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Quantized transmission of a saddle-point constriction

15 APRIL 1990-I

M. Buttiker
IBM Thomas J. Watson Research Center, Yorkto~n Heights, New York 10598

(Received 8 November 1989)

Conductance quantization in the absence and in the presence of a magnetic field is discussed
for a split-gate constriction with a local potential at the bottleneck forming a saddle. Simple cri-
teria for the occurrence of conductance steps and the accuracy of quantization are given in terms
of the curvatures of the saddle.

This paper presents a contribution to the ongoing
theoretical discussion of the quantized conductance steps
discovered by van Wees et al. ' and Wharam et al. in

split-gate constrictions of a two-dimensional electron gas.
The literature ' treats this problem by considering a
hard-wall potential. In some papers the width of the con-
duction channel is also assumed to change abruptly, but in
other papers' ' it is assumed to be a smooth function.
Since constrictions in these experiments are electrostati-
cally induced with a pair of split gates, the potential is a
smooth function (without hard walls or sharp corners).
The bottleneck of the constriction, therefore, forms a sad-
dle. Thus the transmission and reflection at a saddle is a
necessary part of every calculation that attempts to make
contact with these experiments. In addition, the quan-
tum-mechanical solution of this scattering problem is sim-
ple'7's and permits physical insight. A complete discus-
sion of constriction conductances requires the considera-
tion of carrier transmission from one equilibrium electron
reservoir to another. However, if the transmission is glo-
bally adiabatic, ' '6 the calculation of the conductance
due to the local scattering at the saddle alone is accurate
up to exponentially small corrections. 's

Near the bottleneck of the constriction the electrostatic
potential can be expanded, and in terms of appropriate
coordinates x and y is given by

V(x,y) Vo ——,
' mro„x + 2 mroyy

Here, Vo is the electrostatic potential at the saddle, and
the curvatures of the potential are expressed in terms of
the frequencies ro„and ro~. Now we neglect higher-order
terms in x and y and discuss the conductance steps due to
scattering at this quadratic potential. Let us first study
the case of zero magnetic field. The total energy is given
by the potential Eq. (1) supplemented by a kinetic energy

p /2m. The Hamiltonian is separable into a transverse
wave function associated with energies h ro~ (n + 2 ),
n 0, 1, 2, 3,. . . , and a wave function for motion along x
in an effective potential Vo+hro~(n+ —,

' ) —I/2m'„x .
This effective potential can be viewed as the band bottom
of the nth quantum channel (subband) in the region of the
saddle point. ' In the absence of quantum tunneling the
channels with threshold energy

E„Vo+hro~(n+ —,
' ) (2)

below the Fermi energy are open, and the channels with

threshold energy E„above the Fermi energy are closed.
Quantum mechanically transmission and reflection at the
saddle allows for channels which are neither completely
open nor completely closed, but which permit transmis-
sion with a probability T „. Here, the index n refers to
the incident channel, and the index m refers to the out-
going channel. The transmission probabilities for this
simple case are calculated in Ref. 17 and can be expressed
with the help of the variable

o„2[E—h to~ (n+ —,
' ) —Vo]/h to„,

in the sitnple form,

1
Tmn -mn

] + n

(3)

(4)

Only transmission probabilities for which the incident
channel and the out-going channel are the same are
nonzero. Because of the quadratic form of the potential
there is no channel mixing. The transmission probabilities
T„ for n 0, 1, 2, 3, 4, . . . , for the case to~/ro„3 are
shown in Fig. 1 as a function of (E—Vo)/hro„. For
s„«0 the transmission probability is exponentially small,
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FIG. 1. Single-channel transmission probabilities T, and the
total transmission probability (conductance) T P, T„as a
function of (E—Vo)/hco, for a ratio of to~/u 3. The opening
of successive quantum channels over narrow energy intervals
leads to the quantization of the conductance.
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(s)

The total transmission probability T (or the two-terminal
conductance) shows, therefore, a series of well-developed
steps if the transition region for the opening of a quantum
channel is small compared to the channel separation.
Since the width of the transition region is t'tro„and the
separation of quantum channels at the saddle is deter-
mined by 6 oi~, well-pronounced steps occur if

COy ~ COx. (6)

Figure 2 shows a series of conductance traces with ratios
of co~/ro„ increased in increments of 0.25 in the interval
from 0 to 5. It is seen that already for ratios which are
moderately larger than 1 the conductance shows consider-
able structure, and if the ratio approaches the maximum
value shown the plateaus are entirely flat. The quality of
the quantization can best be discussed by considering the
energy derivative of the total transmission probability (the
conductance). From Eq. (3) we find

dT "g tr 1

n-o 2&oix cosh'(m„/2)
'

which for co~ && co„ is minimal at the energies,

(7)

