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Equations of state of alkali hydrides at high pressures
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The equations of state of the alkali hydrides LiH, NaH, and KH are calculated as a function
of pressure for the B1 (NaCl) and B2 (CsCl) structures using the pseudopotential and local-
density approximations. Contributions of the lattice vibrations to the free energy are treated
in the quasiharmonic approximation. The results are in good agreement with experiment, in
particular when the vibrational effects are included.

I. INTRODUCTION

The structural phase transition of NaH and KH
from the low-pressure rocksalt (B1l) structure to
the high-pressure cesium chloride (B2) structure
has been observed in diamond-anvil-cell high-pressure
experiments.!>2 However, this transition has not been
observed3~% for LiH and it has been speculated, using
an ionic radii argument, that it may not occur.®

Due to the low atomic mass of hydrogen the phonon
frequencies in the alkali hydrides are high, and the con-
tribution of the ionic zero-point motion to the enthalpy
of the crystal is not negligible. These crystals, therefore,
provide an interesting test case for evaluating the influ-
ence of the ionic vibration in the equation of state and
structural phase transitions when light atoms are present.

In this paper pseudopotential local-density calcula-
tions for the equation of state and structural phase tran-
sition of LiH, NaH, and KH are presented. The vibra-
tional effects are included in the quasiharmonic aprox-
imation using characteristic phonon frequencies calcu-
lated with a frozen-phonon technique. The inclusion of
the zero-point-motion free energy improves the agree-
ment between the calculated and measured equations of
state. Good agreement with experiment is obtained for
the pressure of the rocksalt-to-cesium chloride structural
phase transition in NaH and KH. The calculations indi-
cate that the transition in LiH will occur only at very
high pressures, in the range of 450 to 500 GPa.

II. THEORY

The motion of the electrons and ions can be decou-
pled with the Born-Oppenheimer approximation.” For a
fixed ionic configuration, the total energy of the crys-
tal is calculated with the pseudopotential local-density
aproximation with a plane-wave basis set.? A nonlocal
pseudopotential of the form proposed by Kerker® and in-
cluding a correction!? for the nonlinearity of the exchange
and correlation was used for the alkali ions, while the 1/r
Coulomb potential was used for hydrogen. The Perdew-
Zunger parametrization!! of the Ceperley-Adler!? values
for the exchange and correlation energy of the homo-
geneous electron gas were used in the calculations. A
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kinetic energy cutoff of 36 Ry was used in the plane-
wave expansion of the wave functions, and the Brillouin-
zone integrations were performed with 10 and 20 special
k points, respectively, for the rocksalt and the cesium
chloride structures.

The clamped-nucleus (CN) aproximation is obtained
when the ionic motion is neglected, that is, when we as-
sume that the atoms stay at the minimum-energy con-
figuration. The clamped-nucleus aproximation is valid
in the limit of very large nuclear masses M, when the
expansion parameter of the Born-Oppenheimer theory,
A = (m./M)Y4  is small. For hydrogen A = 0.153, and
the relevant energy scale for vibrational effects, A? x (27.2
eV)=0.64 eV, is only 1 order of magnitude smaller than
the energy scale relevant for chemical bonding, and is
therefore far from negligible. For example, in the hydro-
gen molecule, the vibrational quantum is hw = 0.54 eV
while the binding energy is 4.47 eV, and in LiH the en-
thalpy of formation is 0.98 eV while the energy of the
transversal-optical phonon is hwto = 0.07 eV.

