
PHYSICAL REVIEW B VOLUME 41, NUMBER 11 15 APRIL 1990-I

Spin splitting in n-type Bi, ,Sb„alloys including doped bismuth (0 ~ x ~ O. 12)
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The crystals were grown from perfectly alloyed ingots and subsequent twofold zone melting in the
opposite direction. Variable electron concentrations in the triple I. conduction band were adjusted
by additional doping with tellurium, in such a way that charge transport results from the contribu-
tion by electrons exclusively. Quantum oscillations in the magnetoresistance are complex for arbi-
trary orientation in the magnetic field as a result of a superposition of contributions by three strong-

ly anisotropic Fermi surfaces, but may be analyzed reliably for the magnetic field B parallel to the
trigonal axis and almost parallel to the binary axes. It shows up that in some directions of B the
spin splitting is essentially higher than the cyclotron energy, contrary to the expectation from the
two-band model. An inclusion of k„k~ and k„k, terms in the E(1+E/E„)dispersion appears to be
necessary for a comprehensive interpretation.

I. INTRODUCTION

Quantum oscillations in the magnetoresistance were
first detected on semimetallic bismuth in 1930. Consid-
erable experimental and theoretical work was dedicated
to the investigation of the electronic properties of this
crystal system and of Bi-Sb alloys in the almost six de-
cades since. There were always some problems in grow-
ing homogeneous Bi~ Sb single crystals as a result of
segregation of the components during the growth pro-
cess. This diSculty is overcome completely in our sam-
ples by a twofold, successive zone melting in the opposite
direction after previous perfect alloying. This technique,
in addition, allows a homogeneous chemical doping of
the crystal bars, e.g. , with tin (p type) or tellurium (n

type). The latter was applied here for compositions
O~x ~0. 12 in order to achieve exclusive charge trans-
port by electrons with adjustable concentration N in the
semiconducting and semimetallic crystals, i.e., for any
composition and liquid-helium temperatures the chemical
potential is adjusted above the T valence-band maximum.
In our samples N was deduced to be between about
2X10' and 4X10' cm . Of course, lower electron
mobilities caused by doping must be set against the ad-
vantage of a single type of charge carrier; in general,
however, the doping yields a benefit on balance for the in-
terpretation of the experiments.

The constant-energy surfaces and F. (k) relations of the
conduction and valence band around the triple I. points
of the Brillouin zone are discussed in ellipsoidal parabolic
(EP), ellipsoidal nonparabolic (ENP, Lax ) nonellipsoidal
nonparabolic (NENP, Cohen ) and modified nonellip-
soidal nonparabolic (MNENP) (e.g. , see McClure and
Choi ) models, and for many purposes the ENP descrip-
tion primarily appeared to be sufficient (e.g. , Cohen and
Blount, Smith et al. , and McCornbe et al. ). There are
several modifications of the E(k) relation, such as the
"full" Cohen model, the Abrikosov-Falkovsky model,
and the Baraff' model (including the eff'ect of other
bands), which were established as extensions of the

simpler models in order to allow an optimum of interpre-
tation of the experimental results. The work of
Dresselhaus and co-workers' "is cited here as examples
of magneto-optical investigations in this field.

Considerable anisotropy of the E(k) relation makes a
decision between the ENP and NENP (including
MNENP) cases difficult from an investigation of magne-
toquantum oscillations, since absolute values of three
different, superimposed Shubnikov —de Haas frequencies
with, in general, deviating spin splitting and level
broadening have to be discerned, which is di%cult for ar-
bitrary orientations in the magnetic field. The detailed,
previous work on this subject will not be extended here.
However, the spin splitting 5,—if resolved —only from
a single-quantum oscillation may give evidence for a devi-
ation from the value equal to the Landau splitting, ex-
pected from a two-band model. In particular, half-
integer values for the ratio M =5, /(fico, ) =gm, /(2mo)
should clearly be resolved in the oscillatory patterns. Al-
though here also in the arbitrary case the superposition
of the different oscillations may impede a clear decision,
for B~~c (single frequency} and for B almost parallel to a
binary axis (separation of two oscillations in the magnetic
field scale) a direct access to additional structure in the
quantum oscillations from spin splitting is possible with
high reliability. Such investigations are presented below.

