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Acoustic interference in random superlattices
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We study theoretically the interference effects and the resulting transmission of acoustic pho-

nons in random superlattices, i.e., multilayered systems in which two kinds of building blocks A

and 8 are stacked at random. We derive (i) the recursion relations satisfied by the superlattice
structure factors, and (ii) an analytic expression for the ensemble-averaged intensity of phonons

reflected from layer interfaces of an infinite system. We predict a number of sharp features in

the intensity versus frequency, which appear rather regularly. Furthermore, numerical calcula-
tions for both the double- and single-layer random superlattices indeed exhibit distinctive dip
structures in phonon transmission spectra which are in good agreement with the analytical results.
We also find that the single-layer random superlattices show an effective phonon-filtering action
as the system size is increased, i.e., they prevent the transmission of phonons except for those

satisfying resonance conditions.

Recently, a number of studies' have been devoted to the
electronic, vibrational, and structural properties of non-

periodic multilayered systems, or superlattices (SL's).
The primary motivation is to understand their physical
properties, expected to be quite unlike those of periodic
systems. The experimental realization2 3 of such systems
makes these studies quite appealing.

So far, acoustic-phonon propagation in periodic, quasi-
periodic (Fibonacci), and other non periodic (Thue-
Morse) SL's have been studied both theoretically and ex-
perimentally. In particular, sharp dips in phonon
transmission (which are attributed to both Bragg and
Bragg-like reflection processes) are predicted theoretically
and observed experimentally in both periodic4 and Fi-
bonacci SL's. In the Thue-Morse SL's, large transmis-
sion dips characteristic of the nonperiodicity of the se-
quence are also predicted in addition to those due to the
Bragg reflection.

In this Rapid Communication, we discuss novel in-
terference effects exhibited by high-frequency acoustic
phonons in randomly stacked SL's. We obtain these re-
sults by deriving (i) the recursion relations satisfied by the
SL structure factor, and (ii) an analytic expression for the
ensemble-averaged intensity describing the interference
eff'ects of phonons reflected from the layer interfaces. In
particular, with these expressions, we show that even in
random SL's the sharp features are still present in the
transmission spectra of phonons and they become more
and more significant as the system size is increased. %e
also show that a certain kind of random SL's have a very
eA'ective phonon-filtering action.

Here we consider SL's in which the building blocks A
and 8 consist of double layers as shown in Fig. 1(a). We
further assume that the materials constituting the first
(second) layers in these blocks are the same but of
diferent thicknesses in general. In these types of SL's
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FIG. 1. Schematic representation of the building blocks A
and B for (a) double-layer SL's and (b) single-layer SL's. AIAs
and GaAs are assumed to be the constituents of layers in the nu-
merical calculations.

(which we refer to as double-layer SL's), the two kinds of
constituent materials appear alternatively even though the
sequence of A and 8 blocks is random. Single-layer SL's
in which both A and 8 blocks consist of single layers [Fig.
1(b)l are obtained as a limiting case of double-layer SL's,
where the thickness of one of the layers in each block
tends to zero.

In typical SL's, the acoustic mismatch between the con-
stituent layers is very small and hence the amplitude
reflection coefficient r2t( —r t2) of phonons (impinging
on an interface from the second layer to the first lay-
er) is also small. [For a (001)-AIAs/GaAs interface,

~ ro, A, A~A, ~
(0.01 for both transverse acoustic (TA)

and longitudinal acoustic (LA) modes. '] Thus, neglect-
ing the multiple reflection of phonons at layer interfaces,
the structure factor S, in a double-layer SL, satisfies the

7941 1990 The American Physical Society



7942 SHIN-ICHIRO TAMURA AND FRANCO NORI

following recursion relations for the normal propagation

N —
1

SJv-Sn ~+r»(1 —e "')exp i g 8~, N» 2,
I 1

z 1
—lel' (6)

because I ril =1). Thus we find for the normalized in-

tensity I =ID,

(I i) 2 —
tl

—
ri

+c.c. , W» 2,

Solving these equations, we find that for I e I ( 1 and for a
large N, (Itv) grows in proportion to N, in general. Ac-
cordingly, we can derive the expression for the normalized
reflected-phonon intensity, I, in the limit of large N,

I lim (Itv )/N +c.c.(1 —q)(1 — ) (5)
N~ ao 1 —e

Equation (5) suggests that at frequencies satisfying e 1,
(Iv) grows as O(N ) with the system size, unless ri =1 (or

1) is satisfied simultaneously. This corresponds to a

Bragg peak in periodic SL's. Whether such a peak really
occurs in a random SL or not depends on the details of the
SL structure and will be discussed below. An important
observation is that the derivation of Eq. (5) for the
double-layer SL's is applicable also to the single-layer
SL's. The intensity in the latters is obtained from (5) by
putting d& dq~ 0 or d~2 d& 0.

