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Good semiconductor band gaps with a modified local-density approximation
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The exchange operator is divided into two parts, a Thomas-Fermi screened exchange operator
and the remainder. The remainder and correlation are treated in the local-density approximation,
while the screened exchange matrix elements are exactly evaluated. Calculations for Si result in

much improved band gaps as well as an improved exchange contribution to the binding energy.

It has long been known' that Hartree-Fock energy-
band calculations result in semiconductor band gaps too
wide by a factor of 3 or more because the dynamic
screening of the Fock operator is neglected. On the other
hand, Kohn-Sham (KS) calculations are well known to
result in gaps too small by 0.7 eV or more which results
in Ge being a zero-band-gap semiconductor. This is at-
tributed to the zeroth Fourier component of the KS ex-
change potential changing discontinuously across the en-

ergy gap. ' In the original KS theory

V„,(r) =5E„,[p]/5p(r)

is defined with the subsidiary condition that the number
of electrons is fixed so that

tential. When g changes discontinuously as it does (from
bonding to antibonding) across the energy gap, V& will

also change discontinuously. The only surprising thing is
that in density-functional theory (DFT), it is only the
zeroth Fourier component of V& which is discontinuous.
This is a consequence of the fact that only g; P, ~

and
not the individual ttt; have any physical significance in

DFT. Be that as it may, it occurred to us that if the
exchange-correlation operator could be separated into
two parts, one which could be treated exactly and anoth-
er which resulted in an only weakly g-dependent V&,
then if only the latter were replaced by a density func-
tional, one could expect to obtain good energy gaps. We
write

V„,(G) =5E„,[p]/5po H„,=H„+5E,/5p 5E,„/5p+—5E, /5p . (3)

is undefined for G=O. Here p& is the Gth Fourier com-
ponent of the charge density and E„,[p] is the exchange-
correlation part of the Hohenberg-Kohn energy-density
functional. Since the eigenvalues c.; of the Schrodinger
equation containing the exchange-correlation potential
V„, are assigned no meaning in this theory and its eigen-
functions are independent of V„,(0), there is no need for
V„,(0) to be defined. Replacing the variations which con-
serve number n by arbitrary ones via a Lagrange multi-
plier, Perdew et al. were able to show that cz= —I for
N —1(n N and c~+, = —3 for N &n N+1 where I
and 3 are the ionization potential and electron affinity in
either an atom with atomic number N or a semiconductor
with N valence-band states. Here cz and ez+, are the¹hand (%+1)st eigenvalues and the number of elec-
trons n is assumed to be a continuous variable. However,
c~+, calculated for the N electron case is not the same as

cz+& when N &n N+1 due to the discontinuity in

V„,(G=O) which occurs as n passes through integer
values. ' Greater insight into this discontinuity can be
obtained by examining ET[p] in the two band model
where ET[p] is the kinetic energy functional. In that
case, unlike the exchange case, explicit analytical results
are obtained for VT(G) and VT(G=O) for states on ei-
ther side of the gap and the discontinuity in VT(G=O)
thus exactly calculated.

Another way of looking at this discontinuity is to note
that for any operator 0 one may write Of= V&(r)f(r)
where V&(r)=Ogle is a wave-function-dependent po-

Here H„ is an exchange operator calculated with—K r
the screened Coulomb interaction e ' /r, E„[p]= ——3(3/m)'/ p /'(r) is the well-known local-density ap-
proximation (LDA) for the exchange energy-density func-
tional in Rydberg atomic units, E, [p] is one of the LDA
correlation functionals (we use Wigner ), and E„[p] is
the LDA screened exchange density functional, '

]/3
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where the sum is over occupied bands n at A different k's
in the Brillouin zone, 0 is the unit-cell volume, and
a„k(G, ) is the coefficient'' of the (k+G, )th plane wave in

where r =I(, /kF. We call these three terms the modified
(M)LDA. What is modified, of course, is not the LDA
but that part of the Hamiltonian which is treated in the
LDA. The matrix elements of H, are