T„„=exp(m„). For s„»0 the transmission probability
is close to one, T„„=1 —exp( —za„). The transition from
zero transmission probability to a transmission probability
close to one occurs near e„=0, i.e., in the neighborhood of
the classical threshold energy E„given by Eq. (2). The
size of the energy interval needed for the transition is
determined by hco„. The conductance, in the case that we
deal with transmission from one equilibrium electron
reservoir to another equilibrium reservoir, is determined
by the sum of all transmission probabilities, T =P „T „,
and is given by

2

T.

accurate up to corrections of the order (e ' ') 2. Thus
for large ratios co~/ro„ the slope at the center of the pla-
teaus is exponentially small. The maximum slope at the
center of a conductance step, i.e., for an energy E E„, is
tr/2hro, . For oi~ && oi, the quantized value G (e /h)n is

approached up to exponentially small corrections of the
order of e

Next we investigate the constriction resistance in a
magnetic field 8 (perpendicular to the x and y plane).
Cyclotron motion with frequency ro,

~
e8/mc

~ gives rise
to a new energy scale which affects the transmission be-
havior. For the saddle-point potential considered here the
single-channel transmission probability has been calculat-
ed by Fertig and Halperin. ' With the help of the
definition f2 oi, +oi~ —oi„ the energies that govern
transmission and reflection at the saddle in a magnetic
field are'

[(ft 4+4oi 2 at 2) I/2 fi 2] I/21
x y (i0)

and

[(g4+4m2m2) I/2+ fi 2] I/2
2 x y

The transmission probability is a function of

E —E2(n+ 2 ) —Vo
(i2)

and is maximal at the energies given by Eq. (2), i.e., at the
classical threshold of the quantum channel. The nearly
Aat portions of the total transmission probability are cen-
tered around the energies determined by Eq. (8). Evalu-
ated at the center of the plateau, Eq. (7) yields a slope,

T
(4 /g ) 2EQly/Qlz

E„=-Vo+ I'2 co~(n+ 1), (8) and is, as in the absence of a field, given by

1" 1+exp( —mrs„)
' (i3)
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FIG. 2. Constriction conductance as a function of
(E Vo)/fico, for differing —saddle potentials characterized by a
ratio co~/ro for ratios in an interval from 0 to 5 in increments of
0.25.

(i4)El = &oi.nil/2', = (m/2)oi. oiyI/t,

where we have used the magnetic length lit hc/~e8
~

and

E2 ting . (is)
In the limit where Eqs. (14) and (15) are applicable, a
simple interpretation is again possible. In a high magnetic
field carriers execute rapid cyclotron motion around a
guiding center with energy EG E —hco, (n+ —,

' ), which
follows the equipotential contours of the potential Eq. (1).
In the absence of tunneling the trajectories of the states in
a high magnetic field are determined by EG V(x,y).
For E~ (Vo this describes a trajectory which is repelled

Therefore, in the presence of a field E2 takes the place of
pro~ and E~ plays the role hoi, /2 plays at zero field.
Again, there is no channel mixing. In the limit of zero ap-
plied field these formulas reduce to the results presented
above. At high fields, when co, exceeds co„and oi~, Eqs.
(10) and (11) simplify considerably. The relevant ener-
gies are
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Tmn ~mn (i7)"
1+exp[ tt(to—y/to„) (y„/ltt ) '] '

if s„&0. Since (x„+~

—x„)/ltt 2', /to„&& 1, it is at most
one of the transmission probabilities which is between
zero and one (up to exponentially small corrections). All
the high-magnetic-field states, except possibly one, are ei-
ther completely reflected at the saddle or completely
transmitted. ' The transition from complete reflection to
complete transmission occurs over a very narrow energy
interval = (m/2)to„to~ltt && hto, . At high enough mag-
netic fields, conductance steps always occur regardless of
the ratio of to„and to~. The slope at the center of the pla-
teaus in high magnetic fields is determined by

XNcdT
(2 /E )

—xE2/E ) 2XClPc /CtJx CPyeE
N&Ny

Therefore, at high fields the plateaus are flat with high ac-
curacy.