II. EXPERIMENTAL RESULTS

The electron concentration N in the conduction band
could be deduced from the saturation value of the Hall
constant RH„= —(eX} ' directly, since in any case a
completely fille T valence band was realized by chemical
doping. A typical magnetoquantum oscillation for B~~n
(n denotes one of the binary axes} in the longitudinal volt-
age U between potential probes (measured parallel to
the constant sample current} is shown in Fig. l. The
low-frequency (LF) oscillation below 8 = 3.5 T originates
from the two smaller, equivalent extremal cross-sectional
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FIG. 1. Magnetoquantum oscillations in the resistance (pro-
portional to the voltage U» between potential probes for con-
stant current) of a Bi, „Sb„sample (x =0.09) with B aligned
parallel to a binary axis (n) for T = 1.5 K.

For B~~s (s denotes one of the bisectrix axes), two quan-
tum oscillations are superimposed in the whole range of
B with a 2:1 ratio of their frequencies. The phase
analysis for both oscillations allows a linear extrapola-
tion, the results in both cases also being compatible with
M=1, in agreement with the expectation from a two-
band model (M = 1).

The sample alignment for B~~c (c denotes the trigonal
axis) is difficult (necessary to at least better than 0.5'), in
this case yielding a single and regular magnetoquantum
oscillation (Fig. 3) and the absence of electron transfer be-
tween the three equivalent valleys. In the second deriva-
tive d U /dB = U"„(not shown here) more structure is

resolved in the maximum near B = 8 T which cannot be
removed by improved alignment. It indicates a small de-
viation from an integer value of M (about 0.2). A numeri-
cal simulation p,„(B)is also shown in Fig. 3 (to be dis-
cussed in Sec. III). The phase analysis (Fig. 4), outside
the error margins, allows a linear extrapolation with an
intersection of the ordinate axis at a half-integer value,

areas of the Fermi surfaces, the high-frequency (HF) os-
ci11ation above corresponds to the largest extremal cross-
sectional area of the remaining third Fermi surface (I.
point of Brillouin zone). Towards high fields (8 ~7 T)
the HF oscillatory amplitude dependence (despite ex-
clusive electron conduction) is complicated by essential
charge transfer between the different valleys (see the dis-
cussion below).

A phase analysis for each of the LF and HF extrema
positions of Fig. 1 (U maxima associated with integers
n are plotted as a function of the appertaining B
values) is shown in Fig. 2. For the LF maxima it yields a
straight-line dependence (constant-electron concentration
in both valleys), which may be extrapolated towards
B,„=O. The almost-integer intersection with the ordi-
nate axis is compatible with a finite (but unresolved) spin
splitting for M =gm, /(2mo ) = 1, 3, . . . , since in the
maxima of U „-p„„=cr„„/0 „~ (for transverse
configuration, constant current, and cr„)&o„,) the
respective Landau subbands with level broadening are
half-filled approximately in the maxima of their density
of states. It is reasonable to assume M = 1, in good agree-
ment with the two-band model characteristics. The HF
oscillation (Fig. 1) is observed in the quantum limit of the
LF oscillation where the chemical potential of this sub-
system should become field dependent, for increasing B
aimed at a decrease towards the conduction-band edge
for M = 1. Since EF(HF) alone for 8 S 10 T should be al-

most field independent outside its quantum limit, an elec-
tron charge transfer into the LF valleys occurs with in-

creasing B. This is also demonstrated in Fig. 2, where
n(HF) over the 8,'„values for the HF oscillation yields a
nonlinear dependence as a result of a shrinking extrema1
cross-sectional area of the Fermi surface with increasing
8, i.e., with decreasing n(HF) (the slope in Fig. 2 is pro-
portional to the extremal cross-sectional area decreasing
with decreasing 8 ). From this reason, no reliable ex-
trapolation towards B,'„=0 and no phase analysis is
possible. The result also impedes a determination of the
quantum numbers involved.

0.2
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FIG. 2. Integers n for the U» maxima of the low- (LF) and
high-frequency (HF) oscillation of Fig. 1 as a function of the
pertinent B,.'„values. The linear dependence (LF denoted by
0) may be extrapolated (dashed line) towards B '=0, yielding
an almost integer intersection. The HF data (0) with a spread-
out B ' scale (factor of 5; upper abscissa) and compressed ordi-
nate graduation (factor 4) are influenced by electron transfer be-
tween the valley systems as a function of B, which impedes an
extrapolation and phase analysis. For a discussion see the text.
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FIG. 3. Magnetoquantum oscillations in U» for a similar
sample as Fig. 1 (x =0.09; same crystal bar) for B~~c (c; trigonal
axis) with an error of alignment less than 0.5'. The numerical
simulation for M =gm, /(2mo) =0 is discussed in Sec. III.

clearly deviating from the expectation for a two-band
model. The reduced quality of our doped samples in
comparison with pure bismuth, nevertheless, allows an
unequivocal statement from the phase analysis, which is

8-

prevented when T valence-band holes contribute to the
conductivity essentially.