8m a k~6 ++~a k~0 +6
(q+G~H, .q+G ) =

(k —q+G ) +K
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l(„t,. The only remaining question is what the dependence
of y on p(r) should be. One could argue that K, in Eq.
(5) is independent of p so that y =K, /kF-p ~3. Or
one could argue that K, is either the Thomas-Fermi wave
vector, KT„=4kF /~, or proportional to it, so that

y -p ' . We believe, however, that the correct argu-
ment is that E, must scale like an exchange energy den-

sity and that the dimensionless y has no p dependence,
i.e., y'-po ' rather than p(r) ' '. Note, however, that
all choices are equivalent in the free-electron-gas limit so
all yield valid LDA's for the screened exchange operator.

We have performed self-consistent norm-conserving'
pseudopotential calculations using both the MLDA with

K, =ETF and the usual LDA. The ten —"special"-k-point
sample' of an irreducible wedge of the Brillouin zone
(BZ) was used which gives a sum over 256 k's in the full
BZ in Eq. (5). In order to facilitate comparison with the
quasiparticle energies obtained by Hybertsen and
Louie, ' we expanded in the same set of plane waves with
k (17 Ry as they. The results are given in Table I. We
also tried the calculation with y —[p(r)] . This gave
a gap of only 0.773 eV and a bandwidth of 12.76 eV. We
were able to increase the gap to 1.030 eV by taking
E, =

—,'KTF but only at the cost of increasing the band-

width to 13.44 eV. Thus our choice of y independent of
p(r) as the most physically reasonable is verified by the
numerical results. We also calculated the MLDA ener-
gies from the LDA eigenfunctions to see if the tedious re-
peated evaluation of Eq. (5) could be avoided. ' The er-
rors are small but not negligible. For example E, be-
came 1.396 eV and the I z5, -I 2, gap became 3.77 eV.

Except for cz, no KS eigenvalues represent excitation
energies in the ¹lectron problem. By removing the
discontinuity in V„,.(0) as N ~N + 1 we have at tempted
to make c.~+, an excitation energy as well, ' but no other
c., are expected to be meaningful. Therefore it is quite
surprising that the MLDA eigenvalues at the bottom of
the valence bands (i.e., I, relative to the top of the
valence bands and the I, L, bandw-idth) are in better
agreement with the experimental results than the calcu-
lated quasiparticle energies. This we believe is peculiar to
the semiconductors, for it is well known that the occu-
pied valence bandwidth in the nearly free electron metals
is reduced from its LDA value by many-body
effects. ' Since the free-electron Hartree-Fock energy
at k=0 is twice that at kF, exchange appreciably in-
creases the bandwidth. The statically screened exchange
that we use cuts that increase drastically but cannot turn
it into a reduction of the bandwidth. There is currently
some controversy in the literature concerning the magni-
tude of the reduction of the quasiparticle bandwidth. For
example, for Na, Northrup, Hybertsen, and Louie'
(NHL) obtain a reduction of 0.64 eV from the LDA
bandwidth whereas Mahan and Sernelius' (MS) obtain
0.36 eV which they' claim is in agreement with the ex-
perimental value of 0.51 eV because there is a surface
contribution to the narrowing of the bandwidth measured
by photoemission. MS pointed out that NHL included
exchange corrections to their dielectric function but
failed to include vertex corrections in the self-energy,

TABLE I. Various energy gaps (in eV) in silicon calculated
with the LDA, MLDA, quasiparticle (QP) theory (Ref. 13), and
compared with experimental values in Ref. 13.

LDA MLDA QP Expt.