The transition from the zero-magnetic-field case to the
high-magnetic-field case is determined by the general
equations (10) and (11). The conductance shows a
marked structure, if E2&E~. This implies 0 &4to„co~
or

Nc+Ny ~ Nz . (19)

Clearly, there are saddles which for to, 0 exhibit little
structure, but which for moderate fields show very sharp
conductance steps. Such an example is shown in Fig. 3.
For to~ to„ the zero-field conductance shows only an in-
dication of a steplike structure. Already, for co, to„ the
plateaus are very flat and for even higher fields the step-
like structure is well described by Eqs. (14)-(18).

The local-scattering problem treated here is also a solu-
tion of the global-transmission problem, if every carrier
transmitted at the saddle leaves the constriction in the for-
ward direction and if every carrier reflected at the saddle
leaves the constriction in the backward direction. This
can be ensured if the saddle potential is smoothly connect-
ed to hornlike regions which widen in an adiabatic
fashion. The adiabatic widening of the constriction also
guarantees that channels reaching the bottleneck are com-
pletely filled. 'i ' The fact that nonequilibrium popula-
tions of differing channels produce deviations from quant-
ization has been emphasized in Ref. 21 in connection with
the quantum Hall effect and has been highlighted in a
number of ex riments. Similarly, in experiments on
constrictions' 23 such nonequilibrium effects probably
account for major deviations from quantization. In the

by the saddle. The closest approach of such a trajectory
to the saddle point is determined by EG V(x„,0). For
EG & Vo the trajectory passes through the saddle. The
closest approach of such a trajectory to the saddle point is
determined by EG V(0,y„). As has been pointed out in

Ref. 18, the transmission probabilities in terms of x„or y„
are in the high-magnetic-field limit

1
"

I+exp[tr(to„/toy) (x, /ltt ) '] '

if e„&0,and are
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FIG. 3. Constriction conductance in a magnetic field as a
function of (E Vo)/@to„. —The strength of the magnetic field is

determined by the cyclotron frequency co, . As an example a
saddle with to~/to, 1 is treated which shows poor quantization
at zero field. I,/to„ is increased in increments of 0.25 from 0 to
5.

model discussed above the conductance steps are approxi-
mately equally spaced as functions of gate voltage if the
saddle-point energy Vo depends linearly on the gate volt-
age and if the frequencies co„and to~ do not (strongly) de-
pend on the gate voltage. The saddle-point potential dis-
cussed here is likely to be of relevance if only a few chan-
nels are transmitted. As the point contact widens and the
number of transmitted channels increases, the potential
can be expected to be increasingly flat in the center in the
transverse direction, N~ 0. In this limit, for small ap-
plied gate voltages the model calculations' ' that treat
the constriction in a hard-wall approximation might be-
come more suitable. The important question of the pre-
cise shape of the potential in such a constriction has re-
ceived little attention so far. Reference 24 estimates the
magnitudes of impurity potentials. Reference 25 studies
the self-consistent potential in the presence of wall imper-
fections and demonstrates that screening produces a
smooth potential. A self-consistent calculation26 of the
potential near the tip of a tunneling microscope, viewed as
a constriction on an atomic scale, finds that the self-
consistent potential has the form of a saddle. An impor-
tant aspect we have neglected is that due to the electro-
static fields, the motion perpendicular to the two-
dimensional electron gas is affected and gives rise to
scattering.

In the simple model discussed above the scattering at
the saddle preserves the quantum number of the channel.
This might generate the impression that the absence of
channel mixing is also a necessary condition for the quant-
ization. This is not the case, as seen from a number of
works, and from the following simple argument. '

Since the conductance is only determined by the total
transmission probability T and since T =Tr(t ~t ) where
t stands for the matrix of transmission amplitudes, the
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conductance is left invariant if t is multiplied by arbitrary
unitary matrices U~ and Uz. If t is a diagonal matrix that
exhibits quantization, then U~ tU2 is a transmission ma-
trix that is mixing channels but gives rise to the same con-
ductance as t. Finally, a simple estimate of the accuracy
of the local saddle-point approximation discussed here can
be obtained by comparing this approximation with a prob-
lem which is exactly solvable on a global scale (for a more
thorough discussion see Ref. 16). The potential

V(x,y) =(Vo/cosh ax)+ —,
'

mco~y2

with a —, mro„/Vo describes transmission from reservoir
to reservoir if Vp» hen~. But since co„=co~, the parame-
ter a is very small and the transmission probability of the
hyperbolic cosine potential is given by Eq. (4) to within an
accuracy which is far better than the exponentially small
terms retained in Eq. (9) to estimate the slope of the pla-
teaus. The discussion of the saddle-point transmission
presented in this paper is thus valuable not only because it
is simple but might also contain, from a practical point of
view, many of the essential features needed for compar-
ison with experiments.
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