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The plasmon dispersion relation of a quantum wire is derived by solving Maxwell’s equations for
an anisotropic dielectric waveguide including retardation effects. In the long-wavelength limit, and
for the extreme quantum limit, the group velocity of the one-dimensional electron gas is found to be

finite and given by the Fermi velocity.

There has been increasing interest in one-dimensional
electron systems (1DES’s) since quantum-wire structures
have been fabricated with GaAs surrounded by
Al _Ga,_,As by Petroff et al.! From a fundamental
viewpoint, 1DES’s are important since they constitute
one of the simplest many-body systems of interacting fer-
mions with properties basically different from three-
dimensional particle systems. For this reason, a number
of theoretical papers have attempted to describe the
dielectric response and the collective excitations of
1DES’s (Refs. 2-4) in relation to the electronic properties
of quasi-1D metal or linear chains of organic conduc-
tors.” The emergence of low-dimensional artificial semi-
conductor structures has stimulated further work in this
direction. In a recent experiment Demel and co-
workers®’ have investigated the far-infrared (FIR)
response of a multiple 1D semiconductor structure at
low-temperature measurements and interpreted the FIR
resonances as caused by the lateral quantization of the
2D plasmon modes. Meanwhile, a theoretical model of
screening effects and elementary excitations in artificial
1DES’s has been provided by Das Sarma and Lai,® who
calculated the dielectric functions €(q,®) for single quan-
tum wires and 1D superlattices within the Bohm-Pines
random-phase approximation (RPA). These authors ob-
tained the plasmon dispersion relation by solving the
standard equation €(q,w)=0. As a consequence of this
model, however, the plasmon group velocity diverges log-
arithmically with the wave vector ¢ —0° as well as with
the radius of the quantum wire r,—0. In this Brief Re-
port, we derive the plasmon dispersion relation by con-
sidering the collective excitation as an induced elec-
tromagnetic wave which obeys Maxwell’s equations and
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satisfies continuity conditions at the boundary between
the confined structure and the surrounding materials. '°

Generally, 1DES’s are laterally and electrostatically
confined at the interface of a modulation-doped structure.
For the sake of simplicity, the physical system investigat-
ed here is a GaAs quantum wire of cylinder geometry
embedded inside an Al,Ga,_, As material for which the
1DES eigenstates are given by a simple 2D harmonic os-
cillator:!!
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Here m* is the effective mass, ( is the oscillator charac-
teristic frequency, and V? is the three-dimensional La-
place operator. The eigenfunctions are given by
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In the self-consistent-field approximation,? the self-
consistent-field dielectric function €4 for GaAs is given
by
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where v is a collective label for the (n,m,k,) indices, € is
the GaAs dielectric constant, and V. is the self-consistent
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potential. Starting from the single-particle Liouville

equation, we get the potential induced by a test charge,
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where K(x) is the zeroth-order modified Bessel function
of the second kind with argument x; g is the z component
of the wave vector for the Fourier component of the po-
tential, p, is the operator describing the perturbation of
the density matrix, and €, is the dielectric constant in the
vacuum.

At 0 K, if we assume the extreme quantum limit
(EQL), i.e., all the electrons occupy the ground state, the
1D dielectric function is given by
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with p=m *Q /#, is obtained after some tedious algebraic
and integral manipulations.!! At 0 K, these results are
justified if #*k2/2m * <#Q. For high temperatures and a
large radius of the quantum wire, higher energy levels
need to be considered.'? But this condition, which also
involves broadening effects, is beyond the scope of this
Brief Report.

In order to derive the dispersion relation of a plasmon
wave, we consider the GaAs quantum wire as a cylindri-
cal dielectric waveguide embedded inside Al Ga,_,As
material with a dielectric constant €’. For a wave travel-
ing along the z direction, the electric field E and the mag-
netic field B must satisfy the Maxwell equations'?
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In order to obtain nontrivial solutions, the determinant of

the matrix on the left-hand side must vanish, which

yields the dispersion relations for longitudinal waves,
a’e+q’e,
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and that for transverse waves, w’=(a’+¢q?)/uqeqsc. For
plasmon oscillations, only the longitudinal waves are
relevant. The solutions of the electromagnetic fields are
found to be
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with B=pu H and D=¢y€E for GaAs (D =¢,¢’'E for
Al ,Ga,_,As). Here we assume that an induced current
flows along the z direction with unit vector Z; the current
density is given by J=¢y(3E,/dt)Z inside the
waveguide, where Y is the polarization coefficient. There-
fore, for GaAs the dielectric function € becomes a tensor,
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and we can redefine D'=¢-E.