~gv
I

I2s
Ir„„-r„,
I lr„„-r„

I

I2s
I"~s

I tL „ I„„
I

I2s
L3„~1est

I I,, ~Ll„,
II 25tt ~L [t

I2s
L3,, ~Ll,
L3, ~L3,

0.439
12.00
2.52
3.15
2.87
0.57
9.64
7.03
1.20
4.97
1.41
3.29
2.61
4.49

1.323
12.54
3.34
3.86
2.78
1.48

10.13
7.07
1.16
5.46
2.12
4.21
3.29
5.37

1.29
12.04
3.35
4.08
2.99
1.44
9.79
7.18
1.27
4.86
2.27
4.24
3.54
5.51

1.17
12.5+0.6
3.4
4.2
2.9, 3.3+0.2
1.3
9.3+0.4
6.7+0.2
1.2+0.2, 1 ~ 5

5.8+0.8

2.1, 2.4+0. 15
4.15+0.1

3.45
5.50

E, [p]= WE, [p]l( W+b, ) (6)

where E, [p] is any standard correlation density function-
al, 8' is the bandwidth, and 5 is some average energy
gap. Since W and 6 are functionals of the density, E,[p]
is also a valid density functional and becomes equal to

which is inconsistent since the two corrections tend to
cancel. We ' noted the same thing over 20 years ago
when we defined three different dielectric functions: Et]
for a Coulomb interaction with no vertex corrections,
which is appropriate to two test charges; ek, for a
Coulomb line with vertex corrections at one end, which is
appropriate to an electron and a test charge or to an elec-
tron exchanging with itself if there are no intervening
vertices; and ek & for a Coulomb line with vertex correc-
tions at both ends, appropriate in all other cases. Thus
we believe MS are correct in their assertion that the LDA
bandwidth of Na has an 11% reduction and Al only a
—,'% reduction due to many-body effects. Hence it seems

likely that the MLDA would yield an improved Fermi
surface for Al along with an acceptable bandwidth.

It is well known that the LDA results in too little ex-
change energy and too much correlation energy for sys-
tems with energy gaps such as atoms or semiconduc-
tors. The errors have opposite signs and as a rule the
exchange error is larger in magnitude but smaller in per-
centage. For example, for the neon atom E„„=—10.0

= —19.9 eV and E = —329.5
E„" = —298.4 eV. The exchange energy results from
the exchange hole which has several wave-function-
independent properties, such as removing exactly one
electron and subtracting out all parallel spin charge den-
sity at its origin. Thus an approximation based on free
electrons works reasonably well even in atoms. Correla-
tion, on the other hand, results from the admixture of ex-
cited configurations into the one-electron ground-state
configuration. In the limit of an infinite energy gap the
correlation energy must vanish. Therefore we propose a
modified correlation functional
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E,[p] in the free-electron-gas limit. It is not a local-
density functional, however, because 8'and 6 are not lo-
cal functionals of p.

Because the total ground-state energy may be obtained
from the single-particle Green s function, the binding en-

ergy of a solid is, in principle, obtainable from the quasi-
particle calculations; however, as far as we know this has
never been done. We here calculate the binding energy in

the MLDA and compare with the LDA. [Since Eq. (6) is
somewhat ad hoc, we used the usual Wigner correlation
here. ] The first row of Table II lists the one-electron ei-
genvalues summed over bands and averaged over the BZ.
The next four rows subtract various electron-electron
contributions to the one-electron eigenvalues. The Vs
are the input potentials of the final iteration while the p's
are the output charge densities. In particular,

pa„'"l,*(G+G, )a'"q(G) [(k—q+G, ) +K,. ]
n, k, m, q, i Q

(yiH„ly) =W ' y a'"'*(G)a'"'(G')(q+G~H, '„"lq+G')
m, q, G, Q'

=(8m /JV 0) (7)

TABLE II. Various contributions to the total energy of Si in

Ry/atom.

