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d-dimensional conductivity, conductivity exponent, and critical concentration in the site problem
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We generalize grey scaling to d dimensions and calculate the electrical conductivity of a hyper-

cubic network. The critical exponent t and the site percolation threshold p, are estimated for

2~d~6. The values obtained are in good agreement with those obtained theoretically or by

other methods.

I. INTRODUCTION

Studying the electrical properties of a percolating ran-
dom resistor is an important problem in the subject of
critical phenomena of inhomogeneous materials. They
have been investigated both theoretically' and experi-
mentally. ' All theoretical studies of the electrical con-
ductivity, apart from Ref. 5, have solved Kirchoff's equa-
tions at each site. This is not always an easy task and is
time consuming.

In a previous paper the method of grey scaling has
been introduced in two and three dimensions. It is

significantly simpler than solving Kirchoff's equations.
Moreover, it can even be implemented using small person-
al computers. Furthermore, it gives acceptable values for
the critical concentration p„ the conductivity 5, and the
conductivity exponent t given by

S-(P —P.)' (P &P.) ~

despite use of a small lattice.
In this paper we generalize grey scaling to a general d

dimension. We then calculate P„S, and t in four, five,
and six dimensions using computer simulation.

We did not proceed for higher d since it is known that
d 6 is the critical dimension for percolation theory and
our results are in excellent agreement with the expected
value from mean-field theory. We will compare it to the
previously proposed formulas. 9, ~0

C given by

C 1 + 1

I/C)+1/C2 1/C3+ 1/C4
'

where C~, C2, C3, and C4 are the conductivities of the
sites. The resulting super cells are renormalized and so on

until we get the bulk conductivity. Therefore in grey scal-

ing we do not solve Kirchoff"s equations at each site. This
is a great advantage since solving these equations is by no

means an easy task and we invite the reader to look at
Straley's comments about them. Moreover, the simplici-

ty of grey scaling has enabled us to use only personal com-

puters to study the random site problem. The cell renor-

malization in Fig. 1 has been used before" in a theoretical

study of the site-diluted resistor networks. The real-space
renormalization group has been applied there to get p,
and t in two dimensions. There is no repetition between

this paper and ours since grey scaling is a simulation

method. Using it we are able to calculate C, p„and t for
all dimensions 2~ d ~ 6, as shown later on. From the
theoretical point of view grey scaling is a real-space renor-
malization. This is a well-established method and ensures

the correctness of grey scaling. The limitations of grey
scaling are those of real-space renormalization which has

been studied before. '

The transformation in 2D is

P'-P'+4P '« —P)+2P'(1 —P)'

II. GREY SCALING IN GENERAL DIMENSIONS

Scaling is one of the most useful ideas in condensed
matter and field theory. In ordinary scaling [say in a
two-dimensional (2D) random resistor network] a square
lattice is replaced by a single supersite. This supersite is
considered conducting if the current can pass across the
original lattice, otherwise the supersite is considered an in-
sulator. This idea is successfully used to calculate p, and
the critical exponents v and t.

Grey scaling is a hybrid of computer simulation and a
real-space renormalization group. As an illustration we

apply it to a two-dimensional square lattice, shown in Fig.
1. This is renormalized into a supersite with conductivity

FIG. 1. Schematic illustration of the transformation process
of four sites in a square lattice to a supersite with conductivity
C.
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FIG. 2. The conductivity in 2D for different lattice sizes.

which gives p, 0.618 for d 2. We will see that this is in

excellent agreement with the value obtained in our simu-
lation (0.6183). The grey scaling transformations for
3 ~ d ~ 6 are listed in the Appendix. In Fig. 2 the con-
ductivity is shown in 2D for different lattice sizes ranging
from 64 to 512. The figure clearly shows that the method
improves as the lattice increases as well as giving good re-
sults for small lattices. This ensures that this method is
correct at least in two dimensions.

We generalize grey scaling to calculate p„ t, and S in

any dimension. To do this let us imagine a hypercube in d
dimensions whose sites have conductivities S(I~,I2, . . . ,
Ig) where I~,I2, . . .,Ig are the coordinates of the site.
Without loss of generality we take the direction of the po-

tential difference to be along the first axis. We sum the
resistances which are in a series. They are determined as
follows: There are d terms R;, i 1,2, . . . ,d given by

R(l), I2, . . . ,I,+ I, . . . ,Id)

+R(1)+I,I2, . . . ,I,+ I, . . . ,Id), (4)

a 23, . . . ,d,

R) ~R(I&,Iz, . . . ,Ig)+R(I)+ I,I2, . . . ,Ig), (s)

Then there are ( 2') terms %'kI where d~ I & k» 2
given by

Rk( R(l),Ii, . . . , II, i,Ik+ I,Ik+i, . . . ,II+ I, . . . ,Iu)+R(Ii+ I,I2, . . . ,Ik+ I, . . . ,I(+ I, . . . ,Id) .

