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Many-body effects in the binding energy of oxides can be incorporated eSciently in empirical
Hamiltonians by including terms that describe the response of the ionic charge density to the crys-
talline environment. It is assumed that the effect of the ionic response on interionic interactions is

completely characterized by the dependence of the ionic radius on the crystal field, which in turn is

given by the positions of all the ions in the system. The model is particularly suitable for oxides,
where the field is necessary to stabilize the 0' ion. This scheme has allowed ab initio electron-gas
models to predict elasticity and phase transitions in oxides. Here we propose simple parametric ex-

pressions for the dependence of the ionic radius on the crystal field, and the dependence of the ener-

gy on the former. By parametrizing the Hamiltonian, and solving for harmonic phonon spectra
without approximations, we obtain accurate volume-dependent thermodynamic properties at the

experimentaHy accessible range of pressure and temperature. Predictions of thermoelastic proper-
ties at conditions beyond experimental capabilities are readily obtained. Of particular interest is our
finding that the sensitivity of the compressibility to temperature decreases significantly at high

compressions. Reduction of thermal effects at high pressures is plausible from a theoretical stand-

point. However, the only physical manifestation of our prediction comes from the geophysical data
on the Earth's interior. Seismic studies find that the transverse-acoustic velocity in the Earth's ox-

ide mantle is significantly more sensitive to temperature than the longitudinal velocities. Partial
melting has been suggested for reconciling this observation with the behavior of relevant minerals

under laboratory conditions. Our results support the alternative conjecture, that the relative insen-

sitivity of the longitudinal waves to temperature is a characteristic of oxygen-bearing minerals at
high pressure.

I. INTRODUCTION

Close-packed oxides are distinguished from other ionic
solids in that the electron density of the valence electrons
around the anion depends strongly on the crystal environ-
ment. ' This feature poses a difficulty to traditional
atomistic descriptions that have been instrumental in the
study of cohesive and vibrational properties of halides.
While progress in first principles and ab initio studies of
oxides is encouraging, ' parametric models have a
considerable appeal in investigations of complex struc-
tures. This approach ofFers economy in computation,
while it may clarify the physical picture, often blurred by
the details of the orbital structure. In addition, experi-
mental data constrain the calculations and warrants ac-
curacy in predictions. The investigation of materials and
geophysically important phases under conditions that are
difficult to reproduce experimentally will clearly benefit
from simple and reliable parametric models.

A number of adjustments to the ionic picture adapted
from the halides have been proposed. As opposed to
pairwise additive ion-ion interaction schemes for calcu-
lating the crystal potential, these models include many-
body terms. The breathing-shell model incorporates iso-
tropic deformation of the valence shell in response to the
short-range repulsion. A different many-body approach
is offered by charge exchange models that consider
corrections to the Madelung energy due to the extensive
overlap of oxygen and its neighbors. In these models the

many-body effects depend only on the distances from
neighboring ions. Thus the interactions between the
poorly bound valence shell and the long-range field has
been left out.

The premise of the present study is that the sensitivity
of the valence states to the crystal configuration
comprises the major contribution to noncentral forces in
oxides. This suggests a parametric description, where the
adjustments in the valence band are represented by the
deformation of the ionic charge-density distribution. The
principal characteristics of the charge density in the ionic
picture are the total ionic charge and its radial extent,
represented by an ionic radius. The innovation in the
present approach is in letting the effective ionic radius
vary dynamically, responding to changes in the environ-
ment. In a previous paper we have shown that a simple
parametric model can capture the many-body nature of
bonding in a transparent way by allowing the ionic radius
of oxygen to vary as a function of the crystal field. The
model reproduced the elastic constants of the alkaline-
earth oxides, and accurately predicted pressure deriva-
tives of elastic constants. Moreover, the calculated pres-
sures at which transformations frotn the Bl (NaC1-type)
to B2 (CsC1-type) structures occur in the cubic alkaline-
earth oxides were in good agreement with experiment. In
this paper we apply the model to the study of thermo-
dynamic properties of these oxides, and to predictions of
thermoelasticity at high compression.

The physical picture that underlies the model has been
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developed in electron-gas ab initio studies. ' Postulating
that the dependence of the valence band on volume
rejects a sensitivity of the charge distribution to the crys-
tal field; this scheme enabled quantitative modeling of a
variety of ground-state properties. "' Most notable are
the successful predictions of the sign of the deviation
from Cauchy relation, and predictions of phase transfor-
mations and pressure derivatives of shear moduli in satis-
factory agreement with experiment. These features sug-
gest that the many-body interactions are reasonably
represented.

In these electron-gas models the charge-density distri-
bution is taken as a superposition of the component
spherical ion's charge densities, where 0 needs to be
stabilized by an external potential that simulates the crys-
tal field. This stabilization is in the foundation of the
present approach. Here it is the variable ionic radius
that emulates the deformable valence orbitals. In Sec. II
we outline the utilization of this concept in parametric
models.