The first model we shall consider more explicitly is the
double-layer random SL in which the thicknesses of the
first layers in both A and 8 blocks are the same, i.e.,
di di. In this case ai p~ and yt is independent of I.
Hence, we put yt y and also note that e rig (or g

S, -r»(1 —e'"'),

where N is the number of blocks, yjv 2k~d~ —=a&, and

8Jv 2(k~d~ +kidi )—=a (if the Nth block is A) or

yn 2k~de—=P~ and 8jv 2(k~d~+kqd2)—=b (if the Nth

block is 8). In these expressions, k ~
and k2 are the wave

numbers of phonons in the first and second layers, respec-
tively.

Now, the intensity of the reflected phonons is described

by I Sn I, so we introduce Itv defined by

I =-
I sn/r»I'

N-1
Itv i+ll —e"

I + (1 —e ")exp —i +8t
I l

(2)
XStv-~/r2~+c. c. , N» 2,

I, - I 1 —e'"' I'

The relevant quantity in a random system is the
ensemble-averaged intensity (Itv) rather than ln. In order
to calculate (Itv), we assume zero short-range correlations
in the sequence of blocks and define the following
ensemble-averaged quantities (I 1,2, . . . , N):

(e ' ')-e, (e '"')-g, (e ' ' "' &-&. (3)

Hence, from Eq. (2), we obtain the recursion relations

~N
—

1

(Itv)-(Itv i&+ (1 —rt) 1+(e—&)
1 —t.

In the particularly simple case in which 8 and 8 occur
with equal probabilities [i.e., P(A) =P(8) = —,', where
P(A) and P(8) are the probabilities for A and 8 blocks to
occur in a sequence], Eq. (6) reduces to

In 2(l —cosy) 2, (7)
1
—cos d

1 —2cos@cosd+cos 5
where 4 (a+b)/2 and 4 (a b—)/2 In. Fig. 2(a), ID
versus frequency is plotted for a (001)-AlAs/GaAs SL
with d~ d~ 17 A (A1As layers), d2 =42 A, and
d$ 20 A (GaAs layers). This choice of building blocks
is the same as that used by Merlin et al. for a Fibonacci
SL. Here, we note that apart from the prefactor
2(1 —cosy), Eq. (7) is identical to the x-ray diffraction in-

tensity derived by Hendricks and Teller for partially or-
dered layered systems based on a random sequence. The
intensity has sharp peaks as well as small bumps. It also
vanishes at frequencies satisfying the resonance conditions
cosy 1 and cosh + 1. The former equation is satisfied
at frequencies v nx1. 17 THz (n is an integer) —at these
frequencies the first layers become half-wave layers. The
latter equations are satisfied at v n &0.757 THz.

The most striking feature in Fig. 2(a) is the sharp peak
existing at 1.47 THz. This frequency [satisfying e= 1 in

Eq. (6)] is very close to 1.48 and 1.46 THz for which the
fifth- and third-order Bragg reflections occur in periodic
SL's consisting of pure A and pure 8 blocks, respectively.
We have verified that the TA phonon dispersion relations
in the periodic SL's consisting of only A blocks and that of
only 8 blocks have a common gap region on either side of
1.47 THz. Therefore, in these systems the Saxon-Hutner
theorem9 is applicable at a narrow frequency range
around 1.47 THz, that is, any frequency region which is a
spectral gap for both a pure A-type SL and a pure 8-type
SL is necessarily a gap for any mixed SL of A- and 8-type
blocks. This is the physical reason why we find a very nar-
row, sharp peak at this frequency.

From the ensemble-averaged intensity derived above,
we can expect that even in random SL's definite structures
should be observed in the phonon transmission (or
reflection) spectra. In Fig. 2(b), the frequency depen-
dence of the transmission rate calculated numerically is
shown for the TA mode. This figure displays an average
over the transmissions obtained from ten randomly gen-
erated sequences of A and 8 blocks used in Fig. 2(a) with
P(A) P(B) —,

' . The number of blocks used is equal to
100 in each sequence. As expected, the transmission rate
reveals very distinctive structures which are in good agree-
ment with the analytical result of Fig. 2(a). Transmission
dips are quite significant at frequencies for which ID ex-
hibits peaks, while the transmission is almost complete
when ID vanishes. Small deviations from the perfect
transmission at frequencies satisfying ID-0 is O(r2~).
Note that the dip at 1.47 THz is quite sharp with small
fluctuations even for the small number of blocks (100) we
use.
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FIG. 2. (a) Intensity ID vs frequency in the double-layer ran-

dom SL composed of (001)-oriented AlAs and GaAs layers (see
the text). The phonon mode is TA. (b) Frequency dependence
of the ensemble-averaged TA-phonon transmission in the
double-layer SL, with the same parameters as in (a). The total
number of blocks is one hundred and the results for ten indepen-
dent random sequences of A and B blocks have been averaged.
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The second model we shall consider is the single-layer
random SL. As we have noted above, the expression for
the intensity I=Is is obtained, for instance, by putting
dz =df =0, k~ =k~, kz=ks, d~ =d~, and dz =ds (see
Fig. 1). In this case I —e = (1 —ri) + (1 —g) holds and we
find from Eq. (5),

