,

®,(r)=N, 23 explik,-R)¢,(r—R) ,
R
v'=3 v, ,
A

; 4, ,(rz) q)Al(rN)
! 4,(11) CDAz(rz) D, (ry)

dJ:/Ng—l/z\ ) ,
‘II)A (r)) A (rz) @, (ry)

where N is the number of electrons, or in second quanti-
zation notation,

¥, >=a;la;_‘ - ‘a;\ |0)

. T .
where the creation operator, a;, occupies the state ®,.
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(Conversely, the annihilation operator a;, deoccupies the
state ®,.) The ground state will have 4,=1, 4,=2,

., Ay=N. And the excited state will have some of
the A4; not between 1 and N and an equal amount of the
A; greater than N.

B. Simplified LCAO

The ¢, are determined from a fitting method developed
by Slater and Koster?® called simplified linear combina-
tion of atomic orbitals (LCAO). This method involves

|

M=~

1
2

Om=—1m

MN

2
<¢i|H‘¢j>=1NL_122 2
R R’ 1=01

or

Il
It

v.I'

where
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fitting energy integrals to published band structures. The
band structures used are listed in Ref. 27.

One starts with a basis set of one arbitrary, unknown
radial wave function for each angular momentum type
used (up to some maximum angular momentum /_,,, set
to 2 for this project), i.e.,

2 I
¢i(r)= 2 2 C,’;,,P,(r)Y,m(Q,) .
I1=0m=—1

Taking matrix elements of the many-electron Hamiltoni-
an

C1ECl expli(k;"R'—k;"R)1€jppmm(R,R')

€trmm RR)= [ dr PF(|r—R)Y/*(Q,_g)HP,([t—=R'NY[ (0, _g) .

Since the Hamiltonian is the same at all lattice sites, this matrix element can be written as

2 2 ! 4 )
<(Di‘H‘(Dj>:6kl,k/ E 2 2 2 C/I:C[,'m’ull'mm'(kl) ’

1=0I'=0m=—Im'=—1

where

Himm' (k)= 2 exp(ik~R)e,,r,,,m'(R) .
R

The coefficients and energies and determined by di-
agonalizing the yy,,, matrix, solving the resulting ma-
trix (which is 9X9 for /,, =2) along the symmetry axes
(where the matrix can be subdivided into 4 X4 or less ma-
trices) exactly as a function of the €;.,,,,(R), and fitting
these functions to the published band structures. The fits
were made using 33 €;,,,,,-(R) as independent parameters
corresponding to third nearest neighbors—resulting in a
root-mean-square error of less than 0.006H (1 H =27.2
eV) for all necessary bands (compared to a Fermi energy
of order 0.1 H).

The radial wave functions are calculated separately us-
ing an atomic Hartree-Fock method. The wave functions
calculated in this way are only approximate though. For
each excitation a Hartree-Fock calculation is done with
one de-occupied ground-state orbital and one occupied
excited orbital (of a different symmetry). Thus to obtain
the radial wave functions used in the 2P —3S transition
in sodium, a Hartree-Fock calculation was performed us-
ing three fully occupied S orbitals and one 2th occupied p
orbital. The basis sets for the calculation were of the
Slater type taken from Ref. 15 (with a few extra valence
Slater orbitals added). The electron-electron integrals us-
ing these wave functions are generally within 30% of in-
tegrals obtained using results of free-electron models'®
and cluster models.’

The above procedure assumes that the symmetries (s,
D, or d) of the hole and excited electron and their energy
difference can be accurately obtained from the ground-
state calculation but the radial orbitals are obtained from

f

an excited (but atomic) state calculation. This allows for
the contraction of the orbitals at the site of the hole. One
could, of course, have included many more virtual
ground-state bands in the basis set—obtaining the neces-
sary variational freedom, but this would make the prob-
lem computationally impossible. The above approxima-
tion, of using ground-state-theory energy differences, ig-
nores a number of correlation effects, including the fol-
lowing: (1) The on-site energy interaction integrals have
different screening corrections in the ground state than in
the excited states and (2) the excited atom has smaller
near-neighbor interaction integrals.

C. Monte Carlo calculation of interaction

To determine the approximations for the wave func-
tions (the W/ and W), a finite set of Slater determinates
(the ¢ ) is chosen and the matrix (¢4|H|¢?) is diago-
nalized. It is assumed that the ground-state wave func-
tion (W/) can be satisfactorily represented by the self-
consistent one-electron state. But the excited states (¥F)
cannot necessarily be represented by only one electron-
hole state (|u,u)=aJaU|\PI>) since these states are not
self-consistent. Therefore, the chosen set will contain the
ground state and as large a randomly chosen set of the
|u,v) as possible. (Other states with more than one
electron-hole pair come into the calculation at higher or-
der and are not considered here.) The Hamiltonian ma-
trix element between these states is

(u',v'|Hlu,v)=V, vV

ou'u u',v,uv’

where V. ., is the screened Coulomb matrix element
between the independent-electron states ¢, and ¢, and
¢, and ®,:
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Vi oo = fdrfdr’d>}(r)¢3‘(r’)exp(—kolr—r'()/ir—r'|<l>,,r(r)<l>u(r').

