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Low-temperature spin glass in IV-VI semimagnetic semiconductors
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We investigate an indirect exchange interaction between the ions of the magnetic component of
a solid solution. It is shown that the indirect interaction in IV-VI semimagnetic semiconductors
via the virtual electron-hole excitations is anisotropic, and it has the non-Heisenberg form.

The small-gap semimagnetic semiconductors (Pb,Sn,
Ge); -xMn, (Te,Se) have been a subject of considerable
recent interest.! The most essential events, that have hap-
pened recently, are the discovery of the spin-glass (SG)
state in Pb;—,Mn,Te,! and the observation of the com-
plex phase diagrams in SnMn-Te and Pb-Sn-Mn-Te with
paramagnetic, ferromagnetic, and SG phases.?™ In order
to analyze the experiments on the thermodynamical prop-
erties of the alloys (e.g., magnetization is an external
magnetic field, magnetic susceptibility, heat capacity) we
have to investigate the particularities of the magnetic in-
teractions. Therefore, the calculations of the spatial and
angular dependences of the indirect interactions are need-
ed, especially for the elucidation of the reason for the SG
phase.

The polarization indirect exchange is due to s-d or s-f
interactions, which depend on the energy-band structure
and the wave functions of s,d electrons. If we assume the
d electrons to be localized with the §-type wave function,
then the s-d interaction is a contact interaction. All the
updated calculations were based on this assumption, and
we shall use it without discussion. In the case of a metal
with free s electrons the second-order s-d indirect interac-
tion is isotropic. It is the oscillating function of the dis-
tance R between localized spins with the period n/kr (kg
is the Fermi wave vector), depending on R as R ~3.° The
oscillating sign of this interaction is commonly used to ex-
plain the SG transition in magnetically doped metals-3
and degenerate semiconductors.* We have to note the
isotropy and Gaussian distribution of random exchange
interaction.’

In semiconductors with parabolic energy spectra, the
exchange interaction has a definite sign. Moreover, it de-
creases exponentially at large distances, with the interac-
tion length being proportional to the square root of the en-
ergy gap. '’

The indirect exchange of alternating sign, leading to the
SG transition, has been obtained in the framework of the
model of the indirect-band semiconductor. In this case
the period of the oscillations appeared to be proportional
to the inverse separation of the conduction- and valence-
band extrema in momentum space.!! When the oscillat-
ing factor is absent, as in nondegenerate direct-gap semi-
conductors, the sign of the exchange interaction is impor-
tant. If the exchange interaction is antiferromagnetic,
and the magnetic atoms are distributed randomly, the SG
phase is likely.

For Pb;—xMn,Te alloys the calculations performed in
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Ref. 12 suggest the ferromagnetic exchange interaction
which opposes the experimentally discovered SG phase of
these compounds. However, taking into account the non-
parabolicity within the Kohn-Luttinger model, it was
shown'? that the exchange interaction is antiferromagnet-
ic with a R ~* dependence at distances R < hv/E; (E, is
the energy gap and v is the velocity interband matrix ele-
ment in k- p approach).

The common feature of the above-mentioned calcula-
tions is the isotropy of the indirect exchange. This is a re-
sult of an oversimplification, related to the choice of the
wave functions, independing upon the projection of the
spin on the movement direction. If we take into account
this dependence, we immediately obtain the anisotropic
non-Heisenberg exchange. For example, in the crystals of
zinc-blende structure the exchange has been shown to
display such an anisotropy provided that the spin-orbit
coupling has been taken into account. '

In this paper we investigate a nontrivial example of the
complex exchange interaction that takes place in IV-VI
crystals with the Dirac Hamiltonian of free electrons and
holes.

By using the Luttinger-Kohn representation, the Ham-
iltonian of the electrons in the vicinity of the L point of the
Brillouin zone for IV-VI compounds can be described by
the Dimmock model.!>'® We shall use the simplified mod-
el which ignores the contribution of the distant energy
bands to the energy spectrum of the electrons and holes.
Then the Hamiltonian in the space of four-spinors (two
bands plus spins) has the form of the anisotropic Dirac
model

HO_Uzazpz+UJ.aJ.’P.L+‘§Egs (1
where
0o 10
a-UO’B-O—l’ @

v; and v, are the velocity matrix elements, E, is the ener-
gy gap, and 1 is the two-dimensional unit matrix. The z
axis is oriented along the [111] direction.

