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Sievers and Takeno (ST) have recently argued that a periodic system of particles interacting
through harmonic and quartic anharmonic potentials can exhibit odd-parity localized vibrational
modes for sufficiently strong anharmonicity. In the present paper, we demonstrate that this behav-
ior is a fundamental property of the underlying pure anharmonic system. For a monatomic one-
dimensional periodic chain of particles interacting via nearest-neighbor purely anharmonic poten-
tials of any even order, it is shown that within the rotating-wave approximation of ST, the odd-
parity vibrational mode pattern of a simple linear triatomic molecule, and the even-parity mode pat-
tern of a simple diatomic molecule, yield exact solutions of the classical equations of motion in the
asymptotic limit of increasing order of anharmonicity. These localized vibrational modes may be
centered on any lattice site. The odd-parity solution remains a very good approximation even for
the lowest-order case of pure quartic anharmonicity, whereas the new even-parity solution requires
a relatively minor correction for this case. Our results are obtained by directly studying the equa-
tions of motion. For a system with just harmonic plus sufficiently strong quartic anharmonic in-

teractions, our odd-parity solution corresponds to that found by ST using lattice Green s-function
techniques.

I. INTRODUCTION

Recent theoretical studies' of the vibrational dynam-
ics of periodic arrays of atoms interacting via strongly
anharmonic potentials have argued for the existence of
localized and resonance vibrational modes, reminiscent of
those which are known to occur in purely harmonic lat-
tices containing point defects. These striking results were
obtained by analytic studies of the classical systems,
within a "rotating-wave" approximation (RWA) whereby
only a single frequency component was included in the
time dependence. Within this approximation, spatially
inhomogeneous, stable solutions were found, having
amplitude-dependent frequencies either above (localized
mode) or below (resonant mode) the maximum harmonic
phonon frequency, depending on whether the anharmoni-
city was "hard" or "soft." Furthermore, it was argued in
Refs. 1 and 2 that the configurational entropy arising
from the fact that these new excitations can occur at any
lattice site, leads to a temperature-dependent equilibrium
density analogous to that for vacancies. It is expected
that these excitations are mobile, thereby restoring the
system s periodicity. The picture which emerges is that
the vibrational spectrum at T=0 K is dominated by
homogeneous plane-wave-like anharmonic phonons, but
with increasing temperature the intrinsic anharmonic lo-
calized or resonant modes are created and should be in-
cluded in describing the dynamical properties.

In Ref. 4, these ideas were extended and applied to the
problem of the anomalous low-temperature specific heat
of glasses. It was postulated that disorder results in
anharmonic resonant modes moving di6'usively, and this
was shown to lead to a linear temperature dependence of
the specific heat, as is observed. The theory was able to

provide a consistent phenomenological description of the
low-temperature specific-heat data for a wide variety of
glassy materials ranging in type from covalent, van der
Waals, ionic, metallic, inorganic, and organic.

The analytic work of Sievers and Takeno in Ref. 1 in-
volved a simple linear monatomic chain of particles in-
teracting via nearest-neighbor harmonic and quartic
anharmonic springs, denoted here by kz and k4, respec-
tively. By making the RWA and using harmonic lattice
Green's-function techniques, these authors argued that
for sufficiently strong anharmonicity, stable odd-parity
localized excitations are possible at any lattice site, with a
frequency given by

co =—(k~+='k~A ),2 ]g 4

where m is the mass of each atom and 3 is the vibration-
al amplitude of the "central" atom in the mode pattern.
This pattern is = A (. . . ,0, —

—,', 1, ——,', 0, . . . ), with the
approximation being better for larger (k4/kz)A . More
precisely, this solution was argued to be valid provided
the inequality 3k~ A /(4k& ) && —,', is satisfied. ' Again it is
to be emphasized that this mode pattern may be centered
on any lattice site. We have found via molecular dynam-
ics simulations, which of course do not employ the
rotating-wave approximation, that the above solution is
indeed well realized. "

In the present paper it is shown that within the RWA
and for a purely anharmonic lattice having anharmonicity
of any even order, the above mode pattern plays a special
role, in that it gives an exact solution to the equations of
motion in the limit of increasing order of anharmonicity.
It will be seen that this mode pattern, which is the most
localized odd-parity displacement pattern consistent with
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the center of mass remaining at rest, is still a very good
approximation for the "worst" case, a lattice with just
pure kz anharmonicity. In the presence of harmonic
forces, this solution breaks down in favor of (delocalized)
plane waves, so that only for sufficiently strong anhar-
monicities, as determined through inequalities analogous
to that given in the preceding paragraph, can one obtain
a valid localized-mode solution.