A reliable confirmation of this conclusion is obtained
from samples with lower electron concentration, allowing
us to reach the quantum limit. ' ' The quantum osci11a-
tion for B~~c of such a sample with low electron concen-
tration is shown in Fig. 5 (IV=2. 1X10' cm ) where,
actually, the last U „maximum is reached near B =9.5 T
[i.e., EF(8) roughly coincides with the maximum in the
density of states of the n =Ol (M=0) or the n =11
(M =2) Landau subband, corresponding to an approxi-
mate semioccupation of this system]. The phase analysis
in Fig. 6 again confirms a half-integer intersection of the
ordinate axis for a linear extrapolation, excluding the last

Upp minimum and maximum towards the quantum limit ~

For M =0 the last maximum should almost coincide with
the dotted straight line; for I=2 the deviation is expect-
ed. The latter case is corroborated in Fig. 5 by the nu-
merical calculation of p„,(8) and E~(8) with M =2 (see
the discussion in Sec. III). Regardless, there is a finite
spin splitting (confirmed by the unambiguous occurrence
of the last maximum near 8 =9.5 T), which clearly devi-
ates from Ace, . This result, realized on several samples, is
contrary to the two-band model assumed as a general
basis for most of the directions of the energy dispersion
of the I. electrons so far.

In the best samples with somewhat higher electron
concentrations, the effective spin splitting for B~~c is
resolved in U„p by a weak high-field shoulder on the max-
imum near B =8.5 T in Fig. 7. The numerical simulation
of the n =OJ, peak in p„„(8)starts to become visible for
M =1.9 with a reasonable level broadening (see the dis-
cussion in Sec. III).

Tilting the samples in the magnetic field perpendicular
to the c axis, away from the binary axes by only a few de-

grees, the separation of the LF and HF oscillations in the
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FIG. 4. n =n(B,'„) plot for the data of Fig. 3 (B~~c). The
extrapolation (dashed line) of the linear dependence (solid line)
yields a half-integer intersection at B ' =0. The low-field error
bar is indicated, and the high-field uncertainty is smaller than
the symbol diameter.

FIG. 5. Magnetoquantum oscillations in U„ for B~~c of a

sample with x =0. 1 and %=2.1X10"cm ' at T=1.5 K. The
numerical simulation {p and EF) for M=grn, /(2mo)=2 is

discussed in Sec. III.
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FIG. 10. Magnetoquantum oscillations for a sample with 6%%uo

Sb content for BJ.c. For 6=0' both the LF and HF oscillations
are shown; for 6%0' only the HF patterns for 8 ~2.5 T are
drawn. The intermediate position of the spin-up and -down

peaks is reached at about 3.5'.
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FIG. 11. Second derivative Upp of the HF oscillation at Blc
and different angles 8=4(B,n) for a crystal with x =0.02.
Additional structure due to spin splitting is distinctly visible for

4'

tailed resolution of additional structure in the HF quan-
tum oscillation where the LF oscillations are already in
the quantum limit (Fig. 9). The doubling of the funda-
mental frequency for x =0.09 clearly occurs at almost 4'
for +8. An energy dependence of M=A, , /(Ace, ), to be
expected for an ENP or more complicated model, by
charge transfer between the valleys as a function of B
makes the traversing of the half-integer value of M de-
pend on B as demonstrated in Fig. 9.

The principal properties of the magnetoquantum oscil-
lations are maintained when the Sb content is reduced.

This is shown in Figs. 10 and 11 for B almost parallel to
one of the binary axes (Bic) and different concentrations,
x =0.06 and 0.02 as examples. In the latter case, the
characteristic features of the HF oscillation are resolved
in the second-derivative U" only (as a result of a neces-
sary higher doping), in any case revealing the frequency
doubling associated with a reduced amplitude for B some
degrees away from the binary axis (8=0'). This mainte-
nance of the basic properties also holds for other orienta-
tions in the magnetic field, e.g. , for B~~c, and does not
show any marked influence for the L-point zero-gap com-
positions with x =0.055.