Section III applies the interatomic potential model to
macroscopic properties. The dynamic matrices derived
from our original model are irregular at the Brillouin-
zone center. ' In the present formulation we avoid this
anomaly by a careful redefinition of the potential that sta-
bilizes 0 . This modification does not affect the dynam-
ic matrices for infinite wavelengths, and hence the static
elastic constants and phase stability results are un-
changed. The present treatment is thus a generalization
of the original one, that was restricted to point-inversion
invariant configurations and transformations. Section
IIIB discusses the modification in the definition of the
stabilizing potential, and Appendix 8 outlines the correc-
tions in the dynamic matrices.

We describe the results of our calculations in Sec. IV.
It is of interest to compare the predictions of physical
models with inferences from seismology, which provides
the most extensive data on the equation of state and elas-
ticity of compressed hot minerals. The pressures inside
the Earth are in the megabar range with temperatures of
a few thousand degrees. ' Current interpretations of the
seismic data suggest that the behavior of certain thermo-
elastic parameters differ markedly from our experience at
laboratory conditions. ' This offers an opportunity to
test our understanding and our models of bonding in con-
densed matter. In Sec. V we compare our predictions
with some inferences derived from seismic data in ex-
treme pressures and temperatures.

The crystal potential is thus given by
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where b is a scalar with dimension of energy and R (k ) is
the effective radius of ion type k at unit cell l. The ex-
ponent is given by nkA =nk+nk, where n& is unique to
ion k. The effect of the environment on R,„(subscript
denotes 0 ) is mediated through the crystal field, which
acts to stabilize the unbound 2P orbitals. The depen-
dence of R,„on the crystal field 6 has the form:

=R,'+ (3)

m+gS R
m,j

The first term on the right-hand side of Eq. (I) is the
long-range electrostatic energy due to a lattice of point
charges. x is a lattice vector between two ions of types j
and j', at unit cells m and m ' respectively. Z is the ionic
charge of j and the primed summation symbol indicates
that the self-interaction terms are omitted. The second
term arises from overlap between neighboring ions. P is a
function of the internuclear spacing, as well as of the
states of the overlapping ions. The dependence of R on
the crystal configuration distinguishes the short-range in-
teractions in the present model from traditional paramet-
ric models. The last sum on the right-hand side of (I) is
extended over all deformable ions.

We assume that the short-range repulsion is represent-
ed by

l l '
1 I '

Rk Rk

II. MANY-BODY PARAMETRIC HAMILTONIAN

As in traditional parametric ionic models the leading
contributions to the binding energy are the Madelung
and short-range repulsion terms. The short-range repul-
sion between two neighbors, however, depends on the po-
sitions of all the ions. We accomplish this by assigning
an internal state (R) of energy S(R) to 0 . This inter-
nal degree of freedom depends on the crystal
configuration, and controls the interaction of 0 with a
given neighbor. This degree of freedom is assumed to be
represented by an effective ionic radius.

Q is a positive number with the dimension of charge. In
the absence of a stabilizing field, b, (k ) =0, the right-hand
side of (3) is infinite, refiecting the instability of 0 as a
free ion. As the lattice is compressed, b, (k ) increases and
thus diminishes the ionic radius, as we stipulate. R& is
the limit where an infinite stabilizing potential is applied.

The self-energy of 0 is composed of the kinetic ener-
gy of its electrons, and of electron-electron and electron-
nucleus Coulomb interactions. For a free-electron gas,
the kinetic energy varies as the square of the inverse di-
mension of the system, while the potential energy scales
as its inverse. This suggests for the self-energy the simple



41 THERMODYNAMIC AND ELASTIC PROPERTIES OF A MANY- . . ~ 7757

approximation
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TABLE I. Model parameters. Cation-independent parame-
ters: R„„=0.90267 bohr; Q =0.635, n„„=5.341; b =0.1864
hartree.

I
R

I
R

R,
(boh ) (hartree)

R,
(bohr)

where R („)is the ionic radius [Eq. (3)], r„ is the ionic ra-
dius at which the self-energy is a minimum, and 0. has the
dimension of energy. Slater' has invoked general scaling
arguments to suggest that these dependencies on dimen-
sion are not limited to uniform electron gas, and may
effectively account for correlations.

The explicit dependence of the self-energy on the repul-
sive radius R (I, ) (4) results in coupling among the self-
energy, crystal configuration, and overlap energy. As the
crystal is compressed, R (I, ) decreases so as to diminish
the repulsive energy. However, since the self-energy in-
creases, the ion acquires a radius for which the resulting
short-range forces balance the Coulomb forces.

III. THERMOELASTICITY

A. Homogeneous deformation and lattice statics

The stabilizing field b is composed of the long-range
point ionic potential as well as short-range contributions
from electron overlap. At low pressures the overlap is
small and the long-range Madelung potential dominates.
To first order, 5 scales like the long-range electrostatic
potential at the lattice point. Accordingly, we replace
b, (k } in (3) by the Madelung potential P (k ):

l l l l'
(5)

I', k'

This results in a static Hamiltonian (1) that, apart from
the form of the energy functionals (2) and (4), is formally
identical to the potential-induced breathing (PIB) (Ref. 6)
and Coulomb-stabilized modified electron gas' ' models.
In an earlier paper we have shown the utility of this ap-
proxirnation in calculating elastic constants and phase
transition pressure for the cubic alkaline-earth oxides.