MLDA LDA

E„k
~coulP

—f V„,p

f V,„p

g E„„—f pH„p
ECoul

E,
M

H,
EMad

E

—0.051 99
—1.226 26

3.11869
—0.521 36

0.959 72
2.278 80

0.614 50
—0.364 92
—2.047 92

0.394 60
—0.480 52
—8.399 65

0.005
8.000

0.315 08
—1.075 74

3.080 42

2.31976

0.537 87
—0.364 20
—2.01964

—8.399 65
0.005
7.921

The sum of the first five rows, listed in the sixth,
represents the sum of the kinetic and pseudopotential en-

ergies of the electrons. The difference between the LDA
and MLDA is much smaller than the differences between
the individual contributions to this term and is a measure
of the differences between the LDA and MLDA eigen-
functions. The next three rows list the electron-electron
Coulomb and correlation and exchange energies evalu-
ated in the LDA. H,„ is the contribution of the screened
exchange operator to the total energy and —E,„sub-
tracts off the screened exchange energy in the LDA. H„
is given by Eq. (7) with a factor of —,

' to avoid double

counting and with both a's being output a' s. The twelfth
row is the Ewald-Madelung energy of point ions in a con-
stant background of compensating charge density. The
zero point vibrational energy row in the 13th row is taken
from Ref. 23. The sum of the 6th through 13th rows is
the total energy, whose negative is the binding energy E~
listed in the last row. Although the individual contribu-
tions to Ez are not well converged, as can be seen by
comparing 2E&,„i with f Vc,„ip, Ez because it is calcu-
lated variationally, is converged to at least five decimal
places.

The experimental Ez =7.917 Ry is much closer to the
LDA result than to the MLDA due to a fortuitous can-
cellation of exchange and correlation errors. Note
though that when we took the LDA valence exchange-
correlation energy to be of the form E„,(p„„,)

E„,(p„—„)we obtained E~=7.990 Ry, which is much
closer to our current MLDA result than to our current
LDA result. Using the MLDA eigenfunctions, we have
calculated the unscreened Fock exchange energy to be
—2. 12872 Ry. Our MLDA exchange is E +H, —E,
= —2. 133 84 Ry which is in much better agreement with
the Fock exchange than our LDA E„=—2.01964 Ry.
In order to obtain the experimental Ez with the MLDA
exchange, E, would have to be reduced to —0.282 Ry; to
obtain it with the Fock exchange, it would have to be re-
duced to —0.287 Ry. Using the experimental band-
width, W'=12.5 eV, and the average dielectric gap,
b, =4.8 eV, in Eq. (6) yields E, = —0.264 Ry. If we take
6=3.9 eV, the weighted average of the experimental gaps
at points I, X, and L, we obtain E, = —0.278 Ry. These
estimates omit any changes in Es arising from changes in
the eigenfunctions due to replacing E,[p] with E, [p].
Another efFect of using P, [p] would be to reduce Es,~

to-
ward the experimental value. (See Table I.)

In conclusion we would like to point out that although
there are some points of similarity, this work is basically
different than that of Gygi and Baldereschi. They
separated the self-energy into two pieces, one of which
could be evaluated in the LDA, in order to obtain an ap-
proximation to the GW approximation for quasiparticle
energies; we separated the Fock exchange operator into
two pieces, one of which could be treated in the LDA, in
order to obtain one-electron eigenvalues which approxi-
mate excitation energies around the energy gap. For Si
we found that this yields not only an improved energy
gap (or the exact energy gap with a small adjustment of
K, ) but it also yields KS eigenvalues throughout the
bands which are in improved agreement with experimen-
tal excitation energies. Our approximation also makes
feasible that which appears not to be feasible in the GW
approximation' or approximations to it, i.e., total-
energy calculations. The total exchange energy we ob-
tained for Si is larger in magnitude than the LDA ex-
change energy and in much better agreement with the ex-
act exchange energy when that is defined to be the Fock
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exchange energy of KS eigenfunctions. %hen an overes-
timate of the correlation energy inherent in the LDA was
corrected, the total binding energy was in excellent agree-
ment with experiment. Finally, we note that the 68'ap-
proximation is based upon a dielectric matrix which is
obtained from a LDA calculation. There are cases when
the LDA is so bad that a semiconductor becomes a metal
and the dielectric matrix becomes useless. This would
have no effect on a MLDA calculation which then could,

if so desired, be used as the starting point for a GW cal-
culation.
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