Hence, the experimental data directly reveal for arbi-
trary antimony concentration (x =0, 0.02, 0.03, 0.035,
0.04, 0.05, 0.055, 0.06, 0.08, 0.09, 0.10, and 0.12) that M
essentially deviates from unity, contrary to the expecta-
tion for a two-band model, being half-integer in the vicin-
ity of the maximum cross-sectional area of the Fermi sur-
face and reaching an almost-integer and even value for
B~~c. In particular, the latter is a striking result after al-
most six decades of research on Bi and Bi-Sb alloys, its
revelation becoming possible by a controlled sample
preparation concerning the composition and doping. In
the following section the numerical simulations of the
quantum oscillations are discussed in order to exclude
even the smallest possibility for a misinterpretation of the
experimental results, which might be induced by electron
transfer between the valleys as a function of B.

III. NUMERICAL SIMULATION

The Kubo formalism' yields the description of magne-
toquantum oscillations in the conductivity (o,„ in the
transverse, cr„ in the longitudinal case, and the Hall con-
ductivity o «). Our numerical calculations are performed
on the reasonable assumption for T=O (T,„,=1.5 K).
We consider level broadening by scattering (I ) and use is
made of the ENP two-band model for the E(k) relation
for the calculation of EF(8). This should not be quite
correct for an essential deviation of M =b, /(Ace, ) from
unity, however, since the Fermi energy varies appreciably
only when the quantum limit is reached, and merely a
gross consideration of charge transfer is necessary, we
prefer a relation which does not contain too many pri-
marily unknown parameters. The ENP energy dispersion
appears to be a reasonable and practicable approxima-
tion. The chemical potential (Fermi energy EF for T =0)
is calculated first on the efficient approach of a cuto6' of
the Landau subbands between 5I and 10I below the
respective broadened Landau level (k, =0; B~~e, ) of
Lorentzian shape, i.e., E„+= (n + —,'+M /2)Ace, —a I,
with a =5—10 (Ref. 12) where the error in EF(calc) is less
than 1%. Hence, the electron concentration Xk within a
single valley (k =1,2, 3) becomes

eg (m )'/2
(A'co, )'

2~6
X g [[xF++(xF'++y")' ]'/'

[ +( 2 + e2)l/2]1/2]
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m, (EF ) =m, (0)(1+2EF/E„) . (2)

I

with y*=l /[fie8/m, (0)], x, =E,(l+E, /E )m, (0)/
(A'eB) —(n+ —,'+M/2), and i =u, F. In Eq. (1) the ENP
energy dispersion is considered and m, (0) is the band-

edge cyclotron mass in the ENP model. The cyclotron
mass m, (El,. )at. EF may be determined from the tempera-
ture dependence of the oscillatory amplitude of the quan-
tum oscillations. In the case of significant electron-
phonon coupling, however, by emission and reabsorption
of virtual phonons, considerable renormalization eftects
may influence the masses evaluated by this method. In
the EP model m, (EF) is related to m, (0) (E, denotes
the energy gap):

m„ is adjusted to yield —', of —(eRH ) outside the

quantum limit [possible neglect of small oscillatory be-
havior of EF(8) as a result of level broadening]. In the
quantum limit, even of only part of the valleys, electron
transfer is considered by numerical adjustment of
EF=EFi, (k =1,2, 3).

For B~~c a perfect perpendicular alignment of B and j
(j denotes the current density) could be managed, but for
Blc (B~~s and B are almost parallel to n) only an approxi-
mate transverse configuration could be realized on the
same sample. Nevertheless, the error introduced by use

of 0, for the numerical simulations should be negligibly

small. Way, Kao, and Wang' consider the ENP energy
dispersion in cr „. Their result for finite level broadening
and T=Ois

e Wm, (0)m„(0)
cr„,= (1+2EF/Eg )

