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We present a theoretical investigation of the electronic properties of a quasi-one-dimensional
electron system at very low temperature. For a cylindrical quantum wire the electron-impurity in-

teraction and the electron-electron interaction is calculated for a two-subband model. Our analyti-
cal results for the electron-impurity and the electron-electron interaction are in good agreement
with the exact results for our model. Analytical results for the band bending due to the filling of the
lowest subband are evaluated. Within our analytical results we discuss various aspects of the elec-
tronic properties of the semiconductor quantum wire: screening (intrasubband and intersubband
plasmons), shallow impurity states (screened and unscreened), and mobility (ionized-impurity
scattering and interface-roughness scattering). Analytical expressions are given for the dispersion of
plasmons, the binding energies of shallow impurities, and the mobility. Our results on intersubband
plasmons are compared with experiments.

I. INTRODUCTION

Electronic properties of quasi-one-dimensional electron
systems (Q1D ES's) have been recently studied experi-
mentally (for a review, see Ref. 1) and theoretically (for a
review, see Ref. 2). Usually, quasi-one-dimensional struc-
tures are produced by an additional one-dimensional
confinement of a two-dimensional electron gas as realized
in silicon metal-oxide-semiconductor structures or in
Al„Ga, „As/GaAs heterostructures. For realistic cal-
culations of the subband structure in these systems, one
must solve a two-dimensional Schrodinger equation and a
two-dimensional Poisson equation, and only numerical
results are available.

Analytical results for the subband structure of Q1D
ES's can be obtained for a cylinder of radius Ro with
infinite barriers and for a rectangular wire with sides L,
and L2 and with infinite barriers. However, even for
these models the Fourier transform of the electron-
electron interaction potential, which plays a fundamental
role for plasmons, has only been given as a numerical re-
sult. ' For the lowest subband and for a cylindrical wire,
analytical results for the electron-impurity and electron-
electron interaction potentials have been obtained with
the approximation of a constant electron density in the
wire. '

In the past, analytical results for simplified models
have been very important for the quantitative under-
standing of the physics of two-dimensional electron sys-
tems. We mention the Howard-Fang variational wave
function for silicon metal-oxide-semiconductor (MOS)
structures and the Al„Ga, As/GaAs heterostructures
(for a review, see Ref. 9), and the one-dimensional barrier
model for quantum wells (for a review, see Ref. 10).

In this paper we present analytical and numerical re-
sults for the electron-electron and electron-impurity in-
teraction potentials for the two lowest subbands of a cy-
lindrical wire. The good match of our analytical results
with the numerical calculations motivated us to study
various electronic properties using our analytical results.
We discuss the elementary excitations of the system, the
binding energy of shallow impurity states, and the mobili-
ty for ionized-impurity and interface-roughness scatter-
ing.

Intrasubband plasmons have been studied theoretically
in Ref. 11, and numerical results have been given. We
present results for a cylindrical symmetry and we discuss
various analytical formulas, which are valid for small
wave numbers. Our results for intersubband plasmons
and the discussion of depolarization effects generalize the
well-known results for two-dimensional systems (for a re-
view, see Ref. 9) to Q1D ES's. This calculation is impor-
tant for the interpretation of infrared experiments. '

Binding energies of hydrogenic impurities have been
calculated within the variational approach. ' ' For our
calculations we use the separable-potential approxima-
tion, which we have successfully used before for the cal-
culation of bound states in two-dimensional electron sys-
tems. ' Bound states for the second subband are also cal-
culated.

Mobility limits for charged-impurity scattering in Q1D
ES's have been calculated by Sakaki' and later in Refs.
7, 8, and 16 within some more sophisticated models.
These calculations will be discussed in the light of our
analytical results for the electron-impurity interaction.
We also present analytical results for interface-roughness
scattering in Q1D ES's.

The paper is organized as follows. In Sec. II we ex-
plain the model. Our results for the electron-impurity
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and electron-electron interactions are presented in Sec.
III. The screening properties of the electron gas and the
excitation spectrum are derived in Sec. IV. Shallow im-

purity states are examined in Sec. V. In Sec. VI we de-
scribe the mobility limits of these QID ES's. In Sec. VII
we discuss the model and compare it with experimental
results. We present our conclusions in Sec. VIII.