(A sum over spin indices is included in the integrals.)

The |u,v ) are sampled by first randomly choosing a k
from the first Brillouin zone (u and v must have the same
k for optical absorption) and then randomly choosing a
ground-state band less than the Fermi energy, ey, for @,
and an excited-state band greater than e for ®,. The
eigenvectors of this many-electron Hamiltonian matrix
between the randomly chosen |u,v) will be the approxi-
mations for the W7, the excited states.®

The |u,v) are not chosen by a grid scheme since a
physical grid would either artificially have too many de-
generate states with too large of gaps (in energy) between,
or else the grid would have an artificial lack of degenera-
cies. Randonmly choosing the |u,v) does not ensure the
proper density of states, but it will ensure a proper mix-
ture of nearly degenerate to not degenerate states (over a
large random sample). Any sampling method that prop-
erly represents the density of states should give similar
results.

For optical absorption, ¥ and v must have the same
spin; matrix elements between states with the spin of u’
and v’ the same as the spin of u and v are between three
and eight times as large as matrix elements between states
with the spin of ' and v’ different from the spin of u and

v. (V, ., is much smaller than V., ) Thus spin
states almost decouple, and therefore one can do the cal-
culation fairly accurately by considering only one spin
state. This is not ideal, but the additional matrix size
makes considering both sets of spin states a costly en-
deavor (mainly because it would require a computer
larger than the 2-megaword FPS164 array processor on
which the codes were written).

Note that all of the nondiagonal matrix elements are of
order 1/N;, so that there is little mixing between these
states unless the states are sufficiently dense. If there is
significant density, the states will couple and the correla-
tion can be quite large—possibly forming an excitonic
threshold singularity. Within the randomly chosen sub-
matrix, the average spacing between states is increased by
the ratio of N; to the submatrix order M. Thus the
Vi v,v,w must be scaled by the same ratio to obtain the

correct mixing among the chosen states.

D. Calculation of absorption coefficients

Now that the wave functions and energies have been
calculated for the W/, Fermi’s golden rule can be used to
calculate the unpolarized optical absorption rate and oth-
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FIG. 2. The percent increase in the height of the threshold peak in the correlated oscillator strength (over the height of the thresh-
old peak in the uncorrelated oscillator strength) for the 2p-3s transition in sodium as the number of points in each Monte Carlo sam-
ple is increased. (1018 is the maximum number allowed by an FPS164.)
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er optical properties,*

We=(47n,/3)/E, |V |*Y(Er—E,—E.) ,
Y Y v

where
V=3V, (¥ala;| W),
ij

V= [ dr®nvVe(r) .

To get the total optical absorption rate at E, a sum over
the possible excited states (the W) is completed. And
since the number of states times the average of some
function of the states yields the sum of the function of the
states, one can obtain

W(E,)=(4m*n,/3)/E, (|V5|*)D,E,) ,

where (|V|?) is the average of all the |V, | with the
same energy difference Ep—E;=E, and D,(E,) is the
joint density of states at energy E,,.

Most absorption functions are written in terms of a
unitless  function, the oscillator strength fg;
=(3)/E, Vg > or {f M2/3)/E (Vi ]?),

W=2n"n( fr; )8, E,)=absorption rate

and
p=2m%al fr )g,;(E,)=absorption coefficient ,

OSCILLATOR STRENGTH
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where g,(E,) is the joint density of states per unit
volume and « is the fine-structure constant.

III. RESULTS

Figure 2 shows the percent increase in absorption at
the 2p-3s transition in sodium as a function of the number
of points sampled. The maximum number of points that
can fit in memory on our FPS164 is 1018, which is just
about at the point where the curve is leveling off.

The correlated and uncorrelated oscillator strengths
for this same transition in sodium are shown in Fig. 3. A
more general use of the term “correlated” is used here.
By the term “correlated,” the authors mean any many-
body correction (besides screening) to the result of the
Hartree-Fock bands (which include screening). Clearly
there is quite a large amount of correlation at the thresh-
old peak; this is indicative of a strong electron-hole cou-
pling (implying excitonic structure). The 2p-4s and 3p-4s
transitions in potassium show similar increases between
the correlated and uncorrelated oscillator strengths.

Figures 4-7 show comparisons between experimental
spectra and the corresponding theoretical results for vari-
ous excitations in the metallic systems used. In all four
graphs the horizontal position (the threshold energy) of
the theoretical curve and the vertical scale of the experi-
mental curve were arbitrary and were set to maximize
similarities at the threshold peaks. For the 2p-3s transi-

Na
2P

1.10 1.15 1.20 1.25

ENERGY (H)

FIG. 3. The oscillator strength (averaged over three runs) of both the correlated line and the uncorrelated line (which includes
screening but not any other many-body affects) results for the 2p-3s transition in sodium. The uncorrelated curve comes direct from
the band structure. The correlated curve includes the results of the diagonalization of the (screened) Hamiltonian for the three ran-
domly chosen sets of states. The large increase after the diagonalization of the threshold edge is indicative of an excitonic threshold
peak. Note also that significant differences (besides the fluctuations due to the randomly chosen sets) between the two curves occur

only near the threshold.
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FIG. 4. The correlated absorption spectrum of the 2p-3s transition in sodium metal (for the same three runs used in Fig. 3 and the
experimental spectrum by Haensel et al. (Ref. 20). Both experiment and theory exhibit threshold excitons. The two peaks are spin-
orbit partners; these are incorporated into the calculation by taking the single-spin results, shifting according to the experimental re-
sults, multiplying by the spin degeneracy, and adding the two spin partners together.

tion in sodium and the 3p-4s transition in potassium, the
two spin-orbit peaks were calculated separately, were
given different threshold energies, and then were added
together.