The parameters of the model are determined by fitting
the analytic expressions for the elastic constants (Appen-
dix A) to our data. We use only data from the low-
pressure Bl (NaC1-structure) phases of the alkaline-earth
oxides. In fitting the parameters we have attempted to
minimize the number of parameters that are unique to
each compound. We determine the common parameters
for the series from the elasticity of CaO. CaO affords a
direct measure of the non-central-force part in the Ham-
iltonian: the observed second-order elastic constant C, z
differs significantly from C44. Except for vibrational con-
tributions, this difference arises from the different
response of R(h(k)} of 0 to the distortions that corre-
spond to these elastic constants (Appendix A). In addi-
tion, the equation of state of CaO is well characterized,
both experimentally' and theoretically. ' ' The four
cation specific parameters in each of the remaining com-
pounds are determined by fits to the equilibrium lattice
constants and three elastic constants.

MgO
CaO
SrO
BaO

1.449
1.743
1.893
1.979

5.040
8.004
9.507

13.42

2.0200
2.0010
2.0295
2.0490

2.740
3.525
3.840
3.927

In a preliminary study we have modeled the elasticity
and equations of states of the alkaline-earth oxides with
nearest-neighbor short-range interactions only. The
model that represented room pressure elasticity data ac-
curately and successfully predicted high-pressure shear
moduli and phase transformations. However, in the
nearest-neighbor model, where we are fitting cornpres-
sional data, the short-range forces between unlike ions
absorb the effect of the missing longer bonds. The result-
ing force constants give rise to overly high optical fre-
quencies, which are controlled by nearest-neighbor
short-range forces. To allow for this we have included
second-nearest-neighbor interactions in the present treat-
ment. The resulting parameters are listed in Table I.

B. Lattice dynamics of Coulomb stabilized ions

(6)

The application of (5) to lattice dynamics results in ir-
regular expressions for longitudinal modes at the
Brillouin-zone center. ' Uniform electric fields that are
induced by phonons shift the potential 5, and cause
"breathing" of the ionic charge density. " This response
is unphysical, since a spherical charge deformation can-
not interact with a uniform field. The spurious effect did
not appear in the static calculations (Ref. 9) due to the
maintenance of inversion symmetry, and thus, the mutual
cancellation of polarizing fields at ionic sites. Here we in-
troduce a correction to the model, explicitly eliminating
uniform fields from the stabilizing field (5). Care is taken
to leave the model for the static case unchanged. We
thus preserve the physics and accomplishments of the
static model, but relax the requirement on inversion syrn-
metry.

The field of a modulated di ole lattice can be factored
out of the dynamical matrix. ' This field is proportional
to 8 (k,j;q)=g' e 'q"' '[x („)/x ]. Combinations
of sums like this multiply coupling terms that include
first derivatives of 6 with respect to ionic displacements,
e.g.,
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The irregular behavior at the Brillouin-zone center can
be traced to the 8 sums which, when Fourier
transformed give

a+qae (k ' )= [I—6( )]g' eJ q

where Q is a reciprocal lattice vector and V is the volume
of a unit cell. 5(q) is 1 for wave vectors that equal re-
ciprocal lattice vectors, and zero otherwise. The Q=O
term clearly diverges in the limit q~O, (but not at q=O)
and gives rise to the anomalous behavior. 5(q) is a con-
stant of integration that corresponds to the macroscopic
field on sites k from a lattice of dipoles with unit charge
at the j sites. This term prevents the infinities at q=O.

Cohen et al. ' had an identical problem in their
ab initio electron-gas model. In order to calculate fre-
quencies at finite q, they remove from (7) the shift of the
potential due to lattice polarization induced by longitudi-
nal phonons. The polarization shift is approximated by a
Gaussian average, with a half-width on the order of the
unit-cell dimension. To our experience, this approxima-
tion is a valuable tool in exploring the general shapes of
the dispersion curves. However, this approximation pro-
duces small errors in the frequencies, and generates inac-
curacies in certain thermodynamic functions that depend
on higher-order derivatives of the spectrum. In particu-
lar, strain derivatives of the harmonic energy may be sen-
sitive to the choice of the weighing function. Tempera-
ture derivatives of shear elastic constants thus depend on
the choice of the Gaussian half-width.

For the calculation of unambiguous thermodynamic
properties in an internally consistent model, we explicitly
eliminate potential shifts due to uniform fields from the
definition of the stabilizing field (5). We define the stabil-
izing potential as the potential di8'erence between the site
in question and the average of the potential at neighbor-
ing sites. We shall demonstrate that the modification
preserves the expressions for finite deformation, and thus
at the long-wavelength limit, the models are identical.
Moreover, the modified model reduces to the original one
at the Brillouin-zone boundary as well.

We define the stabilizing potential as follows:
r

l l ) ~ l'

k k X. k'n (I

k'

where the primed indices denotes sites neighboring to ( k )

and the summation is carried over the n nearest-neighbor
sites. For deformations that do not generate uniform
fields, this definition reduces to (5). This is the case for
elastic deformation and infinite wavelength phonons in
centrosymmetric structures.