2(2ir) iii

X g g (n +n'+1)fifl,
c —i+ '+ AA —5+' c — i+ + AO, —5 +IM 2 2~1/2

C 2

] /2

(3)
I

n, + n, + I =n, n' .— i++ en, ~ +rM
2 2

with I proportional to 8 ~ (1+2EF/E )
~' as a parame-

ter, where b, = —I'/&3, %=const, E=EF(1+EF/E„),
and 0, =eB!m,(0) holds. Equation (3) only contains
scattering for maintenance of the spin orientation, which
should dominate even for finite spin-orbit coupling. Fi-
nally, the energy gaps between the L-band extrema as a
function of the antimony content x are calculated accord-
ing to Golin

E =(15.3 —270x) meV

with 0.02 ~x ~0. 12 for our Bi, ,Sb„samples.
For B~~s, the experimental results are easily simulated

for M (LF)=M (HF) = 1 with band-edge masses
m, (0)H„=2m, (0)L„. In this case no essential charge
transfer and field dependence of EF(B) occurs outside the
quantum limit (i.e., up to the last oscillatory maxiinum)
and, therefore, in the main the same results are obtained
by use of Eq. (3) or a simplified description of a„
without consideration of nonparabolicity. This applies
also to results for B~~c outside the quantum limit where,
according to Fig. 3, a value of M =0 or 2 (instead of 1 in
the two-band model) has to be assumed. The numerical
calculation in Fig. 3 was performed with M=0 and
m, (0)=(6.2X 10 )rno. The agreement with the experi-
ment (position of the extrema) is perfect.

For M=0 all Landau levels are twofold degenerate
(n;11), which also applies for M =1 (n 1;n +11, except
the lowest level n =Of ) and for M =2(n $;n +21, except
both lowest levels n =01 and n =1)). Therefore, in the
last maximum (Bo=9.5 T in Fig. 5), which only appears
for a finite spin splitting, E„(B) roughly coincides with
the n =0& level (M =0) or the n =11 level (for M=2).

The distance from the lowest level is 5, (M =0) and iiico,

(M=2), respectively. Consequently, a higher electron
concentration is contained in the lowest Landau subband
n =0, 1', k, up to E~(BO) for M =2 in comparison with
M=O. From this reason, for M =2 the last maximum
(8„) is reached at lower fields than for M =0 [and
EF (Bo ) = ( —,

' M /2)fico,—= —,
' iiico, becomes field depen-

dent], which causes the deviation from a linear depen-
dence in Fig. 6. Therefore, a numerical simulation is suc-
cessful only for M =2 (or M=2) —as for BizSe, (Ref.
12)—which is also shown in Fig. 5 [m, (0)=0.025mo],
together with the variation of EF(8). In the quantum
limit EF(B) for M=2 sinks below the conduction-band
edge for 8 =0 towards the Landau level n =01. Within
the error margins the agreement with experiment is per-
fect. For higher electron concentrations a somewhat
lower value of about 1.8 might apply in Fig. 7 (causing a
slight splitting of the maximum at about 8.5 T), when in
the original U curve the asymmetry in the maximum is
considered. Contributions both from the 21' and 0$ lev-

els are weighted by the factor (n +n'+ 1) in Eq. (3), and
this becomes clearly visible even for the same scattering
probability. At 8 =9 T the Ol structure is just starting
to be resolved for the parameters M and I assumed.

In the case of pure bismuth (x =0) the amount of dop-
ing by Te has to be increased considerably in order to ob-
tain crystals with exclusive n-type conduction. Sirnul-
taneously, the mobility of the charge carriers is reduced,
rendering the observation of the magnetoquantum oscil-
lations more difficult. On the other hand, for B~~c the rel-
ative spin splitting M is almost half-integer for undoped
bismuth, ' so that doping, for M =M(E), might improve



7730 H. KOHI.ER, H. J. LEISTER, AND A. GENSLER 41

the observability of Shubnikov —de Haas oscillations. Ac-
tually, for highly doped samples with ( —eRH„)
=3.8 X 10' crn we observed magnetoquanturn oscilla-
tions for B~~c without resolution of spin-splitting struc-
ture. The phase of the extrema is compatible with M =2
as deduced above for Bi, Sb„alloys with x ~0.08, and
also corroborated for 6%, 4%, 3.5%, and 2% Sb.

For BJc and t)=g(B,n)=+3' —5' a half-integer value
of M is traversed (Figs. 8 —11) in the HF oscillation. In
principle, —,', —'„and even higher half-integers are possible
while the first two given are most probable. In order to
decide between both cases, for M(HF)=2 (approximate
value outside the angular range of doubled frequency in
the HF Shubnikov —de Haas oscillations) we attempt to
simulate the experimental curves by use of Eq. (3), where
a finite, but small LF splitting for t)%0' is not considered
for simplification (the infiuence on the HF oscillation is
unimportant).

