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Test of universality for three-dimensional models of mechanical breakdown in disordered solids
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Two three-dimensional models of mechanical breakdown in disordered solids are investigated by
large-scale Monte Carlo simulations. We show that the macroscopic properties of these models,
such as the elastic moduli, the external force, and the fractal dimension of the macroscopic
cracks, obey universal scaling laws that are independent of the microscopic details of the system.
In addition, we show that the predictions of these models are in qualitative agreement with the
available experimental data on a variety of materials, including concretes, ceramics, and glasses.

Electrical and mechanical failure in disordered media is
of immense technological and economic importance. Mi-
croscopic failure plays a fundamental role in many sys-
tems of industrial importance ranging from aircraft struc-
tures and pressurized nuclear reactors to the propagation
of cracks in underground oil reservoirs and in ceramics
and fibrous composites. There exists extensive literature
on the general problem of electrical and mechanical
failure of disordered solids. !> However, most of the mod-
els discussed in the classical literature on fracture phe-
nomena incorporate artificial features such as preassigned
fracture loci and very complex microscopic laws of frac-
ture. The contribution of such complexities to the
phenomenon of failure may not be essential and, there-
fore, their introduction in the model may only complicate
the study of such phenomena.

More recently, several simple models have been intro-
duced for both electrical®~* and mechanical® failure of
disordered solids. These models are based on two-di-
mensional networks in which each bond of the network is
supposed to describe the disordered system on a micro-
scopic level, with elasticity and failure characteristics de-
scribed by a few control parameters. An external poten-
tial, strain or stress, is then applied to the network and
gradually increased, as a result of which the individual
bonds will break in a certain manner until the system fails
macroscopically. The sequence of breaking bonds and the
spatial patterns they form are supposed to represent a real
breaking process. Various properties of such failure pro-
cesses have recently been investigated,” !> and several
important features of their behavior have been discussed.

However, the sequence of breaking bonds depends on
the type of disorder and its statistical distribution. It also
depends on the microscopic force laws that govern the
electrical or elastic behavior of the individual bonds and
their interaction with one another. Moreover, these mod-
els represent nonequilibrium and highly nonlinear sys-
tems, and as such are very different from their linear and
static counterparts which are usually represented by per-
colation networks of resistors or elastic bonds, ! in which
a fraction of the bonds of the network has been cut at ran-
dom. The macroscopic transport and geometrical proper-
ties of percolation networks obey well-defined scaling
laws'>14 which are largely independent of the microscopic
details of the system. On the other hand, the geometrical
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properties of the spatial patterns that are formed in a
model of dielectric breakdown® may depend on the micro-
scopic details of the system, although no systematic study
of this has been reported. So far, no attempts have been
made to investigate the universal properties of the models
of mechanical breakdown. This is particularly important
since, if the macroscopic properties of these models do
obey universal laws, then one may employ the simplest
model and study whether the available experimental data
can be explained with the model. This can also be used as
a guide for searching for universal properties in the avail-
able data, if any, and for performing more precise experi-
ments. Moreover, no three-dimensional simulations have
been reported so far, whereas such simulations may be of
direct relevance to real composite solids. The goals of the
present paper are to investigate, for the first time, the scal-
ing and universal properties of various three-dimensional
models of failure phenomena and to test whether they can
reproduce any important feature of the available experi-
mental data on failure properties of composite solids. We
report the results of extensive Monte Carlo simulations of
two three-dimensional models of failure processes which,
in special limits, contain almost all previous models>~%!°
of fracture and failure phenomena.

We consider an L XL XL network with periodic bound-
ary conditions in two directions and fixed boundary condi-
tions in the third direction. Every site of the network is
characterized by the displacement vector w; =(u;x,u;y,
u;;), and nearest-neighbor sites are connected by springs.
These springs can be stretched and bent. We consider
here the case of a brittle material for which a linear ap-
proximation is valid up to a threshold (defined below).
Thus, the displacement u;’s are computed by minimizing
the elastic Hamiltonian

H= izg,-j[(u,- _Uj)'ﬁijlz
2 Gp

+£y gij8ik (66)ix)? (1)
2 ik
with respect to u;, where ﬁ,',- is a unit vector from i to j,
and g;; the elastic constant of the bond between i and j
(assumed to be unity). Here {jik) indicates that the sum
is over all triplets in which the bonds j—i and i —k form
an angle whose vertex is at i, and a and B denote the
stretching and bond-bending (BB) force constants, respec-
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tively. 86 represents the change of angle between bonds
Ji and ik. Setting B=0 yields an elastic network in which
only central forces (CF) are present. We used a bcc net-
work to study failure phenomena with CF only, whereas a
simple-cubic network was used to study the case in which
both the CF and the BB forces are present (a simple-cubic
network with only the CF does not have any elastic moduli
if any of its bonds are cut). This allows us to test the
universality of the scaling laws with respect to both the
types of the network and the microscopic force laws that
govern the behavior of the springs.