In the region outside the waveguide, the current densi-
ty J is identically zero. Hence we can solve Eq. (8) sepa-
rately in the inside and outside regions.

Inside the core, we assume the following form for the E
field:
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where J, is the Bessel function of the first kind, ¢ and «a
are the z and radial components of the wave vector for
the E field, respectively, and E,j, E 4, and E,, are the
magnitudes of the radial, angular ¢, and z components of
the field. From the Maxwell equations, we obtain the dis-
placement current
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and from the constitutive relation D'’ =¢€-E, we derive the
matrix equation
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where E is a constant.
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Outside the 1DES, the wave is evanescent and must de-
cay with the distance r away from the wire. We thus can
choose the modified Bessel functions of the second kind,
K,(Br) and K ,(Br), where B is the radial decay constant.
The solution is found to be
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with 0?=(g%—B%)/ue€€’, and Ej is a constant.

At the wire boundary r =r, the normal component of
D, the tangential component of E and H must be con-
tinuous. For nontrivial solutions of E; and E, we obtain
the dispersion relation
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When the current density J=0, this dispersion relation
results in the solution of the classical dielectric
waveguide. !> Notice that Egs. (13) and (17) describe re-
tardation effects which are consequently included in Eq.
(18).

The longitudinal plasmon modes are obtained by solv-
ing Egs. (5) and (18) with egcr=¢€,. Figure 1 shows a
comparison between the dispersion relation derived from
the relation egcx=0 and our results for two different
confinement conditions. For our model, we have chosen
m*=0.067m,, €=13.2 for the inside material, and
€'=12.51 for the surrounding material. The results are,
however, not very sensitive to the difference between €
and €, so that the waveguide approximation seems to be
justified. From Fig. 1 we can see as ¢ —0 the two curves
are somewhat different, but start to converge as g — .
This is due to the constraints imposed by the Maxwell
equations and the dispersion relation (18). At small ra-
dius r, and long wavelength, the modified Bessel func-
tions of the second kind, K, and K, and the Bessel func-
tions J, and J, are all positive. Therefore in order to ob-
tain a solution from Eq. (18), the dielectric function ¢,
must be negative. The longer the wavelength, the larger
the absolute value of €, and, consequently, the larger the
deviation from the €gcp=0 solution. For large g, the ra-
tio between the modified Bessel functions approaches uni-
ty while the ratio between J, and J, is of the same order.
So the two curves begin to converge and Eq. (18) reduces
to the standard self-consistent-field result egcg=0. In
fact, as we can see from Fig. 1(b), the two curves are al-
most identical as the radius of the wire increases. Nu-
merically, we always find the solutions of Eq. (18) in
pairs, but we have eliminated the solution corresponding
to single-particle excitation (i.e., the production of an
electron-hole pair),14 which is irrelevant and unphysical
in this case. Another feature of our model is the ex-
istence of multiple solutions to Eq. (18) because of the
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multivalued Bessel functions J, and J,. This result is in-
herent to the cylindrical geometry assumed in our model.
The higher-order solutions correspond, however, to
unusually large carrier concentrations and are irrelevant
for the EQL condition considered here.

The slope of the plasmon dispersion curve gives the
wave group velocity, which is an important characteriza-
tion of the quantum wire. As we indicated earlier, the
€scp=0 derivation provides a group velocity v, which
diverges logarithmically as ¢ —0.% In our case, however,
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FIG. 1. Calculated plasmon dispersion relation of a quantum
wire. The solid line describes our numerical result, while the
dashed line results from €5cg=0. (a) The radius rg is 70.7 A and

the Fermi wave vector k is 1.0X10% cm "', (b) ry is 353 A and
kpis 5.0X10°cm .
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the dispersion relation [Eq. (18)] is satisfied for the nega-
tive pole of y in the long-wavelength limit; therefore we
find v, =#i(kp+q)/m* as ¢—0, ie., the Fermi veloci-
ty.!> Strictly speaking, this result is only valid at T=0
K; any broadening effect in the polarization will result in
an ry-dependent cutoff frequency for plasmon modes.

In summary, we derived the plasmon dispersion rela-
tion of one-dimensional electron gas embedded in a host
material assuming the collective oscillations are confined
in a cylindrical dielectric waveguide. This approximation
does not seem to limit the validity of the model to more
realistic configurations since the III-V compound semi-
conductors of interest the results are not very sensitive to
the difference between the dielectric constants of the

guiding region and the surrounding material. At T=0K
and in the long-wavelength limit, our waveguide model
provides a finite group velocity, given by the Fermi veloc-
ity.
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