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A theoretical framework is presented which provides a unified description of the integer and the
fractional quantum Hall effects. The main assertion is that new candidate incompressible states can
be constructed by taking products of some known incompressible states, and all incompressible
states can thus be generated starting from the states at integer filling factors. The crucial difference
from previous theories is that the higher Landau levels play an essential role in identifying the
correlations responsible for the fractional quantum Hall effect. The quasiparticle excitations of the
fractional states can be understood simply in this approach by analogy to the quasiparticles of the
integer states. Numerical results show that these trial states very accurately describe the transition
from the —,

' state to the —, state for a four-electron system. It is further shown that the predictions of
the theory are completely consistent with the phenomenology of the fractional quantum Hall effect;
in particular, the predicted order of stability of the various fractions is in agreement with experi-
ments. Even though the fractional quantum Hall effect is found to be possible at all rational filling

factors in this approach, it is indicated why the odd-denominator fractions are in general more
stable than the even-denominator ones.

I. INTRODUCTION

The experimental observation of the phenomenon
termed "fractional quantum Hall effect' (FQHE)" has
posed theorists with an extremely well-defined and fas-
cinating problem. It is clear, especially from the work of
Laughlin, that a plateau in the Hall resistance at
h /pe requires incompressibility at filling factor v=p in a
disorder-free system. Any successful theory of the FQHE
must then be able to answer the following questions. (i)
What is the physics of incompressibility at noninteger
filling factors? (ii) What are the wave functions describ-
ing the physically important correlations of the in-
compressible states? (iii) What are the excited states and
their properties? (iv) Why does FQHE occur only for ra-
tional values of p ( =P/Q, where P and Q are integers)?
(v) What is the order of stability of the various fractional
states? Usually the fractions with smaller P and Q are
the first ones to appear, but why is it that sometimes frac-
tions involving larger values of P and Q are observed
while those involving smaller values of P and Q are not?
(For example —,', has been observed whereas —,', has not. )

Why is —,
' the only observed even-denominator fraction so

far? (vi) What is the role of spin? In this paper we
present a theory that, we believe, answers all these ques-
tions.

The most widely accepted theory of the FQHE, which
we will call the "standard" theory, consists of the Laugh-
lin wave functions for the fractions 1/m, where m is an
odd integer, and its hierarchical generalizations to all
other fractions with odd denominators. [Other ap-
proaches have also been proposed (see Ref. 8 for a
Wigner-crystal-based theory, Ref. 9 for a cooperative-
ring-exchange approach, Ref. 10 for a Ginzburg-Landau
approach, and Refs. 11 and 12 for various microscopic

trial wave functions). ] While it answers some of the ques-
tions raised above to a certain extent, the author finds it
unsatisfactory in the following respects.

First consider the hierarchy theory, which has been
developed in order to explain FQHE at filling factors oth-
er than 1/m. As the magnetic field is varied away from
one of the "magic" 1/trt filling factors, quasiparticles are
created to accommodate the extra Aux. These quasiparti-
cles have fractional charge and are believed to obey frac-
tional statistics. ' The basic idea of the hierarchy
theory is that at certain filling factors the quasiparticles
may themselves condense into a Laughlin-type correlated
state to produce stiffness at these new filling factors. The
quasiparticles of this new state can in turn again con-
dense at some other filling factor to produce stability at
the next level of hierarchy, and so on. The main concep-
tual diSculty with this picture arises due to its use of
quasiparticles. It takes a large number of quasiparticles
to form a Laughlin-type condensate; for example, the —',
state is obtained from the —,

' state when there are half as
many quasielectrons as electrons. It is not clear how
meaningful the concept of quasiparticles is when there is
one quasielectron for every two electrons and the dis-
tance between the quasiparticles is less than their size. In
fact, by the time one gets to the experimentally observed

1 3
state through the sequence —,

' ~—', ~—,
' ~

9
~

I 1
~

1 3

many more quasielectrons have been created than there
are electrons, and it is difficult to intuitively appreciate
how the —,

' state can be responsible for the stability of the
—,', state. Furthermore, it is not even clear to the author
why it should be more useful to consider the quasiparti-
cles rather than the electrons in such situations. A con-
sideration of the electrons rather than quasiparticles is
also desirable because the quasiparticles possess rather
unusual properties like fractional statistics, and the states

41 7653 1990 The American Physical Society



7654 J. K. JAIN 41

containing many quasiparticles are expected to be quite
nontrivial when written in terms of quasiparticle coordi-
nates. In short, even though the hierarchical theory pro-
vides a possible classification of the FQH states, it does
not provide a detailed microscopic understanding of the
phenomenon.

Secondly, in physics one is used to finding common
themes underlying seemingly unrelated phenomena. In
the case of the QHE, however, the situation is quite the
opposite; while the experimental observation of all the
fractions is essentially identical, there are several theories
for their explanation. To begin with, there are two dis-
tinct frameworks for understanding the QHE at integer
and fractional filling factors. While the QHE at integer
filling factors' [the integer QHE (IQHE)] is explained
neglecting electron-electron interactions, ' the observa-
tion of QHE at noninteger filling factors (FQHE) is be-
lieved to arise from a condensation of the two-
dimensional (2D) electrons into a "new collective state of
matter" as a result of repulsive interelectron interac-
tions. Even within the FQHE there are several levels of
understanding. Laughlin's theory explains the QHE at
the so-called "fundamental" fractions 1/m, where m is
an odd integer. Other fractions with odd denominators
are obtained in a hierarchical scheme starting from
the Laughlin fractions. After the observation of FQHE
at —,

' (Ref. 16) possibility of FQHE at even-denominator
fractions has attracted considerable amount of attention,
and its origin is being suggested as some sort of electron
pairing. ' ' Since all the fractions occur under similar
experimental conditions with similar experimental mani-
festation, in our opinion, and based on general esthetic
grounds, this is far from a satisfactory state of affairs.

Another approach is to write trial wave functions as a
function of the electron coordinates, as is the case with
the Laughlin states, and understand their incornpressibili-
ty from a microscopic point of view without appealing to
the quasiparticles. Such wave functions have indeed been
written to describe the incompressible states at filling fac-
tors other than 1/m, ' "and some have been shown to
have good overlaps with the true states for small number
of electrons. However, no simple overall picture has yet
emerged.

The purpose of this paper is to describe in detail a new
class of extremely simple trial wave functions for the
FQHE. 0 2' These result from a desire to incorporate the
IQHE and FQHE into a single theoretical framework and
reveal that there is a fundamental connection between the
two. Since the IQHE is very well understood, this con-
nection constitutes a powerful tool for understanding
various aspects of the FQHE. For example, not only can
the incompressible states at fractional filling factors be
written in terms of IQH states, but the excitations of the
FQH states can also be understood in terms of excitations
of the IQH states. Predictions of the theory are com-
pletely consistent with experiments. Unlike previous
theories, the FQHE is predicted to be in principle possi-
ble at al/ rational filling factors, but at the same time it is
indicated why the odd-denominator fractions are experi-
mentally so much more abundant.