To facilitate the comparison with the original un-
corrected model for the limit q~O, it is useful to consid-
er the induced macroscopic field. In the long-wavelength
limit, the macroscopic field is given by the field of a
uniform distribution of dipoles. Solution of Poisson s
equation yields the polarization field (4~i /V)(q /

q )e ' "' ' . This term should be subtracted from (7) at
the limit q~O. It is identical to the Q=O term in (8) and
thus eliminates the irregular behavior. This correction is
not valid for short waves, yet it is a useful test for the
consistency of other corrections with the original model
at the Brillouin-zone center.

At Brillouin-zone boundaries, the induced fields alter-
nate over interatomic distances, and therefore phonons
do not generate spurious potential shifts. It follows that
any consistent solution should reproduce the frequencies
of the original model both at q=O and at the Brillouin-
zone boundaries.

Longitudinal eigenvalues based on (8) are indistin-
guishable from the results of the long-wavelength treat-
ment of (5) for wavelengths between infinity and two unit
cells, and are identical with the uncorrected model at
Brillouin-zone boundaries. The prescription of Cohen
et al. ' yields generally good agreement with the long-
wavelength and Brillouin-zone edge limits, although
discrepancies of few wave numbers do appear.

The modification in the definition of b, (5) requires
some adjustments in the dynamical matrices. These are
summarized in Appendix B.

Appendix C gives the expressions used for calculating
therrnodynarnic properties in the quasiharmonic approxi-
mation. These thermodynamic functions are experimen-
tally accessible manifestations of the anharmonicity, and
serve as tests of the aptness of the model Harniltonian in
the quasiharmonic limit in modeling thermoelasticity of
oxides.

IV. RESULTS AND DISCUSSION

A. Model parameters

Table I lists the model parameters. Note that b, R„,
Q,„, and n, „(subscript: 0 ) are independent of the cat-
ion. We were not able to fix the self-energy parameters of
0 ~ In particular, the self-energy parameter increases
with the cation, or the number of electrons in the system.
This seems to indicate that the neglect of cation breath-
ing is not fully justified. Although even the heavy cations
are tightly bound relatively to 0, small fractional
changes in their energies amount to sizeable changes in
the absolute energy. '

The cation radii are ordered in size corresponding to
the number of electrons. Figure 1 shows a correlation be-
tween the model radii and values derived from self-
consistent-field (SCF) ab initio calculations. The latter
are the radii of spheres that contain all the ion's charge
but half an electronic charge. The almost linear corre-
lation suggests that the potential parameters faithfully
represent the essential physics of repulsion. The in-
clusion of electron-electron correlation in the SCF calcu-
lations would probably enhance the correlation with our
radii (cf. Ref. 16).

We note that the self-energy is a measure of the cou-
pling of the ion's orbitals with the crystal states. In the
band picture, it is the bandwidth that measures that cou-
pling. Figure 2 compares the models self-energies with
results from first principles SCF band-structure calcula-
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FIG. 1. Comparison between the model's cation radii and
self-consistent-field radii (see text for further information).

tions of Bukowinski (Ref. 1) on MgO at a wide range of
compressions. The high correlation suggests that the
splitting of the local states due to the crystal environment
is modeled reasonably. A similar correlation was ob-
tained for the 81 (NaC1) phase of CaO. In both cases, the
two energy measures are linearly correlated with
compression. Although our self-energy expression (4) is
not simply related to compression, these quantities corre-
late at the relevant range of pressures. This observation
opens the possibility of sparing parameters in future
work.

B. Phonon spectra

The calculated acoustic branch dispersion relations are
in good agreement with neutron-scattering data (Figs.
3—6). The agreement for optical branches is generally
poor, although the shapes of the dispersion curves are
largely reproduced Transv. erse optical (TO) branches for
MgO agree well with the data, while the longitudinal

0.5

FIG. 3. Phonon-dispersion curves for MgO. The lines are
calculated with the many-body Hamiltonian model. The dia-
monds are data from M. J. L. Sangster, G. Peckham, and D. H.
Saunderson, J. Phys. C 3, 1026 (1969);G. Peckham, Proc. Phys.
Soc. 9Q, 657 (1967).

(LO) are too high. The LO-TO splitting is reproduced
for BaO, and the agreement worsens toward the lighter
oxides. The LO-TO splitting is moderated by the charge
relaxation. " The neglect of charge relaxation due to
overlap may cause much of the discrepancy in our model.
The problem becomes more acute for the smaller more
electronegative cations. A similar trend, from heavy to
light cations, was observed by Cohen et a/. ' in the FIB
calculations. The fact that the discrepancy in LO-TO
splitting is worse for MgO with the lowest cation polari-
zability suggests that in addition to ionic polarization,
modifications in the many-body terms are needed for im-
proved optical modes.

C. Qnasiharmonic thermodynamics

The expressions for thermal properties in the quasihar-
monic approximation are given in Appendix C. The har-
monic free energy and its derivatives are obtained from
the phonon spectra, which are computed at various
configurations. Table II lists the calculated standard
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FIG. 2. Correlation between model self-energy and self-
consistent-field valence bandwidth at various compressions for
MgO. The bandwidth data is from Bukowinski (Ref. 1).

FIG. 4. Phonon-dispersion curves for CaO. The diamonds
are data from Saunderson and G. E. Peckham, J. Phys. C 4,
2009 (1970).
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FIG. 5. Phonon-dispersion curves for SrO. The diamonds
are data from K. H. Rieder, R. Migoni, and B. Renker, Phys.
Rev. B 12, 3374 (1975).

