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A new approach to the construction of first-principles pseudopotentials is described. The
method allows transferability to be improved systematically while holding the cutoff radius fixed,
even for large cutoff radii. Novel features are that the pseudopotential itself becomes charge-
state dependent, the usual norm-conservation constraint does not apply, and a generalized eigen-

problem is introduced. The potentials have a separable form well suited for plane-wave solid-state
calculations, and show promise for application to first-row and transition-metal systems.

The development of first-principles norm-conserving
pseudopotentials by Hamann, Schliiter, and Chiang
(HSC) and others 3 has paved the way to accurate calcu-
lations of solid-state properties within the local-density
approximation using plane-wave basis functions. 4 How-
ever, the utility of this approach to systems containing
highly localized valence orbitals (e.g., for first-row and
transition-metal atoms) has been limited, because of the
difficulty of representing the pseudo-wave-functions in a
plane-wave basis. The basis-set size can be reduced to
some extent by constructions which insure optimal
smoothness of the potential or wave function and by
moving the cutoff' radius outward. However, the norm-
conserving condition' requires that the total pseudocharge
inside the core match that of the all-electron (AE) wave
function. Thus for many important cases, e.g., 0 2p or Ni
3d orbitals, it has proven impossible to construct a
pseudo-wave-function which is much smoother than the
AE one.

These difficulties have been compensated to some extent
by the development of iterative methods, which can han-
dle very large plane-wave basis sets. s These methods are
most efficient if the nonlocal part of the pseudopotential
can be cast in a separable form. Some workers have taken
the approach of expanding the "semilocal" (local in the
radial variable only) HSC-type potential approximately
as a sum of separable terms, ' while Kleinman and By-
lander" (KB) generate a fully nonlocal separable pseudo-
potential based on a given semilocal one.

Here, a new approach to the construction of first-
principles pseudopotentials is described, in which a fully
nonlocal pseudopotential is generated directly. It has the
following desirable properties: (i) It takes the form of a
sum of a few separable terms. (ii) It becomes local and
vanishes outside the core. (iii) The scattering properties

and their energy derivatives are, by construction, correct
at several energies spanning the range of occupied states,
and the transferability can be systematically improved by
increasing the number of such energies. (iv) The norm-
conserving constraint is removed so that the pseudo-
wave-function can be constructed in such a way as to op-
timize smoothness. (v) The pseudopotential itself be-
comes involved in the self-consistent screening process,
thereby improving transferability with respect to changes
in charge configuration. Together, these features allow
the cutoff radius to be increased without sacrificing trans-
ferability, even for "problem" cases such as 2p and d or-
bitals.

The construction of the new pseudopotentials will be
described in three stages. In the first stage, I show that it
is possible to arrive at a fully nonlocal KB-type pseudo-
potential by working with the wave function directly,
bypassing the construction of a semilocal potential entire-
ly. Moreover, this can be done at an arbitrary energy a;,
as suggested by Hamann. ' As usual, an AE calculation
is carried out on a free atom in some reference config-
uration, leading to a screened potential VAF(r). Cutoff
radii r, t and r,' are chosen for the wave functions and lo-
cal pseudopotential, respectively, and a diagnostic radius
R is chosen large enough that all pseudo- and AE quanti-
ties agree at and beyond R. Some algorithm is used to
generate a smooth local potential V~ (r) which ap-
proaches VAE(r) beyond r,' . Now consider an AE wave
function Vt;(r) of definite angular momentum lm, which is

a solution of the Schrodinger equation, regular at the ori-
gin, at an arbitrary energy e;:

(T+ VAE(r)] Vf;(r) =a; Vr;(r) .

Here i is a composite index, i je;Imj, T is the kinetic-
energy operator —

2 &, and VAE is the original reference
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screened potential, i.e., y; is not determined self-con-
sistently. (Atomic units are used throughout. ) Despite the
fact that y; is, in general, non-normalizable, I adopt a
bracket notation

(T+ VAF —e;) I qr;) =0

as a stand-in for the previous equation. Quantities such as

(y; I y;) are ill-defined, but I shall make use of the special
notation (y; I y, )R to denote the integral of y; (r)yr, (r)
inside the sphere of radius R.

Now a pseudo-wave-function p; is constructed, subject
to the constraints that it join smoothly to y; at r,t and
that it satisfy the norm-conserving property (p; I &t;)jt

=(y;
I y;)R. Since the wave function

Iz)=(e —T —vi ) le;&

is local (it vanishes at and beyond R where VAp = V~~ and

y;), the nonlocal pseudopotential operator

Iz; x;I
(4)

(z; I ~, &

is well defined. It is straightforward to verify that
I p;) is

an eigenvector of T+ V~~+ VNt, and that the scattering
properties and their energy derivatives are correct at e; in
the usual way (see below).