The plan of the paper is as follows. Section II provides

a brief review of the standard theory of the FQHE. Sec-
tion III introduces the new trial wave functions for the
incompressible states at fractional filling factors and their
quasiparticle excitations. In Sec. IV the quasielectron
state and the —'; state are studied numerically and found to
be extremely accurate representations of the true states.
It is discussed why the higher Landau-level states play a
crucial role in identifying the physics of the FQH states.
Section V shows that the order of stability of the various
states predicted by the theory is in excellent agreement
with that observed experimentally. Section VI provides a
generalization of these trial states. The role of spin is dis-
cussed in Sec. VII. The present approach is compared
with the hierarchy approach in Sec. VIII. The paper is
concluded in Sec. IX.

II. REVIEW

We start with a summary of the important results.
The fractions observed in the lowest Landau level (LL)

to date are ' 1

] 3 9 ] ] ] ] ]3 ] ] ]3 and» . Some of these fractions
are observed only in p „. The purer the sample, the
greater is the number of observed fractions, and there is
more or less a definite order in which new fractions ap-
pear as the sample quality is improved.

The IQHE is a relatively well-understood phenomenon.
In the presence of a transverse magnetic field LL's are
formed, each containing a large number of states which
are degenerate in the absence of disorder. The degenera-
cy of each LL is equal to eB/hc per unit area. Due to
Pauli principle, each state can be occupied at most by one
electron, and the number of filled LL's (i.e., the filling fac-
tor) is

v=(density) X hc/eB . (1)

In the presence of disorder the degeneracy of the states in
a LL is lifted, the density of states is broadened, and a
Landau band is produced with localized states in the tail
and extended states at the center. Laughlin has shown,
with the help of a general and elegant gauge argument,
that the Hall resistance is quantized to h /pe, where p is
an integer, so long as the Fermi level lies in a mobility
gap

In a translationally invariant system the Hall resistance
at any filling factor v is given by h /ve . Based on
Laughlin's gauge argument for the IQHE, one believes
that in order to explain QHE at a fractional filling factor
p in the physical system, it is sufficient to demonstrate
that there is a gap in the excitation spectrum at this
filling factor in an ideal impurity-free system. The impur-
ities and inhomogeneties in the physical system create lo-
calized states, and one feels that so long as the Fermi lev-
el lies in the mobility gap, the Hall resistance should
remain quantized at its "unperturbed" value of h /pe .

For an explanation of the QHE at fractional values of
v, Laughlin proposed trial states describing highly corre-
lated incompressible quantum fluids at filling factors
1/m. There is essentially no doubt regarding the validity
of the Laughlin states for two reasons: they have excel-
lent overlaps with the exact wave functions for a small
number of particles, and they have been shown to be the
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exact nondegenerate ground states for certain model
electron-electron interactions. ' ' There have been
several attempts to understand what is responsible for the
incompressibility of the Laughlin states. One property of
the Laughlin wave functions, that all the zeros of the
wave function are bound to the particles, has attracted a
substantial amount of attention. ' '

As mentioned before, in the hierarchy theory the next
level of stable states (the "daughter" states) is obtained at
each step when the quasiparticles of the "parent" state
condense into a Laughlin-type state. Iteration of this
procedure predicts stability at all rational filling factors
P/Q in the range 0(v(1, where Q is an odd integer,
and FQHE is expected for all these filling factors unless
the state in question is unstable to some other type of
state (e.g. , the Wigner-crystal state). The hierarchical
scheme is successful in predicting the order of stability of
the experimentally observed fractions. Recently, an
even-denominator fraction has been observed, ' which on
the face of it is inconsistent with the standard theory, but
trial states have been constructed which may explain this
fraction, ' ' even though the relevance of these trial
states has been questioned. '

Nonhierarchical trial wave functions have also been
proposed for certain filling factors. "' ' Some of these
are found to have large overlaps with the true states for
few-particle systems. "'

III. NEW TRIAL WAVE FUNCTIONS

Zl Z2 Z3

X l z 2 z 2 2
Zl Z2 Z3

exp —— g /z, /'
4 Ac

(z, —z„)exp —— g ~z, ~

(j &k)

In this work we start with the appealing viewpoint that
the distinction between QHE at different types of frac-
tions is to some extent artificial and there must be a single
theory that describes QHE at all fractions. Believing that
such a theory exists, the strategy for uncovering it is ac-
tually quite obvious: one must take as prototype the
best-understood parts, i.e., the IQHE and the Laughlin
states, and then see if one can understand them in a
unified framework, which then hopefully will also give
FQHE at other fractions. The author has earlier pro-
posed such a scheme ' ' in which one can understand the
FQHE and the IQHE in a single framework. The idea is
to assert that the Laughlin states

= g (z, —z„) exp —— g ~z;~
1 e8

j, k

(j &k)

(2)

where m is an odd integer and z =x, +Iy denotes the
position of the jth electron, are incompressible due to
their similarity to y„where y, is the incompressible IQH
state at filling factor 1:

1 1 1 0 4 0

This can be emphasized by writing

Xl/ g (zj zk ) Xl
j, k

(j &k)

(4)

P]
(m —1)P, +1 (6)

This filling factor can be obtained either by counting the
average number of flux quanta per electron, or by count-
ing the total number of occupied states in a given LL.
The average number of flux quanta per electron is equal
to the inverse of the filling factor. In y there are I/p,P)
flux quanta per electron, so that gz has (rn —I)+1/pi
flux quanta per electron, which leads to the fi11ing factor
given in Eq. (6). In order to count the number of single-
particle states occupied in a given LL, let us consider the
disk geometry. Then the number of occupied states in
the thermodynamic limit is given by the largest power of
a coordinate z in the polynomial part of the wave func-
tion. In y this power is N/p„which implies that in y
this power is N/p, +N(m —1), which also yields the
same filling factor.

We find it convenient to write these state as products
of incompressible states as

X, =X, Xi
'—= [Pi 11

Pl

where the m elements of [p, , 1, . . . ] denote the filling
factors of the m states in the product. The exponential
part of a factor y in the product is defined to be

e 8
exp —— ' g /z, /'

4 Ac
(8)

where the factor multiplying g, simply serves to add
m —1 flux quanta (one flux quantum is go=bc/e) to each
electron. [Note that the magnetic field, which is deter-
mined by the argument of the exponential, is constant;
the amount of flux penetrating the sample is increased
due to an increase in the size of the sample as a result of
multiplication by the factor li~ k (z~

—zk) '. ] It was

argued in Ref. 20 that this addition of m —1 flux quanta
to each electron does not completely destroy the correla-
tions in g, responsible for its incompressibility. This is
quite clear in the context of a mean-field approximation
in which one can think of adding m —1 flux quanta to
each electron as attaching a flux tube to each electron
carrying a flux (m —1)$0. The correlations remain unal-
tered in this picture because these flux tubes are unob-
servable. Consequently, the resulting state can also be ex-
pected to be incompressible, which is clearly true for the
Laughlin states. One can now generalize this notion and
say that given any incompressible state y (e.g. , an IQH

state, for which p, =integer) a new candidate incompres-
sible state can be constructed as

x, =P(,— ) 'x,
,

j, k

(j &k)

where the filling factor is
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T

exp —— ' y fz, ['
4 Rc

(10)

with the charge e given by

e„=ep/v .