FIG. 6. Phonon-dispersion curves for BaO. The diamonds
are data from S. S. Chang, C. W. Tompson, E. Gurmen, and L.
D. Muhlstein, J. Phys. Chem. Solids 36, 769 (1975).

temperature pressure (STP} thermoelastic properties
along with published experimental data. The calculated
heat capacities of MgO, CaO, and SrO are underestirnat-
ed by up to 10%. The discrepancies diminish with the
cation size, due to the better agreement of the phonon
spectra (Figs. 3—5). Thus the calculated heat capacity of
BaO agrees well with experiment, on par with the accu-
rate spectrum (Fig. 6).

Noting that the only input on the fourth-order varia-
tion of 4 is the theoretical equation of state for CaO (81)
phase, the agreement between calculated and experirnen-
tal anharrnonic bulk properties is very satisfactory in
most cases. The agreement for volumetric expansivity
(a} is excellent for MgO and BaO, and reasonable for
CaO and SrO. The product +AT agrees very well with
the data for all the compounds. The Griineisen parame-
ter (y) agrees with the data within the experimental un-

certainty. 5, and 5T (Appendix C) are reproduced very
well for MgO, and progressively worse with increasing
cation atomic number. This trend is correlated with the

increasing anharmonicity (due to the low Debye tempera-
ture of the heavier compounds). The temperature deriva-
tive of a is not very well constrained experimentally. For
MgO, where there is ample data, the calculated value is
10—15% higher than observed. This is probably due to
anharmonic effects, as shown below (discussion of Fig. 7).
The derivative for CaO is more than 40% too high. It is
expected that for CaO anharmonic effects are more
significant, due to its lower Debye temperature.

The average volume derivatives of the elastic constants
are in very good agreement with data for the four com-
pounds (Ref. 9). It follows that the acoustic Griineisen
parameters are in good agreement with experiment.

Significant discrepancies appear for temperature
derivatives of shear moduli B, and 844. Both moduli de-
crease rapidly with temperature. The quasiharmonic B,
in MgO vanishes at 700 K. This exaggerated tempera-
ture dependence may be due to a soft mode in the model.
Negative eigenvalues, corresponding to instabilities, were
encountered when the finite distortion that corresponds

TABLE II. Calculated and experimental thermodynamic properties at STP.

a
(10-' K-')

Cp (Ba /8 T)p aKT
(J/mol K) (10 '/ K') MPa/K BK, /BP q

MgO
Calc. 1.66
Expt. ' 1.53+.01
Cao
Calc. 1.64
Expt. ' 1.6 +1

31
31

34
38

3.2 6.0
3.4+0.3 5.5

3.2 5.6
4.8+0.8 6.5+1.1

33.9
37.3

40.0
43.3

7.3
6.3+.3

5.5
3.0+1

4.2 1.7
4.2+0.3 1.6

1.7
1.7

3.8 4.1

3.7+0.5 5.4+6
4b

SrO
Calc.
Expt. '
BaO
Calc.
Expt. '

1.63
1.72+2'

1.68
1.48+0. 15

37
42c

38
38

3.2 5.4
5.0+3.0 7.0+3.0

3.6 3.8
5.6+2.6 7.5+3.0

43.3
45. 1

46.0
45.4

4.3

3.8

3.4 4.0
3.0+0.7 5.6+0.4

3.0 3.6
3.6+0.3 5.5

1.9

3.3

'From data compiled by Sumino and Anderson.
Data BKT/BP taken from Ricet et al.

'Not including the entire range of a.
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FIG. 7. The temperature dependence of the thermal expan-
sivity calculated by the present model (line) and experimental
(diamonds, data from Anderson and Suzuki).

FIG. 8. The temperature dependence of the adiabatic
modulus of MIO at zero pressure. The line is calculated by the
present model. The diamonds denote data from O. L. Anderson
and I. Suzuki, J. Geophys. Res. 88, 3549 (1983).

to B, (tetragonal) exceeded 0.01. Some of the discrepan-
cy in the temperature derivatives of the elastic moduli
can be attributed to anharmonic effects, that are likely to
be large in the presence of a soft mode.

Calculation of shear moduli with the prescription of
Cohen et al. ' for the dynamic matrices (Sec. III B) re-
veals a significant dependence on the half-width of the
Gaussian weighing function, particularly for B,. A
change of 50% in the half-width changes 8, by 40 GPa.

D. High pressure and temperature results for Mgo

Figure 7 compares the calculated volumetric thermal
expansivity with experimental data for MgO. The model
reproduces the thermal expansivity to 400 K. At higher
temperatures, the calculated temperature derivative is
about three times higher than that observed. In Fig. 8 we
plot the adiabatic bulk modulus of MgO to high tempera-
tures. The calculated adiabatic bulk modulus agrees with
the observations to 1000 K. Above this temperature
[=1. 1 X (Debye temperature)], the predicted K, is lower
than that observed. This is probably due to the anhar-
monic contributions to the phonon spectrum, which we
have neglected. Another source of error in the high-
temperature range may be the LO frequencies, which are
poorly predicted by the model. Figure 9 shows the tem-
perature dependence of +AT. Anderson and Suzuki '

have calculated the thermal pressure directly from exper-
imental data. Our calculations agree with theirs to 400
K. Above this temperature, Anderson and Suzuki find
that the thermal pressure is independent of temperature,
while we find a slight increase with temperature. The
flattening of the experimental curve may be an anhar-
monic effect.