We now introduce a threshold value /. for the length of
a bond,® which is selected according to the probability
density function

PU)=(—pI7, )

where we use two values of 7, y=0.80 and 0 [a uniform
distribution in (0,1)]. These two values of y allow us to
investigate the effect of the statistical distribution of /. on
the universal properties of the failure phenomena. We use
this power-law distribution because, unlike a uniform dis-
tribution (the limit y=0), such distributions have given
rise to unusual properties for percolation networks and
have affected their universal properties'>!6 and, therefore,
we would like to see to what extent such extreme distribu-
tions can affect failure phenomena studied here. We then
initiate the failure process by applying a fixed external
strain on a fully connected network in a given direction.
We then determine the nodal displacements u; by minim-
izing H with respect to u; for all nodes i of the network.
The resulting set of linear equations for the nodal dis-
placements are solved by the adaptive accelerated Jacobi-
conjugate gradient method, which uses an acceleration
parameter optimized for each iteration. Two different
methods have been used to initiate the failure process. In
the first method, we select that spring for which the ratio
p =Inl/l. is maximum, where / is the current length of the
spring in the strained network and /,, is the maximum mi-
croscopic length of a bond in the network, and remove the
spring from the system (break it). In the second method,
we select that bond for which the ratio A=f,l./f is
minimum, where f is the total microscopic force that the
spring suffers, and f,, is the maximum microscopic force
on a bond of the network, and remove the spring (in the
case of the BB model, both f,, and f include the BB or
angle-changing forces). This second method of breaking
a bond is somewhat similar to Tresca’s or von Mises’s
classical yielding criterion for an elastic beam or spring.
Breaking one bond at a time is equivalent to the assump-
tion that the rate at which the elastic forces relax through
the network is much faster than the breaking of a spring.
These two methods allow us to investigate the effect of
yielding criterion on the universal properties of the failure
process. One can also remove all the bonds whose lengths
have exceeded their threshold.® This would give rise to a
percolationlike behavior for the fracture process,® but we
will not pursue this here and leave it to a future study.
After a spring is broken, we recalculate the nodal dis-
placements u; for the new configuration of the network,
select the next spring that is to be broken, and so on. This
process continues until the network finally becomes ma-

croscopically disconnected. As can be seen, the process of
breaking the springs to reach the macroscopic failure of
the network is very time consuming. We used system
sizes ranging from L =4 to 12 and have averaged our re-
sults over many independent realizations of the network.
Up to 600 independent realizations were used, and all
computations were carried out with the Cray X-MP of the
San Diego Supercomputer Center. Use of larger networks
is currently not possible because it would require an enor-
mous amount of computer time.

One of the most interesting bits of information, which is
also experimentally accessible, is the behavior of the elas-
tic moduli of the system as the breaking process proceeds.
In Fig. 1 we present the Young’s modulus Y of the micro-
cracked CF and BB models as a function of the fraction p
of the unbroken bonds (these results were obtained with
the second method of bond breaking, but similar results
were also obtained with the first method). Also shown is
the Young’s modulus of a percolating simple-cubic net-
work with the BB forces in which a fraction p of the bonds
has been removed at random. Clearly, the breaking pro-
cess weakens the system much faster than a random per-
colation process and, as a result, the system fails much
sooner. This is because of the fact that during the break-
ing process a sample-spanning cluster of broken bonds is
formed much faster than in random percolation, since the
stress and strain distributions in the network cause the
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FIG. 1. Young’s modulus of the microcracked CF (a) and
BB (@) models (with 8/a=0.04) vs the fraction of unbroken
springs p. Also shown are the moduli of the percolating BB
model (@) and the experimental data (dashed line). Error bars
are one standard deviation.



774 BRIEF REPORTS 41

broken bonds to be in the vicinity of one another, and the
location of any broken bond may be correlated with the
position of other broken bonds, whereas such effects are
totally absent in random percolation. We also show in
Fig. 1 some experimental data on the Young’s modulus of
ceramics and glasses reported by Rice.!” The data repre-
sent the average of 50 sets of ceramics and glasses (the er-
ror bars shown in Fig. 1 are those of the experimental
data, and those of the simulations are much smaller). As
can be seen, the predictions with the microcracked BB
model are well within the range of experimental data.
Moreover, except for p==1, the results with the micro-
cracked CF model do not agree well with the experimental
data because such systems fail at high values of p. For
p=0.5, the results with the random percolation model
with BB forces do not agree with the data as well as the
microcracked BB model, presumably because the percola-
tion threshold of such systems is somewhat low and, as a
result, the predicted modulus is somewhat large. By
changing the value of B/a one can shift the curves, which
means that the microcracked BB model would fail at
lower values of p.