One can check that this provides the correct exponential
factor

other states, which have a more complex structure, can
be studied analogously.

We would like to point out that some of the states that
belong to this scheme have also been considered else-
where. "' These are the states which are entirely in the
lowest LL. The examples are, of course, the Laughlin
states and their hole analogs, the state [1—

—,', l, l] at
v

7
etc. The new states here are the ones in which the

higher LL states play a role.

for y . We find this "division" of the electronic charge
very natural for two reasons: with this choice each y„ in

the product occupies the same area as g, and, as we will

see later, e is closely related to the charges of the quasi-
particle excitations. For example, for the Laughlin states
e, =e/m which is also the charge of the quasiparticles.
In fact, at some level one can think of the Laughlin states
as the states in which the charge-(e /m ) quasiparticles oc-
cupy IQH states y, . This view has been taken in Ref. 21
to construct the FQH states discussed in this paper.

Often, when there is no ambiguity, we will omit the ex-
ponential factor for notational facility.

The states y satisfy the usual requirements. They are
translationally invariant because they are products of
translationally invariant states. They are also eigenstates
of angular momentum, which follows because g is a
homogeneous polynomial with all terms of the same de-
gree, i.e., the replacement z ~z, e' amounts to multiply-
ing the wave function by a phase factor e', where L is
the total angular momentum.

B. Quasiparticle excitations

++ +++m --1
(13)

where y1 is the state g, with a hole. The wave function
for the state g, with a hole at the origin is

The real power of the present approach lies in the fact
that it recognizes the underlying IQH structure of the
FQH states and thereby enables an understanding of vari-
ous aspects of the FQHE by analogy to the IQHE. As an
example we demonstrate how one can understand the
quasiparticle excitations of the FQH states in a trivial
fashion.

The FQH states in the present scheme are product
states where each state in the product is an incompressi-
ble state itself. It is natural to expect that a quasiparticle
of the product state can be obtained by creating a quasi-
particle in one of the states of the product. Let us consid-
er the example of the Laughlin states first. According to
the above prescription a quasihole is given by

A. The stable Slling factors

One starts with integer values of p1 to obtain some
FQH states, which we term the "fundamental" FQH
states. Once a state at p is thus obtained, this state as
well as the closely related states at n+p can be used ' to
construct further states [n+p, 1, 1, . . . ]. All odd denom-
inator fractions can be obtained in this manner. We
prove this by constructing a state at Pp/Qp where Qp is
odd. If Qo is 1, there is nothing to prove. If Qp@1, the
state at Pp/Qp can be obtained from a state at P, /Qo,
where 2P& & Qp, using

Z 1

Z2
1x'=

Z1

Z2 Z3

Z2 Z2
2 3

Z Z2 3

1/m g g Zj +1/m

which is equal to

Xl — g zk gl
k

so that the quasihole state is

(14)

(15)

(le)

Po

Qo

P1=j+
Qo

'

where j is an appropriately chosen positive integer or
zero and P, & Pp. P, /Qo can in turn be obtained from
P&/Q& by writing a state of the type [P&/Q&, 1, 1, . . . ]
where

Qi

P,
Qo —2(m —1)
P,

(12)

such that m —1)1. Thus, Pp/Qp can be obtained from
P, /Q& where P& &Po and Q& &Qo. This process can
now be iterated until Q„=1; P„ then is the IQH state
from which Po/Qo can be obtained.

In this paper we will discuss only the fundamental
FQH states (for which p &

= integer), unless mentioned
otherwise, since they have the simplest structure. The

Remarkably, and encouragingly, this is precisely
Laughlin s trial wave function for a quasihole at the ori-
gin. Thus, recognition of the underlying IQH structure
of the Laughlin states provides a simple interpretation for
Laughlin's trial wave function for the quasihole. The
state for a quasielectron at the origin can in the same
spirit be written as

+]/3

1 1 1 1

2
Z1 Z2 Z3 Z4 g1 ~

z2 z2 z2 z2
1 2 3 4

This wave function is different from various other wave
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functions proposed in the literature for the quasielect-
ron. ' We will later give results of numerical calcula-
tions on small systems to show that this trial state accu-
rately describes the true quasielectron.

Clearly, there will be several kinds of quasiparticles in
general. Let us take the example of the simplest new

FQH state gfyz at v= —', . There are three kinds of
quasiholes: one of the type y,+y,y2, and two of type
g&g2+ because a hole in g2 can be created in either of the
two LL's. Similarly there are several types of quasielect-
rons. We claim that the lowest-energy quasihole is ob-
tained by creating a hole in the state g2 and the lowest-

energy quasielectron is obtained by adding an electron in
the lowest unoccupied LL of this state. Intuitively one
can understand why these quasiparticles have the lowest
energy by saying that since g2 corresponds to the most
filled LL's, its quasiparticles experience the smallest
"effective" magnetic field. A more quantitative way of
understanding this is to realize that (as shown below)
these quasiparticles have the smallest charge, which im-

plies that they have the lowest energy because the quasi-
particle energy is proportional to the square of its
charge. Quasiparticles of other FQH states are com-
pletely analogous. States containing several quasiparti-
cles can be constructed in a similar fashion. Since the to-
tal number of particles is constant in each of the factors
y, adding or removing a particle at one point is neces-
sarily accompanied by removal or addition, respectively,
of a particle at another point in the sample, which is
often conveniently chosen to be at the boundary.

The charge and statistics of the quasiparticles of the
FQH states have aroused a considerable amount of in-
terest because they constitute an example of particles that
are fractionally charged and are neither bosons nor fer-
mions, i.e., obey fractional statistics. ' We consider the
excitation described by the wave function

g(z, —z )y

The Berry phase calculation of Arovas, Schrieffer, and
Wilczek' can be carried out without modification for
this excitation, and one can show that it has charge —ep
and obeys p statistics (i.e., interchange of two of these ex-
citations produces a phase np). It is clear that

ii; (z; —zo)y consists of p& holes at zo, one in each of
P)

the p, LL's. Therefore the above excitation is equivalent
to p, quasiholes of the type g+g& ' or to one quasihole

of the type g&+y& y . From simple counting argu-
Pl

ments we expect these quasiholes to have charge —ep/p,
and —ep, respectively, and to obey p/p, and p statistics,
respectively. It is clear now that the charge of the
quasihole corresponding to a hole in the state g„ is simply
e, as defined in Eq. (9). A similar analysis for quasielect-
rons is difficult because of their more complicated wave
functions, but since a quasielectron-quasihole pair is a
neutral boson, the quasielectron y y, ' must have

charge ep /p &
and obey —p/p, statistics. Thus, we have

shown that the smallest charge, and hence the lowest-
energy quasiparticles of the FQH state are images of the
quasiparticles of the state in the product which has the

largest filling factor. The lowest-energy quasiparticles of
a fundamental state P/Q have charge e/g and obey
I/PQ statistics, which is in agreement with the result of
the hierarchy theory. We would like to emphasize that
wave functions for the state containing more than one
quasiparticle can be written without regard to their
charge or statistics.