The model can predict high-temperature behavior of
volume-dependent properties at pressures for which
anharmonic effects are sufficiently suppressed. Laborato-

Mgo

bC

cj
04

2- n8cSuzuki
0
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FIG. 9. The temperature dependence of o.ET at zero pres-
sure. The line is calculated by the present model. The squares
are experimental values by Anderson and Suzuki.

ry data under simultaneous high pressure and tempera-
tures are not extensive enough to allow systematic com-
parison with theoretical results. Seismic data, on the oth-
er hand, has enabled the recognition of trends in the be-
havior of acoustic properties with high pressure and tem-
perature. Anderson" deduced from a large body of se-
ismic observations on the acoustic response of the oxide
Earth mantle that [(Bin V, /8 lnV )]~=2—2. 5 where V,
and Vp are the shear (transverse) and compressional (lon-
gitudinal) wave velocities, respectively. He has attributed
this to the different effect temperature has on the shear
and bulk modulus. Partial melting is an alternative ex-
planation to the high [(c}lnV, /8lnV )]p, since V, vanish
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in any molten domain. For a subsolidus mantle, Ander-
son finds that the temperature dependence of the bulk
modulus must be anomalously low. 5, (defined in Appen-
dix C) for relevant minerals is reduced from 3.9+1.4 un-
der laboratory conditions, to 1.4+0.4 at compressions of
1.1 —1.4. The calculated pressure and temperature
dependence of 5, in MgO is presented in Fig. 10. Two
isotherms are plotted, along with experimentally deter-
mined values at zero pressure. Our calculations indicate
that compression indeed lowers 5, by an amount that is
consistent with the findings of Anderson (Ref. 15). This
suggests that no partial melting is required to interpret
the lower mantle seismic data.

For moderate compressions, the logarithmic iso-
thermal volume derivative of the Gruneisen parameter
q =[(8lny/8 ln V)]T can be taken as a constant. It is of
interest to find the limits of this approximation, which is
used in reduction of experimental data. Figure 11 shows
the variation of y and q with pressure for two isotherms.
For a given pressure, y is not very sensitive to tempera-
ture. Our model predicts a decrease in q with compres-
sion, as well as with temperature. This trend has been
predicted independently for monatomic lattices.

2.0-

).5-

).0-

0.5-

q (800 K)

0 20 40 60 80 )00 120
P (GPa)

FIG. 11. Calculated pressure and temperature dependence of
y and q.

K. Phase transitions

Structural phase transformations in ionic solids pose
stringent tests to ground-state energy theories. Recent
advances in high-pressure experimental techniques en-
abled the documentations of 81 82 (NaC1-C-sC1) transi-
tion in the alkaline-earth oxides. The nearest-neighbor
static model calculations (Ref. 12) give accurate equa-
tions of state of the B2 (CsC1) phases of CaO and SrO,
even though no data from these phases was used to con-

VgQ
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100 300 SOO
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FIG. 10. The temperature and pressure dependence of the
adiabatic Anderson-Gruneisen parameter. The lines are isobars
calculated from the present model. The diamonds are from
data, given by Anderson and Suzuki.

strain the parameters. Moreover, the predicted transition
pressure was within 20% of the observed. The present
study yields similar results. The introduction of second
nearest neighbors increases the transition pressures by 2
GPa, and the vibrational correction to the Gibbs free en-

ergy decreased it by the same amount. The B1-B2 transi-
tion in MgO is predicted to occur at 500 GPa, beyond the
range of current experiments.

An interesting result of our calculation is that the B2
phase of CaO is elastically unstable below 34 GPa. This
is consistent with the observation that the higher pres-
sure phase is not quenchable. '

The ability of the model to predict the 82 phase equa-
tion of state and the close agreement with experimental
phase stability data suggests that we can investigate the
thermodynamic properties of the B2 phase. Table III
lists the properties of the two phases at the transforma-
tion pressure (75 GPa in our model). Note the increase in
the Griineisen parameter and the thermal expansivity,
and the decrease in the bulk velocity (QK, /p where p is
the density).

It is interesting to compare the predictions of the
many-body model with rigid-ion potentials. Based on
central pair potentials calculations, Jeanloz and
Roufosse have predicted increases in y and in a across
a transition with such a density jump (10%). The central
pair potentials predict a relative change of Ay/yz& ~0.3,
while the many-body model predicts 0.47. Both atomistic
models differ from continuum models, which yield de-
creases in both a and y. Changes in acoustic velocity
across phase transformations have particular significance
in geophysics, where the distinction between phase trans-
formation and chemical heterogeneity is crucial to mod-
eling seismic data. The present many-body model yields
a 2% decrease in the bulk velocity, which is the low end
of the range predicted by pair potentials.
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TABLE III. Calculated thermodynamic properties across Bl-B2 transformation in CaO.

81
B2

(jo ~ K.