Note that the calculated results have many more fluc-
tuations; these are due to the incorporation of Monte
Carlo methods and most can be smoothed out by making
more runs (each theoretical curve shown is the average of

three runs of 1000 points each). Time and finances were
the limiting considerations in the number of runs done.
But we were most interested in establishing the existence
(or nonexistence) of the threshold peaks; thus fluctuations
(which are small compared to peak size) are of minor
concern.

Also, the large amount of dissimilarity between experi-
ment and theory away from the threshold peak is mainly
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FIG. 5. The correlated ( * ) and uncorrelated (O ) oscillator strengths for the 3p —4s transition in potassium.
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FIG. 6. The correlated absorption spectrum of the 3p-4s transition in potassium metal and the experimental spectrum by Ishii
et al. Both experiment and theory exhibit threshold excitons. The two peaks are spin-orbit partners.

due to the local-density methods used to calculate the
band structures to which we fit our simplified LCAO
bands and to the approximations involved in the fit, but
are not due to the method we used to calculate the corre-
lation between the bands. This is shown clearly in Fig. 3;
the difference that the Monte Carlo diagonalization
caused is only significant at the edge. Local-density
methods are only accurate near the Fermi energy, up to

where the threshold states are excited. Thus the method
can still be considered accurate at the threshold, but not
away from it.

Also, the method does not take phonon broadening of
the peaks into account. Notice that the heights of the
peaks of the theoretical curves for the two different spin-
orbit partners are reversed in the experimental curves. If
phonon broadening could be included in the theoretical

A
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2.0 2.1 2.2 2.3 2.4

Energy (H)

FIG. 7. The oscillator strength for the 1s-2p transition in lithium. The calculated correlated and uncorrelated spectra differ by less

than 3 X 1075,
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FIG. 8. The correlated absorption spectrum of the 1s-2p transition in lithium metal and the experimental spectrum by Myers and
Sixtensson (Ref. 28). Neither experiment nor theory shows excitonic effects.

model, the overlap between the two spin-orbit partners
would be considerably larger, thus changing the relative
heights of the two peaks.

IV. CONCLUSIONS

Generally, the theoretical model presented in this pa-
per is consistent with known experimental results, in that

0.05

0.04

0.02

OSCILLATOR STRENGTH
0.03

0.01
t

1 } 3

excitonic threshold peaks were found for all transitions
that are experimentally known to have threshold peaks.
The results for the total absorption spectra may not
reflect the experiment to much accuracy, but the model is
mainly concerned only with the spectra at threshold and
performs acceptably well there.

In order to get a nearly localized state out of delocal-

Ca
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t —T
0.0 0.1 0.2 0.3

t
0.4 0.5 0.6 0.7 0.8

ENERGY (H)

FIG. 9. The oscillator strength for the 4s-4p transition in calcium. The calculated correlated and uncorrelated spectra differ by

less than 0.002.
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FIG. 10. The correlated absorption spectrum of the 4s-4p transition in calcium metal and the experimental spectrum by Hunderi
(Ref. 24). The experimental curve shows the possibility of an excitonic peak, but the theory shows none.

ized orbitals, the wave functions must contain a
significant number of the orbitals. This combination of a
large number of orbitals greatly increases the oscillator
strength

fr=Q/3)/E,|'3 (W|afa, W Vij|?,
LJ

since the term within the | | is approximately (since Vij
does not vary much) just a sum of the eigenvector com-
ponents (each represents one delocalized electron-hole
pair orbital) of the final-state wave function. (W¥/, the ini-
tial state, contains no excited electrons and no holes.)
Thus, a large mixing between orbitals will increase the os-
cillator strength— possibly making a threshold peak.

The main condition for large mixing is a high ratio of
the average interaction potential (between the electron-
hole pairs) to the average spacing between states near
threshold. Or, equivalently, a high value of the average

interaction potential (which scales as 1/N) times the den-
sity of states (which scales as N) is needed.

The calcium 4s-4p transition (Figs. 8—10) compares
least well with the experimental threshold shape. The ex-
perimentalists did not continue to low enough energy to
obtain information on the Drude section of the spectra.
The experiment appears to exhibit an excitonic peak, but
without knowledge of the Drude part of the curve, it is
uncertain whether or not the interband absorption spec-
trum alone exhibits a threshold singularity. The theoreti-
cal model implies no singularity, but experimentally the
interband absorption spectrum is uncertain.
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