IV. NUMERICAL STUDY OF SMALL SYSTEMS

Study of small particle systems has played an impor-
tant role in the field of the FQHE. First let us consider
the trial states that are entirely in the lowest LL. Both
the Laughlin states g, z,„and their quasiholes g,+& have
been shown to be quite accurate for few particle systems.
Another example is the state [—', , l, I] at v= —', where the
state at —', is the hole analog of the Laughlin state at —,'.
This state has also been shown to have excellent overlap
with the true state. '

A test of the present approach requires a study of the
states in which the higher LL's play a role. Here we
study the simplest such states, namely the quasielectron
state y, / and the —', state y2/~=y~, . We consider the
limit Ace, ~~ so that the true state is strictly in the
lowest LL. Since the product states may have finite am-
plitude in higher LL's, we project them onto the lowest
LL to obtain trial states Py appropriate in the limit

Ace, ~ao. We obtain the true state corresponding to a
given trial state g by exact diagonalization of the
Coulomb Hamiltonian in the subspace defined by the ap-
propriate total angular momentum and denote it by
P (1), where the argument 1 indicates that only the
lowest LL is kept in the calculation. (The symbol g will
be used to denote the true Coulomb states and the symbol
y will be reserved for the trial states. ) The Table I shows
the overlaps of Py, /3 and Py2/5 with the corresponding
true states 1(t; /3( I ) and pz/~( I ). The total angular
momentum L of the four-particle quasielectron state is 14
for which there are 15 distinct configurations of electrons
in the lowest LL, and the total angular momentum of the

state is 12 for which there are nine distinct
configurations. The phase space is therefore large enough
that the near unity overlaps establish beyond any reason-
able doubt that Py describe the physical system quite
accurately and thus have precisely the correct correla-
tions built in them. This confirms the basic validity of
this approach in which Jfrst good correlations are built in
keeping an appropriate number of lowest LL's and then
this correlated state is projected onto the lowest LL to
obtain a trial state to describe the physical state in the
limit Ace, ~ oo.

A. Role of higher Landau levels

Perhaps the most crucial aspect in which the present
approach differs from all the previous approaches is in its
use of the higher LL's in order to identify the correla-
tions responsible for the FQHE. Further insight into the
role of the higher LL's can be gained by considering a
model system in which the Hilbert space is restricted to
the lowest n LL's. We make the following assertions. (1)
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TABLE I. This table shows the overlaps of the lowest LL
projections of certain trial states with the corresponding true

Coulomb states, defined by (/~PE)/((g~g}(Py~Py))' . His
the number of electrons.

State

X1 /3

X1 /3

X2/5

Overlap

1

0.996
0.998

Forp &1

Pgr(n) =fr(1) (19)

i.e., the lowest LL projection of the true state g (n) is an
excellent approximation to g (1) independent of the
specijic choice of n and the LL spacing iiiar, . (For
l (p ~ i+1 the analogous equation is PP (n) =g~(1+ I ),
where the operator P projects p (n} to the lowest 1+1
LL's. ) This is clearly true in the extreme quantum limit
%co,~ 00 but is far from obvious in the limit Ace, =0. For
the most dramatic effect, as well as for reasons that will
become clear later, we take the LL's to be degenerate,
i.e., set fico, =0. (2) The states y are accurate represen-
tations of the true ground states g (n} for appropriate
values of n, and consequently their lowest LL projections
(Pg ) are good approximations of the true ground state

itr( I ).
We demonstrate the plausibility of these statements by

considering simple examples. For the first assertion we
calculate g(2) (with iric0, =0) and g(1) for a three-
electron system for several values of the total angular
momentum. The overlaps of PtP(2) with g(1) are shown
in Table II which clearly corroborate Eq. (19). This
confirms that in order to obtain the lowest LL ground
state, it is valid to first calculate the ground state keeping
as many (a finite number of} LL's as one wishes, and then
take its projection onto the lowest LL.

For the second assertion let us consider the special case
of n =2. It can be proven that the states

yz/[2~ &]=y& 'y2 are the unique ground states in the
presence of short-range repulsive interactions of the type

"5(r), first considered by Trugman and Kivelson.

TABLE II. This table shows the overlaps of Pit(2) with P(l)
for a three-electron system for several values of the total angu-
lar momentum, L. For L ( 5 the phase space in the lowest LL is
so limited that the overlap is trivially 1.

Overlap

Since we have taken the LL's to be degenerate, these
states are eigenstates of the kinetic energy, which ex-
plains our motivation for setting Ace, =0. Since these
states vanish as r, as the distance between two particles,
r, approaches zero, the expectation value of the above in-
teraction with respect to these states is zero, as can be
seen easily by integration by parts. Therefore, these
states are ground states. What remains to be shown is
that yz/~z, )

is the only state at v=2/(2m —1) that
vanishes as r . This can be shown as follows. Since only
the states of the lowest two LL's are available, the largest
power of a z' in the polynomial multiplying the exponen-
tial is 1. This implies that the most general trial state
that vanishes as r is

m —1

~1 +v & (20)

where v~2. This state corresponds to a system at filling
factor v/[(m —1)v+1]. Clearly, at 2/(2m —1) the only
possibility is yz/~z, ) [and no such state can be con-
structed for filling factors greater than 2/(2m —1)]. This
presumably implies, based on the intuition gained from
the Laughlin states, that g2/[2 &] is a legitimate approx-
imation to the true ground state Pz/~z, )(2) for physical
interactions for this model system. Therefore, it is now
no surprise that Pyz/5 accurately describes fz/s(1).

In the extreme quantum limit one expects the electron
density in the true system to be predominantly in the
lowest LL, and therefore the lowest LL restriction seems
to be quite natural ~ However, we use the subtle trick of
starting with a bigger Hilbert space (defined by the pa-
rameter n) and in the end making use of Eq. (19) to ex-
tract the lowest LL state. The advantage is that different
choices of n provide a simple and natural description of
the FQH states at different filling factors, thus bringing
out the otherwise hidden structure of these states. We
have shown that just as n = 1 is suitable for the descrip-
tion of the ground states at 1/m, n =2 is suitable for ex-
tracting the ground states at 2/(2m —1). Similarly, oth-
er values of n will yield ground states at other filling fac-
tors.