II. MODEL AND GENERAL FRAME%'ORE

&("~)=0 . R (3a)

and

In our model the quasi-one-dimensional structure is
realized as a circular cylinder of radius Rp with an
infinite potential barrier at r =Rp. The motion of elec-
trons is restricted in the r=(r, 8) plane, while the motion
in the z direction is a free motion. An isotropic electron
mass m is assumed. The corresponding Schrodinger
equation for the motion in the r plane is solved by Bessel
functions J„(x), and the wave function p„l(r, 0) inside
the wire is expressed as'

1 1
ltd„l(r, 8)=, J„(p„lr IRO)e

—'"
(~Ra)'" Jn+i n(

with n =0, 1,2, . . . and I =1,2, . . . . p„l is the /th zero of
the Bessel function of order n. ' Outside the wire the
wave function is given by ltd„l(r & Rp 8)=0. The energy
eigenvalues are given by

fi 1
Enl ~ 2 ~nl

2m gp

and they define the subband structure in the wire.
In the following we discuss a two-subband model and

assume that only the lowest subband is occupied. The
two lowest subbands are described by

1.08J0(2.40rIRO)/Ro, r &Ro

electron at r and an electron at r' is given by

V(r, r', q)= Eo(q~r —r'~) .
2e

(5)

Ep 1s the modified Bessel function. ' The effective in-

teractions are weighted with the wave functions. The
electron-impurity interaction for an impurity located at
R=(R,8) is given by

V;, '(q, R, B)= —f d r' P,'(r')P, (r') V(R, r', q) . (6)

The electron-electron interaction potential is expressed as

V,',„;(q)=fd'r f d r'P,"(r)P, (r)V(r, r', q)P„*(r')P,(r') .

III. ANALYTICAL RESULTS
FOR V' '(q) AND V' '(q)

In this section we calculate the electron-impurity and
electron-electron interaction potentials for different ap-
proximations of the wave functions.

A. The wave functions

The electron-impurity interaction potential determines
the mobility of the wire for impurity scattering. The
electron-electron interaction potential describes the
screening properties of the wire.

Our restriction to a two-subband mode (i =1,2) and
the cylindrical symmetry implies that only four matrix
elements of V,',l,'l(q) are independent and different from

V'„', l(q), V2 22(q), V', 2'2, (q), and V;l'»(q). M«c-
over, the following relations hold: V]lg2(q)= Vzz»(q),
V;q'q, (q) = V~( ~(q) = V;~', ~(q) = V~;~, (q). For the
electron-impurity interaction potential, one finds

V; (q, R, B)= V;,'(q, R, —8).

1.40J, (3.83r/RO)e ' /Ro, r &R—o

0 r~R

with energy levels

Eol =(5 ~ 76 Ry*)(a /Ro)

(3b)

(4a)

In order to get analytical results for the electron-
electron and electron-impurity interaction potentials, we
use the following expressions of the normalized wave
functions for the two lowest subbands in the infinite-
barrier-height approximation:

and

E» =(14.7 Ry')(a'/Ro) (4b)

(3/mRO2)'~ (1—r /Ro), r &Ro
&("~)= 0, . R, (8a)

In Eqs. (4) we have introduced the eff'ective Rydberg
(Ry*) and the effective Bohr radius (a' =ezfi /me ) via
fi /2m =(1 Ry*)(a") (Pi= 1 in the following). eL is the
dielectric constant of the background.

Various electronic properties of the quasi-one-
dimensional structure are determined by the electron-
impurity and electron-electron interaction potentials. We
assume that charged impurities are randomly distributed
on the surface of a cylinder with radius R. The interac-
tion between point charges follows the Coulomb law. We
introduce the Fourier transform for the z direction with q
as a one-dimensional wave vector. For a system with cy-
lindrical symmetry, the interaction potential between an

and

(12/nR~&)'~ (r/Ro —r IRo)e ', r &Ro

These simple expressions fulfill the condition that the
wave functions vanish at r =Rp. The wave functions ac-
cording to Eqs. (3) and (8) are shown in Fig. 1. Also
shown in Fig. 1 is the wave function in the constant-
electron-density approximation used in Refs. 7 and 8.
From Fig. 1, we conclude that our simple analytical ex-
pressions, given in Eqs. (8), are good approximations to
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the exact solutions. We mention that the corresponding
expectation energies are, respectively, E& =(6
Ry*)(a*/Rp) and Ez=(16 Ry*)(a*/Rp), which are
also in good agreement with the exact results; compare
with Eqs. (4).