6.5
11

3.63 1.16
3.84+0.3 1.70

2.04 4.80
1.92 4.86

(a~/ax),

2 ' 5

2.9

V~

(m/sec)

0.82 9371
0.85 9115

(B1-B2)/B1 0.69
0.5 ; «0.9"

0.46 &

0.19 «; 0.32'
—0.02
10«; .02"

'Data taken from Jeanloz and Roufosse, 1982.
Data taken from Jeanloz, 1983.

V. CONCLUSIONS

We have presented a parametric model that reduces
the quantum mechanical picture of the oxide solid to a
semiclassical ionic one. The model captures much of the
intricate many-body e6'ects by ascribing to each ion a sin-

gle internal coordinate. The model parameters convey
intuitive meaning to the physical constituents of the sys-
tem.

The agreement between the calculations' predictions
and experimental measurements is encouraging. The
bulk thermodynamic properties are in excellent agree-
ment with experiments to high temperatures. We cannot
well predict the behavior of individual elastic constants
under high temperature and compression. Some of the
anharmonic parameters of the model are in very good
agreement with data. While aggregate properties are the
more important observables in applications such as geo-
physics and material engineering, our shortcomings in in-
dividual predictions underscore deficiencies in the model.
The model attributes all the many-body interactions to
the potential-induced breathing. Ionic polarization prob-
ably gives rise to some of the observed deviation from
Cauchy relation, through modifications of neighbors'
overlap. Since the parameters are determined by fitting
to the elastic constants, a bias is introduced to the breath-
ing parameters. The fact that electron-gas models with
similar simplifications have generated almost identical
trends in the phonon spectra indicates that these
simplifications caused the inaccuracy in both cases. We
stress, however, that the simplicity of the model has al-
lowed us to address a variety of processes with a quanti-
tatively successful outcome. It is unusual that a simple
parametric model can represent such a variety of data as
shear elasticity, phase stability, and optical properties,
where 20 parameters sumce to describe four compounds.

A particularly promising aspect of the model is the
ability to transport the parameters across phase transi-
tions. The accurate prediction of B2 (CsCI-type) equation
of state and stability field, when no data from this struc-
ture has been used, implies that the eit'ects of environ-
ment on the internal state of 0 have been modeled
reasonably. This allows us to calculate changes of ther-
modynamic properties across the transformation with
considerable confidence.

Although the model can benefit from improvements in
the parametrization, as well as from incorporation of ion-
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APPENDIX A: EQUATION OF STATE
AND ELASTIC CONSTANTS

The non-rigid-ion contribution to the static pressure is
given by

pnr
m

+ QS
m, j

(A1)

where V is the volume. Since 5 scales like an inverse
length, its volume derivative is just 5/3V. The deriva-
tives with respect to 5 can be expanded in terms of
derivatives with respect to the ionic radii. From (3) it fol-

ic polarization, it is already a workable tool, useful in pre-
dicting properties, as well as in illuminating observations
and results of more fundamental studies.

The model generates thermodynamic properties of the
cubic alkaline-earth oxides in good agreement with avail-
able data at STP. For MgO, where a large range in ex-
perimental temperatures is available, the model success-
fully predicts the temperature variation of the bulk
modulus and thermal expansivity. Application to higher
temperatures at zero pressure requires incorporation of
anharmonicity. The calculations for simultaneously high
pressure and temperatures are less sensitive to anharmon-
icity.

The model's predictions on the high-pressure behavior
of thermoelastic parameters agree with certain interpre-
tations of seismic data. High pressure suppresses the
temperature dependence of the bulk modulus. This im-
plies that no partial melting of the lower mantle is re-
quired to account for large values of [(Bin V, /8 1nV~)]z.
The model predicts that the logarithmic volume deriva-
tive of the Gruneisen parameter increases with pressure.
This conclusion is important for interpretation of experi-
mental and seismic data.
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lows that

aR„'

I

Q»
2

I
(A2)

The elastic constants can be decomposed into energy con-
tributions in accordance with the terms of Eq. (1), and a
contribution from vibrations (superscript TH). In Voigt
notation we may write

I I'

av

I I'

k k'
Q»

l

Q»

(A3)

We diff'erentiate Eq. (2) with respect to the ionic radii
sum R»». and substitute (A2) for their derivatives to ob-
tain

C- =C'- +C@+C-' +C-
ig ij ij ij ij (A5)

9 Sk gg gg BSk

ag2 a„, a„,
'

a~ a„,a„,
(A6)

where each of i and J correspond to a pair of Cartesian
coordinates. The Coulomb contribution C,

' is the same
as in rigid-ion models. The contribution to the elastic
constants from the self-energy is

3 VRk

Similarly, differentiation of (4) yields
T

rl&

av Rk
(A4)

where p is the mass density and g, ;,g; are the strains.
The summation is carried over all deformable ions. The
contribution from short-range repulsion (2) contains the
common rigid-ion terms, and the following many-body
terms, and a mixed term:

1c~=p—
I I', k, k'

I l'
'&kk

ah
ab, ab

all all

I I'

k k'82

+
a~, a~, a&a~

aa -j"f, aa ~.;~i;+
87/, x 877j x

(A7)

where the indices of the Cartesian components are
suppressed. The derivatives of 6(») with respect to
strains have been evaluated by Ewald-transformed lattice
sums. The second derivative of the ionic radius is readily
given by