The second stage of the new pseudopotential scheme is
arrived at by generalizing the previous construction to the
case of two or more energies e; at which the scattering
properties will be correct, as follows. For a given angular
momentum I, some number (usually between one and
three) of energies which span the energy of occupied
states of a target (e.g. , bulk crystal) calculation are
chosen. Now the set of pseudo-wave-functions lp;) are
constructed from the AE wave functions I y;) as before,
except that they should satisfy the generalized norm-
conserving condition Q;j 0, where

Q;, =(w
I yj&jt

—
(&| I e, &tt . (s)

Forming the matrix 8;, =(p; lg, ) and defining a set of lo-
cal wave functions

lu, & =X(8-')„lx, &, (6)
J

which are dual to the I p;), the nonlocal pseudopotential
operator can be chosen as

vNL =28 j I P &(/jj I

8;j —Bj; (e; e, )—Q;j, (io)

which vanishes when Q;j 0.
Again one may verify that (d lnu/dr)R and its energy

derivative match the corresponding AE quantities at each
e;. Thus, by increasing the number of energies e; at which
the construction is done, the scattering properties of the
pseudopotential can be made to reproduce those of the AE
potential with arbitrary accuracy over the energy range of
interest. '

One could stop here, and still have a useful scheme.
However, I now show that the constraint Q;j =0 is un-
necessary, if one is willing to adopt a generalized eigenval-
ue formalism in which an overlap operator appears. In
this third stage, I define a nonlocal overlap operator

s - I+&g;, IP;&(Pj I,
l,J

and redefine the nonlocal potential operator to be

vNt. =ED j I P &(Pj I,
where

DIJ 8lj+ejglj

and Q;j is as given in Eq. (5). Note that with these
definitions,

(Qi I ~ I Aj)R =(pi
I Yj)R . (l4)

Then I p;) is easily shown to be a solution of the general-
ized eigenvalue problem (H —e;S) Ip;)=0. Now it fol-
lows from Eqs. (5), (10), and (13) that Q and D are Her-
mitian matrices, even though 8 is not. Thus H and 5 are
Hermitian operators. Moreover, it follows from the iden-
tity

(&t. I
T+ vi~+ VNL —e~ I &t.)R

1 (ls)

The expression for Bj; is identical except that ej is re-
placed by e;, and the derivative d /dr acts to the left.
After one integration by parts on each expression,

8 j 8j'— (ej e—)(e I e, )tt

+ —,
' [u;*(R)u,'(R) —u *(R)u,(R)) . (9)

A similar expression can be derived for the AE wave func-
tions; subtracting this from (9), and noting that the
pseudo- and AE wave functions and their derivatives
match at R, one obtains

Then it can easily be shown that
I p;& satisfies the secular

equation (H —e;) I p;) =0, where H =T+ V~ + VNL.
I now show that the matrix 8;J, and therefore the opera-

tor VNL, are Hermitian when Q;, =0. Taking u;(r)/r to
be the radial wave function associated with &t;(r),

r

1 1'
8; = dru;*(r) e +—

40 2 dr

i(i+ i) —V) (r) u, (r).
2r

that

——u inu, (r) =(&t; Iy;&R+Q;;=(y; I y;&~,
1 1 1
2 18 1r

so that the matching of the AE and pseudologarithmic
derivatives follows in the usual way.

The relaxation of the constraint Q;j =0 means that each
y; can be made into a pseudo-wave-function p; indepen-
dently, with the only constraint being the matching of
p(r) to itr(r) at the cutoff radius. Thus it becomes possible
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which is automatic in the usual methods of solution. Tak-
en together with Eq. (14), Eq. (17) ensures that the pseu-
dosolution has the same amplitude as the AE one at and
beyond R. To make up the charge deficit, the valence
charge density is defined to be

n, , (r) gp„k(r)p„k(r)+gp;~QJ;(r),
n, k l,J

where

p J -Z &p I &k.k&&e.k I p, &, (19)
n, k

Q;, (r) y; (r)y, (r) p; (r)p, (—r).
It follows from Eqs. (11) and (17) that fd rn, , (r) N, ,

exactly, where N, , is the number of valence electrons in

(20)

to choose the cutoff radius to be well beyond the radial
wave f-unction maximum, as illustrated in Fig. l. A
consequence of this freedom is that a generalized eigen-
value problem has to be solved in the target solid-state
calculation. However, within iterative approaches to the
eigenvector problem, the time-dominant step is the multi-
plication of H —aS by a trial vector p„k. In this case the
operation count need hardly increase at all, because the
identical form of the nonlocal parts of S and H allows
them to be consolidated into a single operator. Incidental-
ly, the current pseudopotential bears a formal resem-
blance to the original Phillips-Kleinman pseudopoten-
tial. '" The latter can be cast in the form of Eqs. (11) and
(12) (with the

~ p;& being just the core orbitals), but does
not have an adjustable cutoff radius.