Unfortunately, even though all the product states are
ground states in the above model for proper choices of
the short-range interaction, not all are nondegenerate
ground states. For example, for n =3, the state pe~
at 3/(3m —2) is degenerate with a large number of
compressible states of the form pbbs y3/4 However,
surely this degeneracy is an artifact of the model, and we
believe that for realistic interactions the highly correlated
state pe, ' has lower energy than the other states
which are not even homogeneous in general. Indeed,

' is as natural as y~i ' in this scheme.

6
7
8
9

10
11
12
13

0.993
0.999
0.999
0.999
0.988
0.983
0.961
0.997
0.994

8. Validity of the unprojected states

We have thus plausibly demonstrated that Py~ de-
scribe the physical system accurately. Clearly, this im-
plies that the states g are themselves legitimate repre-
sentations of the true fractional states in the sense that
they have precisely those correlations built in them that
are responsible for incompressibility at filling factor p.
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Thus, these states can be used to calculate certain topo-
logical properties of the FQH states, e.g. , the charge and
the statistics of the quasiparticles. Of course, for a com-
putation of several other quantities, e.g., the ground-state
energy or the quasiparticle gap in the limit %co,~ ~, one
must use the projected states.

Some readers may find it slightly disturbing that g in

general have a finite density of electrons in the higher
LL's. However, we would like to emphasize that whether
one writes a trial state strictly within the lowest LL or a
trial state largely in the lowest LL, one must in the end
argue that the structure of the state is not very sensitive
to small changes in the occupation of various LL's, be-
cause under the typical experimental conditions some
amount of LL mixing is certainly expected. Laughlin has
argued that his states describe the physics correctly even
when the coupling to higher LL's is turned on so long as
there is a gap of any size in the true state. ' Similar
reasoning can be applied to these states. That the physics
of these states is insensitive to variations in the occupa-
tion of the higher LL s is in fact quite clear from our nu-
merical calculations on the —, state in which we consider a
model system with only the lowest two LL's accessible.
We have shown that gz&~ is a good approximation to the
true state when fico, =0, and the closely related state

Pyz&~ is a good approximation to the true state when

%co, = ~. This seems to suggest that there is no change
in the character of the true state, i.e., no phase transition,
as the occupation of the higher LL is varied by varying
%co, . Consequently, y2» is as legitimate a representation
of the true state as Pyz&5. (Notice that if all the LL's
were available, y2» would not remain a reasonable repre-
sentation of the true state for small A'co, but only for large
fico, .)

Thus, it seems that the states g capture the physics re-
sponsible for incompressibility at fractional filling factors.
We have, moreover, argued that they lie largely in the
lowest LL in the thermodynamic limit, ' ' and therefore
do not do very badly energetically either. The argument
briefly goes as follows. Expand the polynomial part of
the product state y . In each term the coordinates of a

particle appear as z 'z 'exp( —
~z

~
l4) where r is of or-

der 1 (assuming only a finite number of the lowest LL's
are occupied) and s, is typically very large, of order N
(s ))1). Expressing it as a superposition of the single
particle states, it can be shown (Appendix) that it has its

amplitude predominantly in the lowest LL and the ampli-
tude decreases by a factor of order s ' in each succes-
sive higher LL. Thus, dropping the higher (IWO} LL
states altogether in each such expression should lead to a
state which is almost the same as the initial state g; i.e.,
projection onto the lowest LL does not change the state

significantly. This suggests that the states g are
largely in the lowest LL. The crucial untested assump-
tion here is that there are no huge cancellations among
the remaining terms. (Of course, we also assume that
p & 1.) An exact evaluation of what fraction of electrons
occupies the higher LL's in the thermodynamic limit
seems to be a rather involved combinatorial problem. In
any case, provided it is largely in the lowest LL, y itself

is not an unreasonable trial state under typical experi-
mental conditions, for which some amount of LL mixing
is certainly expected (the ratio of the Coulomb energy to
fico, is typically 0.2, which is not extremely small).

We again emphasize why it is useful to include several
LL's in the theory of the FQHE. With the lowest LL re-
striction there is a simple description of the FQHE at the
"special" filling factors 1/m, as embodied elegantly in the
Laughlin states. The structure of the other FQH states
is, however, not as clear. We have argued here that with
the use of higher LL states one can write equally simple
states at other incompressible filling factors as well, and
thereby provide a general understanding of the nature of
the electronic correlations in the FQHE. The use of the
higher LL's thus brings out the structure of the FQH
states in a very simple and intuitive fashion.

V. ORDER OF STABILITY

We now show that the order of stability predicted by
this scheme is completely consistent with the experi-
ments.

Even though incompressibility and hence FQHE are
possible at all rational filling factors with odd denomina-
tors, only a small number of fractions are observed exper-
imentally. The reason is that only those states are ob-
served that have a finite gap in the presence of disorder.
Disorder reduces the quasiparticle gap; as disorder is in-
creased the quasiparticle gap eventually disappears and
the FQHE is destroyed. Therefore, in the presence of
disorder only a finite number of states have a finite gap,
and as the experimental samples are made purer the num-
ber of such states increases. A state with a larger quasi-
particle gap is more stable in the presence of disorder
than a state with a smaller quasiparticle gap, and predict-
ing the order of stability of various fractions requires a
computation of the quasiparticle gaps.

Fortunately, as we now show, it is possible to predict,
to an extent, the order of stability with the help of certain
plausible rules without actually computing the quasipar-
ticle gap. The most obvious rule is that if y, is less

stable than g~, the state [pi, 1, 1, . . . ] is less stable than

[p&, 1, 1, . . . ] for fixed m. When the states at pi and p&
are equally stable (e.g., when both are integers) we as-
sume that, so long as the resulting states are sunciently
similar, the state with the smaller quasiparticle charge
has smaller quasiparticle gap and is consequently less
stable. This implies that the state [p&, 1, 1, . . . ] is more
stable than [p&+1,1, 1, . . . ] and the state [p&, 1, 1, . . . ]
is more stable than [p„l, . . . , 1, 1]. In Fig. 1(a) we
show the filling factors of the fundamental FQH states
[p &, 1, 1, . . . ] as a function of p& and m. Any given state
is more stable than the one above it or the one on its
right. In this and the following figures all fractions ex-
cept the last one of a horizontal sequence have been ex-
perimentally observed, and the last fraction constitutes a
prediction of theory. More fractions can be generated
from the fundamental fractions of Fig. 1(a) which we
generically refer to as p, . Figure 1(b) shows the filling
factors of the hole analog states of Fig. 1(a}, i.e., 1 —p, .
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Figure 1(c) contains the filling factors of states
[1—p„1, 1], and Fig. 1(d) of the states [1+p„1, 1]. Fig-
ure 1(e) is the hole analog of Fig. 1(d). Also in all these
figures any given state is again more stable than the one
above it or the one on its right according to our rules.
All of the observed filling factors ((1) have thus been
obtained in a very compact manner, and the predicted or-
der of stability is in excellent agreement with experi-
ments. In Figs. 1(a) and 1(b) the horizontal sequences are
precisely the experimentally observed sequences converg-
ing to —,', 4, —,', etc. and appear very naturally in this
theory. It is also worth pointing out that the higher LL
states play an important role in all the states except those
in the first columns of Figs. 1(a), 1(b), and 1(c).