It is evident that the consideration of electron transfer
between the valley systems and of nonparabolicity [Eq.
(3)] becomes absolutely necessary for an optimized fitting.
Exclusively in this case, the principal field dependence of
the oscillatory amplitudes may be attained. For
M(HF)=2, instead of M(HF)=0, the last U max-
imum is reached at essentially lower magnetic fields (see
the discussion above for B~~c). The numerical simulation
in Fig. 12 for M(HF)=2M(LF)=2 and m, (0)Hi:
=(5.5X10 ')mo shows that an agreement with the ex-
perimental data at 8=7' may be achieved (except for the
splitting of the LF oscillation not considered in the calcu-
lation) where an extremely weak n =11' maximum is
reached at 8=10 T in the calculation. Since a realiza-
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FIG. 13. Experimental magnetoquantum oscillations for Blc
and 6=7' of a sample with x =0. 1 and low electron concentra-
tion. The arrows identify the n =1) and n =2[ /0$ maxima in

the HF oscillation, corresponding to a realization of a relative

spin splitting M=2 as calculated numerically in Fig. 12 for a
somewhat higher doping.

tion of this structure in the experiment cannot be at-
tained for 8,„=10T, lower electron concentrations are
necessary in order to decide if M(HF) =2 is reached and
where this occurs (at 8=0' or 7'). In Fig. 12 the numeri-
cal data are completed by the variation of E~(B), essen-
tially resulting in an electron transfer between the valleys
for 8 ~ 2.5 T, where the quantum limit of the LF systems
begins, accompanied by a reduction of the electron con-
centration in the HF system (see the discussion in con-
nection with Fig. 2).

Finally, in Fig. 13 for a sample with low electron con-
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FIG. 12. Experiment (Upp x =0.09) and numerical simula-
tion of p„and Ez with M(LF) =1 and M(HF) =2 for Blc and
8 =7'. The arrow at about 10 T in the numerical simulation in-
dicates the approximate position where the n = 1 f maximum
should be expected. A discussion is in the text.

FIG. 14. Experimental results for Upp (solid curve) obtained
with B~~n for the low-frequency oscillation (LF) on a sample
with x =0.02. The indication of spin splitting near 8 =4 T is
simulated numerically (dotted curve) with M = 1.15 and

TD =20 K.
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centration and x =0. 1 the n = lf maximum (Blc and
8=7') is reached at B =4.5 T (arrow), which may be
simulated numerically with M(HF)=2. The occurrence
of this maximum excludes a description by
M(HF)=M(LF)=1 since, in this case, Ez(B) in the
quantum limit approaches the coinciding Of LF and HF
levels in the band edge. For M(HF)=0, e.g. , in Fig. 8

(x =0.09) the relative weighting of the peaks by the Lan-
dau quantum numbers n and n' [Eq. (3)] within the
camelback structures at, for instance, 8=5.3' should be
the same with respect to the upper envelope, ' which
does not apply. Consequently, for Bo=3'—5' the ratio
M =b,, /(fico, ) ==,' is traversed for the HF oscillation and

M(HF) & —,
' applies for 0&8 &8o and M(HF)) —,'for

In Fig. 14, for x =0.02, spin-splitting structure is
resolved in the LF magnetoquantum oscillation for B~~n

near 4—5 T, which is simulated with M = 1.15 and

TD = I /(eke ) =2. 0 K, indicating that M again has

dropped below —', at 0=+60' (Bic).

IV. COMPARISON WITH PURE BISMUTH

Our experimental results on Bi~,Sb„single crystals
with a particular, single-charge carrier preparation for
arbitrary composition (0&x &0. 12) show a considerable
anisotropy of the relative spin splitting M=A, /(fico, )

=gm, /(2mo) (as deduced also for BizTe3' ' ), which is

in clear contradiction to the two-band model assumed for
many purposes. The data of the L conduction electrons
confirm that the M =

—,
' transition of the HF oscillation

for Blc and a few degrees from one of the binary axes is
maintained down to the lowest antimony concentrations
(x =0.02). Equivalently, for B~~c (including x =0) the
ratio of the spin and cyclotron splitting M for our doped
samples shows values near 2 in the whole range of com-
positions.