The above results are obtained and discussed in Sec. II,
by means of a direct study of the equations of motion. In
Sec. III A they are generalized so as to encompass an ar-
bitrary superposition of even-order anharmonicity. A
different generalization is made in Sec. IIIB, where we
demonstrate the existence of a new, euen parity, localized
mode in strongly anharmonic periodic systems. The pa-
per is concluded in Sec. IV.

II. THEORY

We consider a linear monatomic chain of particles of
mass m, interacting via nearest-neighbor purely anhar-
monic springs k„of even order (i.e., even r). Considering
just longitudinal displacements and letting u„(t) denote
the displacement of the nth particle from its equilibrium
position, we write the potential energy as

k,V= g (u„+,—u„)'. (2)
n

Writing the equation of motion for the nth particle and
substituting the trial solution u„(t)= A g„cos(cot), we

have

—co m(„A cos(cot) =k„A " 'cos" '(cot)

x [(g„+,—g„)"

(3)

The relative displacement pattern is [g„], and A is the
overall amplitude. We now follow Ref. 1 and make the
RWA, keeping just the cos(cut) term on the right-hand
side of this equation. The identity

cos~(9)= cos(k0)
2 ' g, [(p+k)/2]! [(p —k)/2].'

(p k odd), (4)

gives

We now seek highly localized, odd-parity solutions to
the above system of equations. Accordingly, we let the
mode be centered on the site n =0 and take go= 1,

„=g„, and
~ g„~ &&

~ g, ~
for

~
n

~
& 1. Equation (7) for

n =0 then yields

2k„C„a"-'
CO„—

1?l

and for n=1 we have

(1—g))"

k„C„W"-'
CO„

mg,
—

Mi '+(ki —1)" (9)

The above two equations must, of course, give the same
frequency, and we see clearly that g, = —

—,
' will be an ap-

proximate solution. Substituting this value of g, , we ob-
tain for n=0

2k„C„Z"-'
CO r

3

2
(10)

and for n=1

2krCr ~ 3
CO„—

m 2
[1+( 1 )v

—
1]

Equations (10) and (11) are obviously identical in the lim-
it of increasing anharmonic order r. Moreover, even for
the worst case r=4, Eq. (11) only diff'ers from Eq. (10) by
the factor 1+—,', =1. Substituting the explicit expression
for C„given by Eq. (6), we thus obtain the squared fre-
quency for the odd-parity localized mode in a purely
anharmonic linear chain with anharmonicity of order r:

2kr ~ 3 (r —1)~

m 2 2" (r/2)! (p/2 —1)!
(12)

In particular, we have for the case of pure quartic anhar-
monicity

81k4 A
Q)4

16m
7 (13)

and we have found by numerical molecular dynamics
simulations, which involve no RWA, that this solution is
accurate.

Of course, for consistency we must still investigate the
validity of our assumption on the smallness of the Ig„]
for ~n ~

& 1. We will first study Eq. (7) for n =2, namely
cos" '(cot) = C„cos(cot)+higher harmonics, (5)

k, C, W"-'
CO„—2=

mg„
[(4 —@+i)" '+(0 —k. —i)' ']

where a subscript r has been added to the frequency co,

for clarity.

where the coefficient C„ is

Cr= (r —1)!
2" (r/2)! (r/2 —1)!

Retaining just the first term in Eq. (5) and substituting
into Eq. (3), we have

m
'+(4 —

k )" '1 .

Setting gz
—

g, = —,
' and neglecting gz

—g, compared with
this, we obtain

k„C„A"
CO„

m (,2"
(15)

In order that we have a solution, this equation must give
the same frequency as Eq. (10). This yields an expression
for g, :
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(16)

Obviously, (~~0 in the limit of large r E.ven in the r=4
worst case we have f2= —,', « —,

' =
~g, ~. Finally, we consid-

er Eq. (7) for arbitrary
~
n

~

& 2. In analogy with the n =2
case just treated, we assume ~g„+, ~

&& ~g„~ for all n ) 2.
Equation (7) then leads to the recursion relation for n ) 2

III. GENERALIZATIONS

A. Arbitrary superposition of even-order anharmonicity

Because we have obtained the same localized relative
displacement pattern for every (even) order of anharmon-
icity, we can simply use superposition to get an expres-
sion for the corresponding localized mode frequency
when the anharrnonicity is an arbitrary admixture of
such terms. Thus, for

k„V= g g (u„+,—u„)"
r even r

)1

we obtain

(17)

r =2,4, 6,

(3)r —lgr —2 (18)

where a harmonic term (k~) has also been included.
Without the harmonic term, Eq. (18) gives a very good
approximation, according to the arguments presented
above. However, it is easy to see that the localized solu-
tion A (. . . , 0, —

—,', 1, ——,', 0, . . . ) does not solve the pure-

ly harmonic equations of motion; in that case one recov-
ers the familiar homogeneous plane-wave solutions.
Hence, for Eq. (18) to be a good approximation in the
presence of nonzero k2, the anharrnonic terms must be
sufficiently large relative to the harmonic term. Note
that the anharmonic terms involve both the anharmonic
force constants and the mode amplitude. In particular,
for the case when only harmonic and quartic anharmonic
terms (k2, k4) are present, Eq. (18) reduces to Eq. (1),
which was obtained in Ref. 1 and was argued there to be
valid when the inequality 3k 4 3 /(4k 2 ) ))4/27 holds.