There are ( i ') terms Ski, d ~ m & I & k ~ 2 defined by

(6)

Rpippg R(I),I2, . . . ,II, + I, . . . ,II+ I, . . . ,I~+ I, . . . ,Ig)+R(I)+ I,I2, . . . ,Ik+ I, . . . ,II+ I, . . . ,I~+1, . . . ,Id), (7)

and so on until we reach the final term Rk, k, . . . k, , given
by

Rk)k~ ~ k~ ( R(Ii,I2+ I,Ii+ 1, . . . ,Id + 1 )

+R(I)+ I,I2+1,I3+ I, . . . ,Id+ I ), (8)

The total number of these resistances is 2" '. Then the
conductivity 8(I&,I2, . . . ,Id ) of the equivalent supersite is

d d
C (I),12, . . . , Ig) g I/R;+ g I/%'I, (

t 1 l&k 2

+ +I/~k. k, ', ,

ae-
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P
The argument for the validity of grey scaling is the

same as ordinary scaling, namely systems near phase tran-
sition are scale invariant, ' consequently they are self-

FIG. 3. Dependence of the conductivity S on the concentra-
tion of the conducting phase p for d 3.
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TABLE I. Values for p, and t in dimensions d 2-6.

0.6183
0.2845
0.1384
0.0728
0.0306

1.2711
1.7446
2.4167
2.7522
3.0000

0 Q2 0.6

Q8

S

(b)

dimensional system.
Both p, and t are calculated from the previous figures,

and the following values for p, and t were obtained:

t 1.2711 ~0.004, p, 0.6183~0.002, for d 2,

t 1.7446+0.003, p, 0.2845+0.002, for d=3.
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FIG. 4. The same as Fig. 3 for (a) d ~4, (b) 1 5, and (c)
d 6.

III. RESULTS AND DISCUSSION

A binary system consisting of two phases of conduc-
tances, 1 and 10 s, was studied from two to six dimen-
sions. Figure 3 shows the conductivity S as a function of
the concentration of the conducting phase p for a three-

similar. Therefore, lumping several small units should

reproduce the original system. Hence after a sufficient
number of scalings we will obtain a super, super, . . . su-

persite which is equivalent to the original network.
From a practical point of view the simplicity, efficiency

of grey scaling, and the ability to use it on rnicrocomput-
ers makes it, in our opinion, better than the usual simula-
tion methods to calcu1ate p„ t, and C.

These values agree with the presently accepted values.
We generalize grey scaling by four, five, and six dimen-

sions and our results are shown in Fig. 4. The obtained
values for t and p, are given in Table I. In Table II we

compare our results for t with other choices offered in the
literature. ' The obtained value for t at d 6 is in excel-
lent agreement with the theoretically expected value
( 3). This gives further credibility to our method. Our
results for p, are valid only for 2 ~ d ~ 6 since p, changes
with d without saturation.

Grey scaling has been applied to determine the conduc-
tivity, the critical concentration, and the conductivity ex-
ponent for a site-diluted network for all dimensions d ~ 6.
The results obtained for d 2, d 3, and d 6 agree with
those obtained by other methods. It has both the advan-
tages of real-space renormalization and the advantage of
simulation methods. It has more advantages than real-
space renormalization, e.g. , calculation of conductivity
and studying d & 2 problems without much difftculty.
Also, it has more advantages than the usual simulation
methods' s since we do not need to solve Kirchoff's equa-
tions at each site and we do not have problems with con-
vergence. To get a feeling of what this means we recall
that ordinary simulation methods require that Kirchoff's
equations are solved at each of the 2 sites of the unit hy-
percubic cell, 2 4, 8, 16, 32, and 64 for d 2, 3, 4, 5,
and 6, respectively.

We conclude that grey scaling is a new and quite useful
simulation method.

APPENDIX

The grey scaling transformations in dimensions 3 «d
«6.

In this appendix we list the scaling transformations for
3 «d «6. We have listed the transformation for d =2 in

Eq. (3). For d 5 and 6 the transforrnations are very
long, therefore, for these dimensions, we list only the dom-
inant terms, i.e., those with contributions ~ 10

For d 3:
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TABLE II. Comparison of the present results for t with values from Refs. 9 and 10.

t1

t2

t3
t4
l5

t6
ts

1.14
1.33

1

1.28
1.33
1.26
1.27

d 3

1.35
1.66
1.83
1.70
1.86
1.90
1.74

1.64
2.04
2.36
2.28
2.38
2.40
2.42

d 5

1.83
2.16
2.62
2.67
2.56
2.55
2.75

d 6

3.00

t| 1+P
t2-(d l)v-

t3 1+(d —2) v

t4 I +2P
t s (Sd —6)v/4

t [(3d —4) v —P]/2
t, -our

1 —p' (1 —p) +8p(1 —p) +24p (1 —p) +32p (1 —p) +16p (1 —p)4.

Ford 4:

1 —p' (1 —p)' +16p(1 —p)' +112p (1 —p)' +448p (1 —p)' +1120p (1 —p)' +1792p (1 —p)"
+1792p (1 —p)' +1024p (1 —p) +256p (1 —p)

For d 5:

(A1)

(A2)

1 —p™(1 —p) + 32p (1 —p )3'+480p 2(1 —p) 3o4480p 3(1 —p )2s+ 29 120p s(1 —p )2s+ 153216p s(1 —p ) 27

+512512p (1 —p) +146432p (1 —p) +5706220p (1 —p) +5857280p (1 —p) +. . . . (A3)

Ford 6:

1 —p'~ (1 —p) +64p(1 —p) +1984p (1 —p) +3968Qp (1 —p) '+575360p (1 —p) +8928QQp (1 —p)
+59794287p (1 —p)ss+(4. 3083xlOs)p (1 —p) +.. . . (A4)
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