In the harmonic approximation of lattice dynamics,
the interatomic potential is quadratic, and therefore the
force constants and phonon frequencies are independent
of volume.” In the harmonic crystal the zero-point motion
adds a constant, independent of volume, to the enthalpy
of the crystal and therefore does not modify the equation
of state p(V).13 In the quasiharmonic (QH) approxima-
tion, the interatomic potentials are anharmonic, but the
force constants and phonon frequencies are determined
from the second derivatives of the potential with respect
to atomic displacements at constant volume. This pro-
cedure introduces the anharmonic dependence of phonon
frequencies, vqn (V) = 2nwgn (V) on the volume and ne-
glects only the smaller phonon-phonon coupling terms.
The zero-point-motion (ZPM) contribution to the energy

Ezpm(V) = Y hwan(V)
q,n
depends on the volume, and the equation of state
calculated in the quasiharmonic aproximation, E(V)
~ Eo(V) + Ezpm(V), will be different from the equation
of state calculated in the clamped-nucleus aproximation,
E(V) =~ Eo(V).
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The calculation of the full phonon spectrum as a
function of volume is computationally too demanding.
Therefore, a simplified model will be used here to cal-
culate Ezpm(V). The simplest phonon frequency that
can be calculated with a frozen-phonon technique is the
transverse-optical (TO) phonon at the center of the Bril-
louin zone. This is, in general, the lowest frequency op-
tical phonon and therefore we can assume that

Ezpm(V) > 3N 3 hwro, (1)
where N is the number of unit cells in the crystal. This
corresponds to using an Einstein model for the optical
branch (without the transversal-longitudinal splitting)
and neglecting the acoustic phonon modes. The inspec-
tion of the phonon density of states for LiH shows that
the acoustic branches extend almost up to the TO fre-
quency, and that the longitudinal-transversal splitting is
very large.!*15 The result is that the TO phonon is an
average frequency for LiH, and

Esz(V) ~ GN%fleo, (2)

will be a reasonable approximation. For NaH the acous-
tical branches are flatter,!> and the zero-point-motion
energy will be between the values of Eqs. (1) and (2). Al-
though there is no experimental data on the phonon den-
sity of states for KH, it should resemble the one for NaH,
and its zero-point-motion energy would still be bracketed
by Eqgs. (1) and (2).

The total energy in the clamped-nucleus aproximation
of the alkali hydrides LiH, NaH, and KH in the rocksalt
EBY(V) and cesium chloride EZ2?(V) structures was cal-

TABLE I
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culated for several values of the volume V. These points
were fitted to the first-order Birch!® and Murnaghan!?
equations of state, from which the dependence of the en-
thalpy and the volume on pressure was obtained for both
the B1 and B2 structures. The condition for the intersec-
tion of the two enthalpy curves , HZ!(pi,) = HE%(p::),
gives the pressure py for the structural phase transition
between the B1 and B2 structures.

To obtain the quasiharmonic equations of state, the
frequency of the transverse-optical phonon was calcu-
lated for both structures and for several volumes, and
Egs. (1) and (2) were used to estimate the zero-point-
motion energy. The quasiharmonic equations of state
were then obtained from the fit of Eo(V) + Ezpm(V) to
the first-order Birch!® and Murnaghan 7 expressions.

III. RESULTS AND DISCUSSION

The calculated zero-pressure properties of the alkali
hydrides using the CN approximation and the QH aprox-
imation are compared in Table I with the experimental
values. The values shown in the table were obtained with
a Birch equation of state interpolation of the data points
near the minimum of energy and Eq. (2) was used to esti-
mate the zero-point-motion energy. The lattice constants
are in good agreement (a few percent) with experiment,
while the values for the enthalpy of formation are less
accurate. The disagreement between the two experimen-
tal values of the bulk modulus, By, and of its pressure
derivative, By, for NaH indicate that the experimental
values for these quantities are unreliable and cannot be
used to evaluate the reliability of the calculations.