B. Even-parity localized modes

We now investigate the possibility of a new type of lo-
calized mode, namely one of even parity (g „=—(„),in
the periodic chain described by the potential given by Eq.

n —
1

so that all of the g„'s for ~n~
) 2 very rapidly approach

zero with increasing n, even for the r=4 worst case.
Hence, the localized relative displacement pattern
(. . . , 0, —

—,', 1, ——,', 0, . . . ) is indeed an exact solution in

the limit of large r, with the corresponding squared fre-
quency being given by Eq. (12). Moreover, this solution
is seen to give a very good approximation even in the
r=4 worst case of pure quartic anharmonicity.

(2). The most localized such mode has the relative dis-
placement pattern (. . . , 0, —1, 1,0, . . . ). It is convenient
to change the particle labeling such that the two particles
with nonzero displacernents are labeled n =+1, and there
is no particle labeled n=0 W. e then have g, =1=—

g
The substitution of this pattern into the n =+1 versions
of Eq. (7) leads to the frequency condition

k„CW" '
co„= (1+2" ') (even parity) .

m
(19)

The approximation arises from the fact that the ~n~ ) 1

version of Eq. (7) is not exactly satisfied by the above dis-
placement pattern, analogous to the situation discussed
above for the odd-parity case. The n=2 version of Eq.
(7) is given by Eq. (14), and an argument like that leading
to Eq. (15) yields the following approximate expression
for g2 for the even-parity case:

—1

1+2"-' (20)

This is the even-parity analog of Eq. (16), and we again
see that (2~0 in the large-r limit; hence, the localized
relative displacement pattern (. . . ,0, —1, 1,0, . . . ) is an
exact solution in this limit. Note that for the worst case
(r=4) we have f2= —

—,', which is small compared to l.
However, in the corresponding pure k4 case for the odd-

parity localized mode, we obtained (2= —,'„which was to
be compared with —,'. Thus, our approximate even-parity
localized-mode solution for the pure k4 case, while a fair-

ly good approximation, is less good than the correspond-
ing odd-parity local-mode solution.

It is straightforward to obtain a much more accurate
approximation for the pure k4 case. By equating the
n = 1 and n =2 versions of Eq. (7) for r =4, and neglecting

compared with ~$2~, one readily obtains
f2= —0. 166= —

—,'. Using the latter value and the fact
that C4= —,-', we find that the squared frequency is then

given by

k4A
co4= 6[1+(—,', ) ] (even parity) . (21)

For a given amplitude A, the frequencies obtained from
Eqs. (19) and (21) differ by just 3%. To investigate the
magnitude of g3, we use the n = 3 version of Eq. (7), tak-
ing f2= ——„' and assuming ~g3~ and ~g4~ are each && ~g2~.

This gives the squared frequency as 3k43 /[4m (6) g3],
and comparison with Eq. (21) then yields (3= 1/2071=0.

Summarizing, the even-parity localized-mode displace-
ment pattern for the pure k4 case is accurately given by
A (. . . , 0, —„', —1, 1, ——,', 0, . . . ), with the corresponding
squared frequency given by Eq. (21). For the higher-
order anharmonicity cases r =6, 8, . . . , the earlier ap-
proximations of Eqs. (19) and (20) are excellent, and the
mode pattern is very close to its asymptotic limit
A (. . . , 0, —1, 1,0, . . . ). Direct numerical rnolecular-
dynarnics simulations have verified the accuracy of the
above solution for the pure k4 case.
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IV. CONCLUSION

This work has explored the nature of localized vibra-
tional modes in strongly anharmonic periodic one-
dimensional systems. By directly studying the classical
equations of motion, we have shown that in the asymp-
totic limit of increasing even orders of nearest-neighbor
anharmonic interactions, the "molecular"-like odd-
parity and even-parity localized displacement patterns
A (. . . ,0, —

—,', 1, ——,', 0, . . . ) and A(. . . , 0, —1, 1,0, . . . )

are exact solutions within the rotating-wave approxima-
tion. For the lowest-order case (pure quartic anharmoni-
city), the above odd-parity solution remains a very good

approximation, whereas the above pure quartic even-

parity mode solution requires a relatively small correc-
tion. These modes may be centered on any lattice site.
For a system containing just harmonic (kz ) and quartic

(k&) terms in the potential energy, the odd-parity solu-

tions correspond to those found previously in Ref. 1 for
the case of suSciently strong anharmonicity.
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