A comparison with the results of Takano and Koga" is
close at hand, where spin-splitting factors (y) were de-
duced for electrons in pure and undoped bismuth. Quan-
tum oscillations in the velocity of sound were investigated
for B within the trigonal, binary, and bisectrix planes. In
the latter case results for B near the trigonal axis are
sparse in the range of the strongest variation of y for this
configuration, and outside it roughly constant values

y =1.1 are deduced starting from B~~n, which is also ob-
tained from our experiments in a wide angular range
(y =M).

The angular spectra, where spin splitting may be ob-
served and assigned reliably, are separated by gaps where
no structure from spin splitting may be evaluated. Since
Takano and Koga' do not perform phase analyses for
their magnetoquantum oscillations and since they do not
reach the quantum limit in their experiments, a correc-
tion of their values deduced for y might become neces-
sary, because only the effective spin splitting is observed
primarily. A reliable determination of the absolute value
for M =y, 1+y, 2+y, . . . mostly needs further informa-
tion. This holds more when only restricted sections of
the angular spectrum are accessible to a reliable evalua-
tion.
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FIG. 15. Spin-splitting factors of Takano and Koga (Ref. 18)

(y; open circles and solid line) with 8 in the trigonal plane for
pure bismuth (x =0), and our interpretation M=1+y (solid
circles and dashed line) for 50'~ 8+60'~ 70' and M =y outside
this range. 8=0' corresponds to the maximum of the extremal
cross-sectional area of the respective Fermi surface.

Though the absolute values of M may differ somewhat
between our and the Takano and Koga experiments, re-
sulting from different composition (x) and doping (Te),
the characteristic ranges for M should be the same. We
have reliable information (see the discussion above) that
M should be higher than —,

' for B~~c (M =2 in our case)
and be higher than —,

' for Blc and ~8~ =~+(B,n)~ ~4'. In
Figs. 15 and 16 we show the evaluation of Takano and
Koga' and our modification of their data (y) by
M =1+y for Bj.c and small ~iI~ & 10' (Fig. 15; B in the
trigonal plane) and by M =2 —y for B~jc and its nearest
vicinity (Fig. 16; B in the binary plane). We propose
these as the most convenient and most probable interpre-
tations for M, in agreement with our results discussed
above.

It is obvious that, in our interpretation, M -gm,
reaches sharp maxima only a few degrees away from the
maximum extremal cross-sectional areas of the L Fermi
surfaces, i.e., for k almost parallel to the respective k
plane normal to B. This holds for B in the trigonal (Fig.
15) and in the binary plane (Fig. 16). Usually the anisot-
ropy of the effective mass (m, ) is cancelled by the oppo-
site of the effective g factor, which does not apply here.
However, a similar anisotropy, differing in magnitude for
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FIG. 16. Spin-splitting factors y of Takano and Koga (Ref.
18) for Bi (solid circles and solid line) with B in the binary
plane, and our interpretation M =2—y (open circles and
dashed line) in the angular range between —20' and 10' and
M =y outside it.

m, and g, may be assumed tentatively and, hence, the
E(k) relation separately allows a discussion of the anisot-
ropy of M-gm, .

McClure and Choi have proposed a modified NENP
model (MNENP) which includes third-order k p terms
with the greatest importance, such as k k„k, k k, , and
k k„. McClure and Choi conclude that the first two
should be of minor importance, while Chen et al. pro-
pose an additional influence of the k term and neglect
the effect of the k k, only. They rewrite the dispersion
relation as

E 1+
g2k2 g2k2

'

E+ 1+ 1—
2m 2m E

/4k ~k & /4k &k &

x y y z+
4m mE 4mm, E

Rk
+

2m~

e4k4

4m m'E

(5)

In a reasonable approximation m =m' is usually as-
sumed.

Deviations of M from unity, therefore, have to result
from the k terms in Eq. (5). In Figs. 15 and 16, in our
interpretation, maximum effects occur for finite k„
values, i.e., for B~~e, {Fig. 16) and for Blc with ~8~ =10'
(Fig. 15). This means that the influence of the term

Ak„k /(4m„m E —} in Eq. (5) should be of essential
importance, showing large anisotropy with a maximum
for B near the binary axis, e.g., for Blc. According to

the magnitude of the main mass parameters, the term
proportional to k k, should contain a less dramatic vari-
ation with the angle g(B,e, )=90'—g(e~, B), and,
therefore, upon increasing ~8~ (for Blc) the variation of
the next-to-last term in Eq. (5) primarily dominates over
variation of the last term. Vice versa, for B in the binary
plane (in the vicinity of B~~e, ) this effect does not occur,
corresponding to a smoother curvature of M
=gm, /(2m&) in Fig. 16. Consequently, the mixed k
terms in Eq. (5) are indispensible for a comprehensive in-
terpretation of the angular dependence of the spin-
splitting ratio M in Bi and Bi&,Sb alloys.