%e are now in a position to answer a specific question
raised in the beginning of this paper: %hy is —„not ob-
served even though —,', is? The state at —,', is [6,1,1]
whereas the best state at —,', is [—,', l, l] where —,

' is either
1+—', or 2 —

—,'. Since it is reasonable to expect the state at

VI. GENERALIZED PRGDUCT STATES

The most obvious generalization of the above states is
to write

x, = g x„=[p»
A, =1

(21)

where g are any known incompressible states. The ex-

ponential factor in a state gz is again defined with

6

19
(c)

—', to be less stable than the one at 6, it is not surprising
that the state at —,', is less stable than the one at 3.

1
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(e)

12

19

FIG. 1. The filling factors of the states [p, , 1, l. . . ] denoted by p, are shown in (a), the filling factors I —p, of the corresponding
hole analog states axe shown in (b), and the filling factors of the states [p&, 1,1] obtained by choosing p, = 1 —p, and p, = 1+p„are
shown in {c)and {d), respectively. {e) is the hole analog of {d). All the fractions of a horizontal sequence except the rightmost one
have been observed. No other odd-denominator fractions have been observed.
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charge

ex =ep ~ps

and the filling factor of the product state is given by

(22)

(23)

since for mp 1 only odd-denominator fractions can be
obtained. Indeed, this assumption has already been im-
plicitly used in comparing the order of stability of the ex-
perimentally observed fractions with the states of the
type [p» I 1 ].

Even-denominator fractions appear only when two or
more of the p&'s are different from 1. For example, the
state

Unless mentioned otherwise, we will assume pz's to be in-

tegers and p& pz
. . p

Variational states for the quasiparticle excitations can
be written as before. As before, the quasiparticles of the
product state that correspond to quasiparticles of g
have charge ez=ep/p& and obey p/p~ statistics.

We start by showing that the product states of the type
given in Eq. (21) can be written at all rational filling fac-
tors, i.e., this theory predicts possibility of FQHE at all
rational fractions. We prove this by explicit construction
of an incompressible state for each rational fraction. A
state at P/Q, where Q is odd, can be constructed by
choosing in Eq. (23) m =Q and p& =P. Similarly, a state
at P/Q, where P is odd, Q is even, and r is an even in-

teger so chosen that P & rQ, can be obtained by choosing
m =rQ+r P, r of —the pz's equal to r, and the rest
equal to rP. These states are obviously not unique.
Given an incompressible state at a fraction p, one can
construct states at n+p where n is an integer. As before,
more states can be generated by choosing y in Eq. (21)

to be one of the states obtained above corresponding to a
noninteger filling factor. In general, there will be several
candidates for a given rational fraction, but usually the
most stable one can be determined uniquely with the help
of the rules outlined earlier.

Only rational filling factors are generated in this
theory; incompressibility is not possible at nonrational
filling factors. This results directly from the fact that all
incompressible filling factors are generated starting from
integers.

One interesting outcome of this generalization is that
there is nothing in principle that forbids FQHE at even-
denominator fractions, which is an esthetically pleasing
result, especially considering that an even-denominator
fraction has been observed. Of course, we must explain
why the even-denominator fractions are so rare. To this
end we find it useful to classify the states according to mp
which is defined to be the number ofpz's different from 1.
Presumably the strongest correlations are due to binding
of the zeros of the wave function to the electrons, as in
the Laughlin states, and since that happens strictly only
in y, , the most strongly correlated states are those that
have most of the p&'s equal to unity. More quantitative-
ly, a state [[p&I] has vanishing interaction energy in
Haldane's pseudopotential scheme so long as pseudopo-
tentials V„vanish for n m —mp, where m —mp is the
number of p&'s equal to 1. Thus, the smaller the mp, the
more stable one would expect the state to be for a given
m. Therefore, we make the plausible assumption that the
more experimentally relevant states are those with small
values of mp. This assumption is consistent with the fact
that only odd-denominator fractions have been observed,

[2,2, 1]=X&X'z (24)

corresponds to filling factor v =
—,'. Thus even-

denominator fractions are rare because they occur only
when mp ~ 2, in which case the correlations are relatively
weak. We emphasize here that in the present approach
the FQHE at even-denominator fractions is in principle
possible even for spinless electrons.

Even for mp 2 there are relatively very few even-
denominator states. Consider mp =2 for example. The
only even-denominator states in this case are
[4j+2, 4j+2, 1, 1, . . . ] where j =0, 1,2, . . . , the filling
factor is

2j+1p=
(m —2)2j+(m —1)

(25)

VII. ROLE OF SPIN

Until now we have been considering spinless electrons.
In sufficiently high magnetic fields when the Zeeman en-
ergy is very large one expects the states for v&1 to be
spin polarized and consequently the electron spin to be ir-
relevant to the problem. However, when Zeeman energy
is small, spin could play an important role in producing
new possible states. ' ' ' At the simplest level spin
can be incorporated in the present formalism by taking
one of the y 's (say y ) to describe electrons with spin.Pl
The resulting state is

Xp=[q&»q&»p2». »pm] Xq, , q, pip~ »

'k=2
(26)

where g has q t (q t ) up-spin (down-spin) Landau

bands occupied, and y are formed from the N particle

Some examples of these states are [2,2, 1] at —,', [2,2, 1,1,1]
at —,', and [6,6, 1] at —,'. The state [6,6, 1] is extremely un-

likely to be observed, because the much stronger state
[6,1,1] at v=

—,', is barely observable in the best available

samples of the day. ' Thus, there is little likelihood of
the observation of any even-denominator fractions other
than —,', and maybe —,'. The most stable spin-polarized
even-denominator state is predicted to be [2,2, 1] at v= —,'.
Since all the observed odd-denominator state can be writ-
ten in the form [p&, 1, 1, . . . ], this theory is consistent
with the fact that [2,2, 1] has not been observed. Only de-
tailed numerical calculations can tell for what values of
p &

the state [p „1,1, . . . ] becomes less stable than

[2,2, 1].
In general the charge of the quasiparticles of the P/Q

state is not e/Q. For example, the charge of the quasi-
particles of the state [2,2, 1] at v= —,

' is e/4.
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coordinates without regard to their spin degree of free-
dom. The filling factor of the product state is given by
Eq. (23) with p, =q t +q &. Let us now consider some
specific examples.

The state [1,1; 1, 1. . . ] is given by

m —
1

+2/(2m —1) +1,1+1

(z, —z )

1&i & j&N/2

s&t l, s

(27)

(z,
' —z,

' ), (28)
1 &s &t &N/2

(29)

where z and z' denote the coordinates of spin-down and
spin-up electrons, respectively, the indices i,j,s, t run
from 1 to N/2 where N is the total number of electrons,
and the filling factor can be easily shown to be
2/(2m —1). (The exponential factors have been omitted
for simplicity. ) Since the number of spin-up and spin-
down electrons is equal, the states y2/[2m 1] are spin un-

polarized and are precisely the spin-unpolarized states
considered by Halperin' and Haldane. '

The state [q t, q ~,
' 1, 1, . . . ] has filling factor

P1

p, (m —1)+1

and is given by

y =g(z; —
z, )

(30)

X g (z,
' —z,') 'g (z, —z,') (31)

s&t l, s

(32)

is also possible. This is similar in spirit to a state con-
sidered in Ref. 11(b).