APPENDIX B: DYNAMIC MATRICES

The prescription (6) for the stabilizing potential re-
quires some modifications in the dynamical matrix de-
rived by Cohen et al. ' The dynamical matrix is defined
as

2
I

Bh

2Q»
3 ~

I
(A8)

m 0
x y -'q"' 'e

J Jm

(Bl)

In a stressed medium, acoustic waves propagate with
velocities that are determined by effective moduli, which
differ from C, by terms involving the initial stress. For
cubic crystals under hydrostatic pressure P, these are

(A9)

m 0

J J
B4

m 0
BQ - Bll

J J

(B2)

where M is the mass of ion in sublattice J and the cou-
plings

&i2=Ci2+P

&44 =C44 —P

(A 10)

(A 1 1)

and the pressure P is given by the volume derivative of 4.
The shear constant C, denotes (C» —C&2)/2, and

B,=(Bi,—Bi2)/2.

are interionic force constants. The summation is carried
out over all unit cells. The solution of the mechanical
problem of harmonic free oscillations is given by di-
agonalizing (B1). The normal-mode frequencies are ob-
tained from the square root of the eigenvalues.

The differentiation of @(x,h) with respect to displace-
ments generates rigid-ion-like terms from the dependence
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on pair distances x, and additional terms with partial
derivatives with respect to the stabilizing potential b.
The second-order differentiation produces additional
mixed derivatives.

The term involving second derivatives of the stabilizing
potential with respect to mixed ionic displacements is
of particular interest, as it controls the LO-TO
(longitudinal-transverse optical) mode splitting (Boyer
et al. , Ref. 11). This term replaces the charge product in
the rigid-ion model. Since the stabilizing potential is pro-
portional to the Madelung energy, it generates terms
similar to the rigid-ion Madelung terms that, when

grouped together, give rise to a modified effective charge
(Cohen et al. , Ref. 13). In the present prescription, the
stabilizing potential is proportiona1 to the Madelung en-

ergy as well, but the grouping of terms is slightly
different:

(Ck Cn(k ) )Zk +(Ck Cn(k ) )Z

zI~:g
—zI(:zg +

2
(B3)

where n (k ) is the neighboring site of k, and following
Cohen et al.

evaluating the 8 sums, we include both the direct and
Fourier contributions to the Ewald-theta transformed
sums. As q 0, the individual 6 diverge but their
differences, and hence e*, approach zero —the proper
limit —at q=0.

APPENDIX C: ANHARMONIC PROPERTIES

The thermodynamic properties of the lattice can be ob-
tained from the quasiharmonic spectrum. In this approx-
imation the Helmholtz free energy is given by

FH(t), T)= g [ —,'hv (g)+kTI n(1
—e ' )], (Cl)

q

where v is the frequency of mode q and the summation
is taken over the Brillouin zone. h and k are the Planck
and Boltzmann constants, respectively, and T is the tem-
perature. Note that the frequencies are assumed to be a
function of the configuration, as represented by the La-
grangian strain q. For isotropic deformations in cubic
crystals we replace g by the volume V. The isothermal
bulk modulus, is evaluated from

I ', k '

0 I'

0
BP

(B4)

K~= —V
r) (4+Fql )

(C2)

In order to compute a, the volumetric thermal expansivi-
ty, we evaluate the product aK~:

The primed sum in (B4) means that for l'=—0 and k =k'
the derivative of the self-energy should be summed. In
the case of a diatomic lattice, for krak', Zk = —Zk, , and
the dynamical charge cross product (and hence the LO-
TO splitting in the NaC1 and CsC1 structures) is not
modified from Cohen et al. Cohen et al. (Ref. 13)
defined a convenient lattice sum, the theta sum:

6 (k,j;q)= g'e

0 m
X~ J

X
(B5)

6 (k,j;q) —6 (n(k), j;q)6*(k,j;q)= (B6)

that arises from first derivatives of the long-range electro-
static potential in a modulated lattice. This term has
been factored out from all the dynamical matrix terms
that include first derivatives of the stabilizing potential
and second derivatives of 4. In the present formulation,
the derivatives of the stabilizing potential 5 are given as
combinations of P [Eq. (8)], and thus the 6 sums are
grouped to similar combinations:

BP
BT

OS'
av

(C3)

a'FH
Cv= —T

BT
(C4)

The heat capacity at constant pressure is given by

C~ = Ci (1+ ay'r) where

VaK&-
(C&)

is the thermal Gruneisen parameter, which is evaluated
from (C3) and (C4). The isentropic bulk modulus, obtain-
able from acoustic data, is computed from
E, =Kr(1+ay T). The Anderson-Gruneisen parameter
is the isobaric logarithmic volume derivative of the bulk
modulus. For the adiabatic modulus it is given by

SH is the entropy of the harmonic phonons, and is given

by the temperature derivative of I'&. In the same way the
quasiharmonic contribution to the heat-capacity at a
given volume is simply

where e replaces e of the original formulation (Cohen
et al. , Ref. 13). Note that unlike Cohen et al. ,

' in
(C6)
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