In a self-consistent calculation, the "deficit" of valence
charge in the core region associated with a pseudo-wave-
function such as that of Fig. 1 will have to be restored.
The solutions of the generalized eigenvalue problem
should be normalized according to

the unit cell.
In order to make a variational theory, the total energy

E...-Z&y.k I

'T+ V,""+ED,j''"
I P;&&P, I I ~.k&

n, k V

+E [n,, l +E„,[n,, +n, j (2i)

is to be minimized subject to the constraint (17). Here n,
is a frozen-core density included to improve transferabili-
ty. " Defining

VH,.(r) -VH""(r)+ V,'."'"'(r),
D~J""' d r VH„,(r)Q&(r), (23)

the secular equation becomes

(T+ V)~+ VNL ankS) I ink& 0 (24)

with VNL and S given by Eqs. (11)-(13), V~~=VI""
+ VH„„and D; D""+D""' The Vj"" and D "must be
obtained by unscreening the V~ and D;~ of the generating
atomic configuration in the usual way. Expressions for
the Hellmann-Feynman forces and stresses will be given
elsewhere. The dependence of D;, upon n, , through VH„,
implies that the pseudopotential itself must be updated as
part of the self-consistent screening process.

In the limit that enough energies s; are chosen to repro-
duce the scattering properties over the entire energy range
of occupied states, n,, approaches the exact AE valence
density. Thus there is reason to expect that the pseudopo-
tential calculation will match the AE one step for step
during the self-consistent screening process. In practice, it
will generally be necessary to replace the charge densities
n, (r) (Ref. 15) and Q;, (r) by pseudo-versions below some
relatively small cutoff radius ro determined by the ability
to represent the charge density in the solid-state calcula-
tion.

Table I shows some transferability tests of the new
pseudopotentials for the oxygen atom. The pseudopoten-
tial was generated in the ground s p configuration using
two reference energies e~ =e, and e2=s~ for each of
i 0 and i 1, and r =0.6 a.u. , r) 1.0 a.u. , and
r„r,~=1.S a.u. (The pseudoization was done by a
Kerker-like procedure so that P matches y exactly at and

TABLE I. Valence s and p levels, and excitation energy AEt
from the ground state, for the AE case and for pseudopotentials
generated in the ground (s'p') state using HSC and present
methods. Units are in Ry.

State

lp5

p
~E tot

AE

—1.7662
—0.6981

1.0658

HSC

—1.7649
—0.6982

1.0651

Present

—1.7653
—0.6979

1.0654

1.0
r (a.u. )

I

2.0

FiG. I. Oxygen 2p radial wave function (solid line), and cor-
responding pseudo-wave-functions generated using HSC (dotted
line) and current (dashed line) methods.

Op 6

2p 3

p
~Etot

p
~E tot

—
1 ~ 7987

—0.7262
2.1361

—2.8738
—1.7909

1.2066

—1.7957
—0.7261

2.1331

—2.8737
—1.7904

1.2065

—1.7969
—0.7256

2.1348

—2.8753
—1.7928

1.2075
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beyond r, .) Also shown are the results from a high-
quality HSC pseudopotential using parameters (r„0.5
a.u. , r,~ -0.35 a.u. , k-3.5) very similar to those suggest-
ed by Bachelet, Hamann, and Schliiter. ' The p pseudo-
wave-functions are those shown in Fig. 1. It is clear from
Table I that, in spite of the radically larger cutoff' radii
used in the new method, the overall quality of the two
pseudopotentials is very similar. (Tests of logarithmic
derivatives versus energy also indicate comparable energy
transferability. ) In fact, a pseudopotential of similar
quality can be formed using r„r,~ 2.5 a.u. if three
reference energies are used. However, such a large r, may

be precluded by overlap of the core regions of neighboring
atoms. (As a benchmark, the SiOq midbond distance is
1.5 a.u. ; compare Fig. 1.)

In conclusion, it is hoped that the present method will
allow pseudopotentials to be applied to first-row atom and
transition-metal systems using modest plane-wave cutoN's
for the first time.
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