As emphasized by Haldane, ' a physically acceptable
state must not only be an eigenstate of S„but also of the
total spin operator, or, in other words, must satisfy
Fock s cyclic condition. The states g given here satisfy
this criterion if g does, because the factor multiply-

ing it is symmetric under the exchange of any two parti-
cles regardless of their spin.

In general one could put spin in more than one of the
states in the product. For instance, one can write the
state [1,1;1,1;1] at v= —,', which is the same as one of the
states proposed by Halperin' and later numerically stud-
ied by MacDonald, Yoshioka, and Girvin. '

The only even-denominator state observed to date is —,'

where i,j run from 1 to Nq
& /q and s, t run from 1 to

Nq&/q. When q& =q& these states are spin unpolarized
and when q&Pq& they are partially spin polarized. To
the best of our knowledge this is the first time that expli-
cit wave functions have been written to describe in-
compressibility in the presence of partial polarization.
By analogy with the spin unpolarized states these may
also be experimentally relevant for small Zeernan ener-
gies.

At filling factor —,', besides the fully spin-polarized state

[2,2, 1], a spin-unpolarized state

(i.e., —, in the second LL) and there is experimental evi-

dence that it is not completely spin polarized and prob-
ably spin unpolarized. ' ' FQHE at even-denominator
fractions does not appear naturally in the hierarchy
scheme, but trial states have been constructed' ' to ex-
plain the experimental observation of —,'. We, on the oth-
er hand, obtain even- and odd-denominator fractions in
the same theoretical scheme. As shown earlier, there are
very few even-denominator states in the favorable pararn-
eter range, which explains the experimental scarcity of
even-denominator fractions. Also, —,

' appears in the
present framework to be the most likely even-
denominator candidate. One can write both spin-
polarized and spin-unpolarized states at —,'. When the
Zeeman energy is suSciently small, a spin unpolarized
state is expected to be more favorable because of its
smaller mo, and because of the analogy with the numeri-
cal calculations that show that the spin-unpolarized
states of the type [1,1;1,1, . . . ] are more favorable than
the corresponding spin-polarized states for suSciently
small Zeeman energy. Thus, it is qualitatively clear
why the spin-unpolarized —,

' state is the only even-

denominator state observed so far.

VIII. COMPARISON WITH
THE STANDARD HIERARCHY APPROACH

It is instructive to spend some time in comparing the
present theory with the standard theory of the FQHE.
There are several differences as well as similarities be-
tween the two approaches, which we now consider.

In the hierarchy theory the daughter state at each step
is obtained when the quasiparticles of the parent state
condense into a low-energy Laughlin-type state. Even
though the quasiparticles do not play any role in the con-
struction of the FQH states presented in this paper, a
hierarchylike interpretation is also possible for these
states. For concreteness we consider the states of the
form

2
+1+v ' (33)

The —,
' state is obtained with the choice v= 1, the —', state

is obtained with v=2, the —,'state is obtained with v=3,
and so on. Let us now start with the —,

' state (i.e., v= 1)
and slowly increase v while keeping the number of parti-
cles, N, fixed. Taking a disk shaped sample and choosing
circular gauge, we fill No=N/v single particle states
closest to the center in the lowest LL of the y„( so that
the lowest LL is completely occupied) and distribute
"uniformly" the remaining N No=N(1 —v ') elec-—
trons in the corresponding No states of the higher
(second) LL. The electrons in the partially filled LL in y„
can be considered as the quasielectrons in the state p1p,
of the underlying "incompressible" state comprised of the
filled LL's. In general there are a large number of ways
of distributing the quasielectrons into the available states.
However, at v=2, when N/2 quasielectrons are created,
they have a unique configuration, and the resulting state,
y1g2, is nondegenerate, indicating incompressibility. One
can now similarly create quasielectrons of the —,'state to
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obtain the next nondegenerate state that occurs at —,'.
Thus at first sight the trial states proposed here seem to
be a microscopic realization of the hierarchy ideas. How-
ever, there are several significant differences between the
two approaches which we discuss below.

The main difference is in the very physics of incompres
sibility. In the scheme presented here the quasielectrons
acquire their incompressible arrangement from analogy
to the IQH states and not by mimicking the Laughlin
states. Thus, the "fundatnental" states here are the IQH
states and not the Laughlin states. [Note that we have
also used the term "fundamental" for the simplest FQH
states shown in Fig. 1(a).]

Also, as is clear from the above discussion, if a state A

can be obtained from a state B by creation of quasielect-
rons, the state B can be obtained from the state A by
creation of quasiholes. Therefore, it is inappropriate to
call one of them the "parent" state and the other the
"daughter" state. In fact, the FQH states are more inti-
mately related to the corresponding IQH states than to
each other.

For the same reason, some of the states that appear
naturally in the hierarchy theory do not emerge naturally
here. For example, in the hierarchy theory, starting from
the —', state, one can obtain the

7 state by creating
quasielectrons and the —,', state by creating quasiholes. In
the present scheme, starting from the —', state one can
reach the —state by creating quasielectrons, but creation
of quasiholes leads back to the —,

' state (at the simplest lev-

el). Thus, here the hierarchical fractions obtained
through creation of quasielectrons occur more naturally
than the ones obtained through creation of quasiholes.
The important point is that these are also the observed

fractions For exam. ple, the —', state has been observed
whereas the —,', state has not. Thus, while the hierarchy
scheme produces along with the observed fractions a
large number of fractions that are not observed, the
present scheme produces the observed fractions in a very
compact manner. We take this to be a strong evidence in
favor of this approach, in which the FQH states are con-
structed by analogy with the IQH states rather than the
Laughlin states.

Moreover, this theory can be generalized to describe
the incompressible states at even-denominator filling fac-
tors. We find this gratifying even though we have not yet
investigated how well the generalized product states do in
describing the true system.

Despite these differences there are various similarities
between the two approaches. The charges of the quasi-
particles agree in the two approaches at the simplest level
(of Sec. III) which covers all the odd-denominator states
observed to date. In the example of the transition from

3

to
5 to 7 considered above, the —', state is obtained from

the —,
' state after creating X/2 quasiparticles, and the —,

'
state is similarly obtained from the —, state after creating
X/3 quasiparticles. This is also in exact agreement with
the hierarchy theory.

Now we use some ideas of the hierarchy theory to
demonstrate that the trial states proposed here are in fact
very natural for describing the physics of the FQHE.