Next, we address the question of universality in these
models. If at each step of the simulations we had broken
many bonds (e.g., those which had exceeded their thresh-
old /.), then, near the failure point p,, the elastic modulus
would obey well-defined universal power laws, Y~ (p
—p.) T, where 7 is a critical exponent. But, in the present
case the point at which the system fails macroscopically
resembles a first-order phase transition (although the re-
sults in Fig. 1 give the impression that the phase transition
is second order). In any event, 7 is difficult to measure ex-
perimentally because the value of p, can fluctuate widely.
Here, we are interested in the scaling behavior of the
external stress or force and its variations with the size of
the system since this can be easily measured. To study
this, we calculate the external force F that must be ap-
plied to break a bond. This force is proportional to pY
and AY in the first and second method of bond breaking,
respectively. Thus, a plot of F vs p or A would be similar
to the traditional stress-strain curves that have been mea-
sured experimentally for many composite systems. > In-
stead of showing the results for each model and network
size L separately, we collapse'® the data for all values of
L. Figures 2 and 3 represent the results for the micro-
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FIG. 2. F/L?* vs A/L? for the microcracked BB model with
y=0.8.
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FIG. 3. F/L? vs A/L? for the microcracked CF model with
y=0.8.

cracked CF and BB models, respectively, if the bonds are
broken according to the second method of bond breaking
(with similar results for the first method). However, the
data collapsing is not complete and, as can be seen, there
are three distinct regimes. In the first regime, which is be-
fore the maximum has been reached, and is far from it,
microcracking takes place which propagates at a relatively
slow rate (this is the regime of linear elasticity). As mi-
crocracking proceeds, one arrives in the second regime,
which is in the vicinity of the maximum, in which intense
microcracking takes place and the system is close to mac-
roscopic failure. Beyond the maximum, the system is in
the so-called post-failure regime,'®!® and is highly sensi-
tive to small variations in A (or p). These qualitative
features are in agreement with direct experimental mea-
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FIG. 4. Number of broken bonds N, at failure vs total num-
ber of bonds N, for the microcracked CF (a) and BB (@) mod-
els.
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surements and observations.'®!® The shapes of the curves
in Figs. 2 and 3 are also in excellent agreement with the
stress-strain curves measured by van Mier®® for various
kinds of concrete, which indicates the usefulness of these
models for investigating real systems. Moreover, as Figs.
2 and 3 indicate, the regimes before the maximum can be
described well by the scaling law

F~L°n(A/L%), 3)

where, h(x) is a scaling function and §=2+0.1. This
equation is written in analogy with the finite-size scaling
hypothesis for equilibrium and static systems.?! The es-
timated errors are only statistical, and systematic errors
due to the finite size of the lattices may be significantly
higher. Although the size of the networks used are rela-
tively small, we believe that the estimated value of § is re-
liable. We find the value of & to be insensitive to 7, net-
work type (bcc or simple cubic), the microscopic force law
(with or without BB forces), or the bond-breaking
method. Similar simulations with two-dimensional net-
works yield §=1 (the details will be given elsewhere).
We thus propose that, §=d —1 for a d-dimensional sys-
tem. On the other hand, if, as the boundary condition, we
impose an external stress on the network (which has to be

gradually increased as microcracking proceeds), the post-
failure regime would completely disappear and the behav-
ior of the system is well described by a single curve given
by Eq. (3), i.e., the data collapsing would be complete
(the details will be given elsewhere).

As a further test of universality, we looked at the shape
of the macroscopic cracks and measured their fractal di-
mension D. Figure 4 represents the number of broken
bonds N., at macroscopic failure, versus the total number
of bonds N, (or, equivalently, L) for both the micro-
cracked CF and BB models. One must have, N.~ N/,
where n=D/3. We find D=2.65 % 0.20, irrespective of
any details of the system. Although, in addition to the
macroscopic crack, there are also disconnected micro-
cracks, they do not alter significantly the value of D.

Our results suggest that the models we have studied
here may possess universal properties, and can reproduce
some features of the experimental data. Therefore, the
next logical step would be to use such models for a quanti-
tative explanation of the experimental data, and to search
for possible universal features in the data.
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