The interaction of the electrons with magnetic impuri-
ties in the second-quantization representation can be writ-
ten as

H, "# )y Jijelq‘kasn'o'aﬂakfaiak+q,ﬂj , 3)

k,q,n
where J;; =J4;; are the matrix elements of the contact s-d
interaction, calculated with the wave functions of i,j =1,2
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band extrema, and R, are the localized spin positions.
Since the values of the electron and hole integrals J;; and
J22 are not known, we simply assume that J;; =J,; =J. - -
The contribution to the energy from the pair interaction S1 SZ
of the localized spins S, and S; can be represented by a di-
agram of the second order in s-d interaction, see Fig. 1. FIG. 1. The diagram for the exchange interaction of two
The corresponding analytical expression is written down  spins.
with the aid of the standard rules of the finite-temper-
ature-diagram technique: 17
Heg= Gn ﬁ)“N"" Zfd pd’p'e™ PPYRSY(S,- 6)JG (pw,) (S, 6)JG (p'w,), 4)
where N is the density of atoms in the host lattice, ®, =Q2n+1)xT,
10 A _
J=J 01| G=GUw.—Ho) ! (5)
It is convenient to carry out a scale transformation under the integral in (4):
Uz v
Pz ﬁp: » Px,y™ ;v:px,y , Rg— —U_Rz » Rey— : Ryy,v -(U.LU )13,
Then we have the isotropic function of momentum under the integral (4). After calculating the trace in (4) we get
Jir v? v? )
Hcﬂ'-mz S Sz[—a},,11+12 R213 +——413(Sl'R)(Sz R) )
where
i
exp|—R-(p—p')
L= fapa’ 10 pp] n=EL
! PP irED@itED T 4
@)
(p'R)(p"R)cxp[—LR-(p—p') 5
I -fd’ d’p Ez-ﬂ+v2p2.
’ P (0 +E}) (@2 +ED) PP g
The integrals I, I, and I5 can be evaluated analytically
2
27n°hE
I = [-—”——25} expliali@,)?—11"%,
Rv
hE ’
13_[” g] -——1[(1co,.)2—l]'/2] explialGia,)*—11"3, (®)
a-_z_& ﬁ-—2hv a") -__zwn
-~ ’ Eg ’ n Eg .
To calculate H g at 7 =0, in (6) we should make the known substitution'’
iv,— o+iosgno, TY, — —fdw
n
Performing the contour integration we obtain the result in the following form:
H JZE g { — 2
off ™ 6——4 hAN2R [Ki(a) —K3(a)]S;' S, + Kg(a)+;K2(a) (Srn)(Sz‘ﬂ)} s )
where n is the unit vector along R, K, (a) is the modified Bessel function.
Now we examine the particular cases of (9). (i) At large distances, a>>1,
JZES/Z —2R/R ZR?
Heg= 649322 (ho) NR (Sl'n)(82'n)——R—Sl'Sz . (10)
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(ii) At short distances, a << 1,
12

162°hvN2R>
As follows from (10) and (11), for two momenta localized
at large distances the minimal energy corresponds to the
antiferromagnetic ordering of pairs, and at short distances
to the ferromagnetic one. We emphasize that the pseudo-
dipolar contribution to the exchange interaction is not
only related with the spin-orbit coupling of the band elec-
trons. It is caused by the spin-preserving k- p contribution
to the Hamiltonian as well. The calculated indirect in-
1

Her [3(S;-n)(S;'n) —2S,-S,]. (11)

R— UL[R2+p(L,,.-R)21‘/2, S'R—S'R+7(S-L,)(R-Ln), p=—=
4

teraction has the alternating sign and depends on the an-
gle between the localized spins and a vector connecting
them. This can explain the SG ordering without addition-
al assumption about the Ruderman-Kittel-Kasuya-Yosida
interaction. >

The expressions (9)-(11) describe the exchange in-
teraction mediated by the virtual electron-hole pairs in the
single L valley. In the isotropic case (v, =v,), the sum-
mation over four nonequivalent L valleys is trivial and
leads to the multiplication by four in (9)-(11). If the
spectrum is anisotropic, we have to carry out the inverse
scale transformation in (9)-(11), i.e., to substitute

3 v

> =1, y=—-1,

z UZ

where L, are the unit vectors along the four nonequivalent (111) directions. After that the summation over m must be

done. For instance, at short distances we find from (11)

J? wi &
Hg=—2—1-5,8,+
o 2n3th2R5{ St Z

The temperature of the SG freezing T, is determined
by the magnitude of the interaction at mean distances.
There is a characteristic relative magnetic impurity con-
centration xo=(aEgz/hv)? (a is the lattice constant) and
two regions x 3> x¢ and x < xo, where T is determined by
the formulas (10) and (11), respectively. For the parame-
ters of Pb,—,Mn,Te, a=6 A, E,=0.1 eV, v=3x10’

[S;-n+7(S; L) (- L,)S; n+ y(S;- L) (- L)) } 12

1+8(L,, n)

[
cm/sec we have x¢=0.03. Assuming J=1 eV and

x=0.1, we obtain from (12) that T, =2.5 K in good ac-
cordance with the experimental data. Note that the con-
centration dependences of T, are different in the two
above-mentioned regions, i.e., Ty~ x *%expl(—xo/x) ']
at x <xgand T, ~x 2 at x> x,.
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