Even in the hierarchy approach, when a quasielectron is
created by inserting a flux quantum through an infinitely
thin magnetic solenoid piercing the sample, it has some
amplitude in the higher LL. However, since in the high-
field limit the amplitude of the true quasielectron in the
higher LL is insignificant, the terms containing the z "s
are thrown away to obtain a quasielectron state which is
strictly in the lowest LL. ' It is interesting to ask what
would happen if one used the "unprojected" Laughlin
quasielectrons to build the hierarchical states, deferring
the projection to the end. In this case the hierarchical
states would also have a finite amplitude in the higher
LL's. For example the —', state thus obtained would have
some amplitude at least in the lowest two LL's. As
shown earlier, the state y2»=y, y2 at v= —', is the unique
state which has amplitude only in the lowest two LL's,
and which vanishes in the same way as the Laughlin state
g ] /3 as two electrons approach each other. This shows
that the —', state proposed here is in some sense the best
state that one can build with N//2 unprojected quasielect-
rons. This example demonstrates three crucial points of
the present theory in a very forceful manner. (i) Higher
LL's appear very naturally in the theory of the FQHE.
(ii) The FQH states are very intimately related to the
IQH states. (iii) Despite some fraction of electrons in the
higher LL's, the states y correctly capture the physics of
the FQHE.

The other hierarchical result that is embodied very
naturally in the trial states proposed here is the following.
If one applies the hierarchy construction to the Laughlin
state with m =1, it should produce the states with 2,
3, . . . filled LL's. ' The sequence 1,2,3, . . . ~ is thus
analogous to the sequences

3 5 7
. . and

5 9 ]3, . . . .
Unfortunately, it has not attracted much attention in the
hierarchy theory even though it is undoubtedly the best
understood sequence and ought to serve as the prototype
when one attempts to understand the other sequences.
The analogy between the —,

' sequence, the —,
' sequence, and

so on, to the 1 sequence, which is implicit in the hierar-
chy approach, is in fact very transparent in present trial
states: just as one goes from y, to y2 to y3, one can go
from y,y, =y, /3 to g+[ g2/5 to g3gJ g3/7 and from2= 2= 2=

4 4 4
+1 /0 +21l +2/9 13+1 +3/13'

IX. CONCLUSION

We have provided a theory which combines into a sin-

gle coherent conceptual framework various pieces of the
QHE, which were previously more or less unrelated. The
most appealing feature of this theory is that it unifies the
IQHE and the FQHE. It constructs new possible in-
compressible states by simply taking products of the
known incompressible states. Our claim is that legiti-
mate trial wave functions at all rational filling factors can
be obtained starting from the IQH states in this way.
Thus, at the most fundamental level, incompressibility at
fractional filling factors is due to a combination of the
correlations that are responsible for QHE at integer
filling factors.
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The Laughlin states are a special example of such
product states and are obtained by taking odd powers of
the v= 1 IQH state. Numerical calculations show that
the lowest LL projection of the simplest new trial state,
namely y2»=y, y2, also describes the true state very ac-
curately for few particle systems. The quasiparticle exci-
tations of the FQH states can be understood elegantly by
analogy to the quasipartic1e excitations of the underlying
IQH states. This provides a simple way of "deriving" the
trial state for the quasihole proposed by Laughlin. The
quasielectron wave function obtained in analogous
manner is new and our numerical results show that its
lowest LL projection is also a very good approximation
of the true quasielectron state.

Trial states have been proposed in the past to describe
the FQH states at fractions other than 1/m. "' Howev-
er, this is the first time that it has been realized that re-
markably simple states for the FQHE can be written by
making use of the IQH states, which are known to have
correlations that lead to incompressibility.

We conclude by enumerating the main features of the
theory described above. (i) It unifies various aspects of
the phenomenon of the quantum Hall effect. (ii) It pro-
duces explicit wave functions for all the fractional quan-
tum Hall states —spin polarized or otherwise. (iii) It also
produces all the quasiparticle wave functions. (iv) It pre-
dicts possibility of incompressibility, and hence of quan-
tum Hall effect, at all rational filling factors. (v) The pre-
dicted order of stability is completely consistent with ex-
periments. (vi) It permits an adiabatic calculation of
statistics and the charge of the quasiparticles in general.
In short, we believe that the approach presented in this
paper provides a fairly complete, satisfying and con-
sistent picture of the FQHE.

Note added in proof. (i) The fractions —,', and —,', have
also been observed recently, which is consistent with
the predictions of Fig. 1. (ii) The lowest LL projection of
the incompressible spin-polarized —, state in Eq. (24) does
not have a large overlap with the corresponding true
Coulomb state for a four-electron system. This is con-
sistent with the fact that FQHE is not observed at v= —,'.
(iii) The lowest LL projection of the spin-unpolarized
state at v= —,

' [Eq. (32)] also does not have a large overlap
with the corresponding true Coulomb state. These re-
sults suggest that the generalized trial states of Sec. VI
may not be physically relevant.
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APPENDIX

ZI+s —zz*/2
(A2)

This can also be written in the form

is8

&2~ (s +1)1
]

1/2

e
—t /2t s/2L s( t ) (A3)

where t =zz" l2, e' =z/~zi, and

I

L (t)= t ——t e
1 a +1
1!

(A4)

The orthonormality of the single particle states follows
from that of LI' because the volume element
r dr d8=dt d8. This form is especially suitable for cal-
culations involving several LL's.

In the state g the coordinates of a particle appear as
z "z' 'exp( —zz'/4), which can be easily expressed as a
superposition of the states gI, .

l
z "z'+'exp( —zz'/4)= g at rit, ,

I'=0
(A5)

where

1/2
2rr2'+ ' (s+I)!I!

a, = —1'
( I'+ s )!I'! ( I —I')! (A6)

For large s

a&'+ & 1
)

a, v's
(A7)

implying that the amplitude is the largest in the lowest
LL and decreases by a factor of order s ' in each suc-
cessive higher LL. Thus, for large s the state
z z +'exp( —zz*/4) is almost entirely in the lowest LL.
The projection of this state onto the lowest LL is given by

aogo, =exp( —zz'/4) 2 z*+' .s+I (AS)
az

where I =0, 1. . . is the LL index, s = —I, —I + 1, . . . is
the angular-momentum index, D=BIBx+i8/By, and x
and y are expressed in units of the magnetic length. Tak-
ing z =x+iy and z*=x —iy to be the independent vari-
ables one can replace D and D * by 28/Bz ' and 28IBz, re-
spectively, and write

r11, =[2m 2'I! (I +s)!] ' e"
'I

—
( 1)1 s[2~ 2s+2!I!(I +s)1]—1/2

+y ) 4D ID + — +y (Al)

In this Appendix we derive some of the results used in
the text. The single particle states in circular gauge are
given by

Thus, in order to obtain the lowest LL projection of any
given many-electron state, one first expands the polyno-
mial multiplying the exponentia1, writes each term in an
ordered form where all the z*'s appears to the left of the
z's, and then replaces z' by 2B/Bz with the understand-
ing that the derivatives do not act on the exponential.
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