The calculated equilibrium properties of the alkali hydrides, lattice constant (ao),

bulk modulus (Bg), enthalpy of formation (AH), pressure derivative of the bulk modulus (Byg),
transverse-optical-phonon frequency at the Brillouin-zone center (vro), and the Griineisen param-
eter of that phonon mode (yro), are compared with the experimental values.

ao (a.u.) By (GPa) AH (eV) B; vro (THz)  ~ro
LiH Theory (CN) 7.37 40 1.11 3.3 20.6 1.5
Theory (QH) 7.63 31 3.5 17.7 1.6
Experiment 7.72° 33.62 0.92° 17.6°
NaH  Theory (CN) 9.02 27 0.53 3.7 16.6 1.8
Theory (QH) 9.30 20 4.1 13.9 2.2
Experiment 9.28¢ 19.4 + 2¢ 0.53" 4.4+ 059 ~158
14.3 £ 1.5° 7.7 +£1.0°
KH  Theory (CN) 11.03 15 0.33 4.2 14.8 2.0
Theory (QH) 11.32 12 4.2 12.6 2.2
Experiment 10.83° 15.6 + 1.5° 0.5" 4.0 4+0.5°
* See Ref. 3.
® F. D. Rossini et al.,, Circ. Bur. Stand. 500 431 (1952).
¢ See Ref. 14.
4 See Ref. 2.
¢ See Ref. 1.

T C. R. Fuget and J. F. Masi, N.S.A. 12, 3720 (1958).

€ See Ref. 15.
" J. Kasarnowsky, Z. Phys. 61, 263 (1930).
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The pressure-versus-volume equation of state for LiH,
NaH, and KH are shown in Figs. 1-3. The agree-
ment between experiment and theory is very good for
the pressure-versus-volume curves, and for the pressures
and volume changes at the structural phase transitions.
The effects of zero-point-motion are small but not neg-
ligible and their inclusion improves the agreement be-
tween theory and experiment. The theoretical curves are
Murnaghan equation-of-state interpolation of the calcu-
lated values over a wide range of pressures.!® In the fig-
ures, the solid curves correspond to the clamped-nucleus
aproximation, while the two dashed curves correspond
to using the two different estimations [Egs. (1) and (2)]
of the zero-point-motion in the quasiharmonic aproxi-
mation. As discussed previously the two dashed lines
should bracket the curve that would be obtained if the
full phonon density of states was used to calculate the
zero-point-motion energy.

The quasiharmonic aproximation has two effects on
the equation-of-state curves. First, the equilibrium vol-
ume V} is larger, displacing the equation of state towards
the bottom of the figure. Second, for a fixed volume,
it increases the pressure displacing the equation-of-state
curves towards the right of the figure. It is seen from
the figure that the first effect dominates, and the quasi-
harmonic equation of state is softer than the clamped-
nucleus equation of state.

Examination of the figures also show that the equation
of state is better described in the quasiharmonic aprox-
imation, in particular, there is an improvement in the
agreement between theory and experiment for the tran-
sition pressures and volume changes associated with the
B1 (NaCl) to B2 (CsCl) structural phase transition.

The equation of state of LiH has been measured® up
to 4 GPa. The diffraction pattern has been observed up
to compressions of V/V, = 0.78 in an experiment where
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FIG. 1. The calculated equation of state, relative volume

vs pressure, for LiH is compared with experiment. The solid
curve is calculated with the clamped-nucleus approximation,
while the two dashed lines are calculated in the quasiharmonic
approximation using the two limits for the zero-point energy
given by Eqgs. (1) and (2). The solid dots are the experimental
values of Ref. 3.
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FIG. 2. The calculated equation of state, relative volume

vs pressure, for NaH is compared with experiment. The solid
curve is calculated with the clamped-nucleus approximation,
while the two dashed lines are calculated in the quasiharmonic
approximation using the two limits for the zero-point-energy
given by Eqgs. (1) and (2). The crossed diamonds are the
experimental values of Ref. 1 for the rocksalt structure, the
solid dots are the experimental values of Ref. 2 for the rocksalt
structure, and the squares are the experimental values of Ref.
2 for the cesium chloride structure.