According to Golin' for bismuth (x =0) the electrons
of concern in the conduction band with a minimum at L
are in a symmetric L, =L, +L6 state (0.28240 a.u. ) and
should interact with several antisymmetric L, =L 7 +L 8

states nearby, e.g. , with the valence band with a rnax-
imum at 0.28183 a.u. and the more distant states at
0.21527, 0.33867 a.u. , etc. Therefore, at least a four-
band model, including spin-orbit coupling, should be
necessary, leading to an energy dispersion of the type of
Eq. (5), which also enters into the Lande g tensor and
cyclotron-mass tensor. The point is whether the parame-
ters of both the last terms (and of the fourth) on the right
side of Eq. (5) have to be assumed to be that large, as was
done by Chen et al. and Cankurtaran et al. ,

' in order
to avoid the effects discussed in the latter paper, that
closed orbits should no longer possibly occur for particu-
lar orientations in the magnetic field. So far, there seem
to be no indications for such an effect, which certainly
should show up in a dramatic manner where E =0 is
reached for x =0.055. On both sides of this alloy concen-
tration no significant changes in the spin-splitting charac-
teristics [M=gm, /(2mo)] are observed at finite Fermi
energies above the minimum of the respective conduction
band. This makes it uncertain if the energy gap E~ in the
denominators of the last three terms on the right side of
Eq. (5) should be that between the L-point conduction
[0.28240 a.u. (Ref. 17) and the valence band [0.281 83 a.u.
(Ref. 17)] and, hence, if the interaction with the more dis-
tant bands should not be predominantly responsible for
the mixed k terms.

V. CONCLUSION

The experimental data obtained in this paper concern
homogeneous single crystals of Bi, Sb„alloys with ex-
clusive electron conduction (doping by Te) down to
lowest Sb concentrations x. In contrast to pure undoped
bismuth {x=0}only a single type of charge carrier con-
tributes at low temperatures, therefore implying a higher
reliability for the evaluation until the quantum limit is
achieved here. Doping has to be increased with decreas-
ing x in order to maintain exclusive conduction by elec-
trons.

Nevertheless, the extreme anisotropy of the E(k} rela-
tion and the existence of three equivalent L-point
constant-energy surfaces complicate a general investiga-
tion. Only for the main symmetry axes is the number of
different extremal cross-sectional areas of the Fermi sur-
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faces reduced to 1 (B~~c) and 2 (B~~s and B~~n), allowing a
more detailed examination. Even for B~~s the superposi-
tion of both Shubnikov —de Haas oscillations is perfect
(frequency ratio of about 2:1), and the analysis of the spin
splitting is compatible with M(HF) =M(LF) = 1, in
reasonable agreement with the two-band model. The re-
sults for B~~c exclude a value of M =1 and may be ex-
plained by theory with M=2 exclusively. For Blc and
B~~n the ratio of the spin and cyclotron splitting also ap-
proaches unity (largest extremal cross-sectional area), but
rapidly increases above —', some degrees off from B~~n per-
pendicular to the c axis, approaching M =2 within a few
degrees, equivalent to B~ic. An experimental connection
of both results at intermediate tilt angles of our doped

and alloyed samples cannot be realized so far owing to
the problems discussed.

Our experimental results for x ~0 allow a comparison
with pure bismuth. They confirm that also for x =0 the
spin splitting essentially increases above the cyclotron en-

ergy for some orientations of B discussed above. Hence,
a reinterpretation of the spin-splitting factors deduced by
Takano and Koga' from the high-resolution data of Bi
samples outside the magnetic quantum limit permits a
connection to the energy-band model derived by McClure
and Choi, " including k p terms up to the third order. On
this basis a comprehensive interpretation becomes possi-
ble exclusively when the k„k and k k, contributions in

the E(1+E/E ) dispersion are considered.
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