Z0
CO

CO—05
(D

CC

For a particularly simple case, with P(A) P(B) = —,',
Eq. (8) reduces to

(cosP —cos8)Is=
I —2cospcosB+cos 8

where p and b are defined in terms of a =2k~d~ and
p=2ksds as p=(a+p)/2 and b=(a —p)/2. It is easily
seen that Is ~ 1.

Equation (9) is plotted in Fig. 3(a) against the phonon
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FIG. 3. (a) Intensity Is vs frequency in the single-layer ran-
dom SL composed of (001)-oriented AlAs (A) and GaAs (B)
layers with equal thickness, i.e., 34 A. The phonon mode is TA.
(b) Frequency dependence of the ensemble-averaged TA-
phonon transmission in the single-layer SL, with the same pa-
rameters as in (a). The total number of blocks is 200 and the
results for ten independent random sequences of A and 8 blocks
have been averaged. (c) Same as (b) but the total number of
blocks in each sequence is 1000.
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frequency of the TA mode for dz dtt 34k We find a
regular oscillation of the ensemble averaged intensity, that
is, the maxima (Ip) „-1occur periodically at frequen-
cies v-nx0. 266 THz which are derived from cos &=1
and coincide with the ones at which the Bragg reflections
occur in the periodic SL consisting of alternating A and 8
blocks. The minima (Ig);„=0occur at v nx0. 582
THz and v-nx0. 492 THz. These frequencies are de-
rived from the resonance condition cosp cosh, or more
explicitly, cosa 1 and cosP 1, respectively. Note that
for the Bragg reflection in periodic SL's, the normalized
intensity I becomes infinity as O(N) (N ~), while in
this random SL it is always O(N ) and bounded by unity.
Accordingly, there exists no Bragg reflection in the
single-layer random SL we consider.

In Fig. 3(b) we have displayed a numerical result for
the ensemble-averaged transmission in the single-layer SL
with the same parameters used for Fig. 3(a). Here, ten
diferent random sequences of 200 A and 8 blocks are
generated with P(A) P(B) & . Besides the fluctua-
tions of the transmission due to the finite size of the struc-
ture considered, the overall features are again in good
agreement with the prediction of Fig. 3(a). Small devia-
tions of the maximum transmission from unity are also
O(r2~ ). If we increase the number of blocks, the
transmission dips become more significant and only those
phonons satisfying the resonance condition can get
through the SL's. This can be explicitly seen in Fig. 3(c),
where the ensemble-averaged transmission of phonons
through one thousand blocks is plotted. Thus, comparing
with the periodic and nonperiodic (but based on a deter-
ministic sequence) SL's studied hitherto, the single-layer
random SL's have a quite eff'ective filtering action on pho-
nons over wide ranges of frequencies.

To conclude, we have investigated the transmission of
acoustic phonons in randomly stacked multilayered sys-
tems consisting of two diA'erent building blocks. The cal-
culation of the ensemble-averaged structure factor or the
intensity of reflected phonons exhibits a very distinctive

frequency dependence for both types of systems (double
or single layered). Numerical calculations of the phonon
transmission rate reveal quite well the characteristic
features predicted for the infinite systems.

Here, we remark that the transmission rate calculated
for any given random SL sample (without any ensemble
averaging) shows large fluctuations. These fluctuations
are, however, smeared out considerably if we average the
transmission over a finite interval of frequency, and the re-
sult looks very similar to the ensemble-averaged one. The
currently available phonon detectors do not possess the
frequency resolution enough to resolve the fine structures
in the predicted transmission. It is, therefore, quite prob-
able that phonon spectroscopy and phonon imaging exper-
iments that measure the transmission of high-frequency
phonons in a random SL observe structures very similar to
the ones we obtained by ensemble averaging.

In the present paper, we have considered SL's based on
random sequences of blocks, i.e., without any correlations.
An extension of this work is obtained by introducing
correlations among ¹onsecutive blocks. For instance,
the random version of the Fibonacci SL grown according
to a three-state Markov process' has already been stud-
ied by Merlin et al. using Raman scattering. The phonon
spectra in the SL's based on the more general "N-state"
Markov process is also interesting in regard to "speck-
les"" of phonons due to random fluctuations in a struc-
ture. These subjects are currently under consideration
and will be discussed elsewhere.
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