the pressure has not been measured,® and the reflectance
spectra has been observed up to 48GPa in an experiment
where the volume compression was not measured.? Al-
though these experiments did not measure the equation
of state, they indicate that the rocksalt-to-cesium chlo-
ride structural phase transition does not occur in LiH
below 48 GPa. According to our calculations, the phase
transition should occur around 450 to 500 GPa at a com-
pression of one-quarter of the original volume. This is
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FIG. 3. The calculated equation of state, relative volume

vs pressure, for KH is compared with experiment. The solid
curve is calculated with the clamped-nucleus approximation,
while the two dashed lines are calculated in the quasiharmonic
approximation using the two limits for the zero-point energy
given by Eqs. (1) and (2). The solid dots are the experimental
values of Ref. 1 for the rocksalt structure, and the squares
are the experimental values of Ref. 1 for the cesium chloride
structure.
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roughly twice the value of the highest pressures currently
achieved in diamond-anvil cells. The caveat of this type
of calculation is that the enthalpy was not calculated for
other possible structures of LiH and therefore one cannot
rule out the possibility of other structural phase transi-
tions appearing at lower pressures.

The equation of state of NaH has been measured
twicel>? in recent years using diamond-anvil cells up
to 28 and 58 GPa. The rocksalt-to-cesium chloride
structural phase transition was observed in the second
experiment? at p,. = 29.3 + 0.9 GPa and a volume frac-
tion V/Vp = 0.61 & 0.01. The equation of state of KH
was measured up to 24 GPa in a diamond-anvil cell,!
with a phase transition observed at about 4 GPa. In
those experiments the pressure was measured with the
ruby fluorescence technique and the lattice constant de-
termined by energy dispersive x-ray diffraction. We show
in Figs. 2 and 3 the experimental data points (omitting
for the sake of clarity the error bars) and compare them
to the calculated equation of state.

The behavior of alkali hydrides under pressure is very
similar to the alkali halides. The pressure for the Bl
to B2 phase transition is strongly dependent on the
cation, but is almost insensitive to the anion (hydrogen
or halide). Majewski and Vogl'® presented an interest-
ing explanation for this effect, which is also observed in
other I-VII and II-VI crystals.?? They approximated the
transition pressure by

pu ~ —[EPH(VPY) - EBX(VE/(VP - VD), (3)

where Vj is the equilibrium volume of the specified crystal
structure. The assumption behind their approximation
is that the E(V') curves have the same shape for all crys-
tal structures, but are displaced relatively to each other.
They argued then that both the numerator and denom-
inator increase with increasing anion atomic number Z,
while the numerator decreases and the denominator in-
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creases with increasing Z, with the net result that the
transition pressure is insensitive to the anion species and
decreases with increasing cation Z. The calculations for
NaH and KH show that the transition pressure estimated
with Eq. (3) differ by ~25% from the correct values, but
nevertheless the trend for the transition pressures seems
to be correctly given by that equation. The case for LiH
is more delicate because within the precision of our cal-
culations the zero-pressure densities of the B1 and B2
are the same, leading to a prediction of a very large or
even negative transition pressure for LiH. This was no-
ticed by Bashkin et al.® who used an ionic radii model
to predict that the zero-pressure volume of the B2 phase
should be larger than the zero-pressure volume of the
B1 phase. They concluded that the B1 phase being the
more compact does not have any tendency to transform
into the B2 phase under pressure (for all other alkali hy-
drides this ionic radii theory predicts that the B1 phase
is less compact at zero pressure and that therefore the
transition should occur). In the present calculations the
compressibility of the B1 and B2 phases are not identi-
cal, and the transformation is predicted to occur at very
high pressures in the 450 to 500 GPa range.

IV. CONCLUSION

The calculations of the isothermal equation of state of
the alkali hydrides show that the inclusion of the zero-
point-motion effect in the quasiharmonic approximation
has small but not negligible effects, which improve the
agreement of the calculations with experiment. As it is
clearly shown in Figs. 1-3 the E(V) curves and the tran-
sition pressures and volume changes associated with the
B1 to B2 structural phase transition are well described
by the ab initio calculations.
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