B. The electron-impurity interaction potential

With Eqs. (8) the results for the electron-impurity in-
teraction potential, see Eq. (6), can be obtained in analyti-
cal form. We get

2
1 1 R
8 4 Ro2 8

eL(qRQ) p q 3 q p

qR

R
Ro

8+
(qRQ) (qRQ)

Ip(qR )K3(qRQ ) R«o
qRo

(9a)

R 2
1—8RoRo

2 3R R+4 R

(qRQ) 2R p Rp Rp(qRQ)

I ) (qR )K4(qR p )

qRo
e2

V)q'(q, R,B)=—384
q

e' X
eL(qR p)

K, (qR )I4(qR p )
R ~Ro

qRo

R &RQ (9b)

and

R
Ro

R 4 R R
RQ3 (qRQ) Rp Rp

128 9R 2
1—

(qRQ) 2R p

2

V~&'(q, R) = —48 X
eL(qRQ)

6282 8 6+ — Ip(qR) K3(qRQ)+ K4(qRQ), R &Rp
(qRp)6 qRp qRo

8
Kp(qR) I3(qRp)

Ro
6

I4(qRQ), R Rp.
qRo

(9c)

I„and K„are the modified Bessel functions of order n. ' The following asymptotic results are useful for numerical cal-
culations:

2e
V),'(qRQ « 1)= X

qRo
ln

'2
11+~+ 3 R
12 2 Ro

O'R 02 O'R 0—Kp(qR ) 1 + +
640

3 R 1 R
1 —— +—

2 Ro 9 Rp

R ~Ro

+ '''
~ R+Ro

(loa)

and

V', ~'(qRQ &&1)=—

R 3 R
Ro 2 Ro

R 1 R
Ro 4 Ro

L
2e

e X

[1+O(q )], R ~RQ

+O(q ), R &Rp

(lob)

and

e
V;,'(qRQ «1)=2 X

'

&L

qRo
ln

2

13 3 R
24 2 Rp

R q Ro
Kp(qR ) 1+ + —+

10 320

8 R 1 R
1 —— +—

9 Ro 4 Ro

R ~Ro.

+ ~ ~ ~ R (Ro

(10c)
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FIG. 1. Wave function (radial part) vs wire radius for the two
lowest subbands. The solid lines represent the exact results, see
Eq. (3). The dashed lines represent the analytical results, see
Eq. (8). The dotted lines represent the approximation used in
Refs. 7 and 8.

C =0.577 is Euler's constant.
V]]'(q, R) versus qRo is shown in Fig. 2 for R =0. The

solid line in Fig. 2(a) is the exact result according to Eqs.
(3a) and (6). The dashed line is the analytical result ac-
cording to Eq. (9a). The dotted line is the analytical re-
sult of Fishman; however, see Ref. 19. It is clearly seen
that our analytical result is in very good agreement with
the numerical result. The solid lines in Fig. 2(b) show the
analytical result according to Eq. (9a) for various values
of R. With increasing distance of the impurities from the
center of the wire, the electron-impurity interaction po-
tential decreases.

In Figs. 3(a) and 3(b) we show V] z' ( q, R ) and

V22'(q, R), respectively, versus qRp for various values of
R. The solid lines are the numerical results according to
Eqs. (3) and (6). The dashed lines are the analytical re-
sults according to Eqs. (9). Again, we find very good
agreement between the numerical results and our analyti-

0.01
0.1 1

qRo

FIG. 2. Electron-impurity interaction potential V;,' vs wave
number (a) For R =0. The solid, dashed, and dotted lines corre-
spond to Eq. (6) (exact result), Eq. (9a) (analytical result), and
the analytical result of Ref. 7, respectively. (b) For R =0, Ro,
and 2RO. The solid lines represent the analytical result, see Eq.
(9 ).

C. The electron-electron interaction potential

With Eqs. (8) the results for the electron-electron in-
teraction potential, see Eq. (7), can be given in analytical
form. We get

cal calculations. We mention that V', ]'(q, R) and
Vzz'(q, R) have the characteristic logarithmic singularity
In(qRo/2) for qRo (&1; however, this is not the case for
V']z'(q, R). V']z'(q, R=0) is zero and is not shown in Fig.
3(a), see Eq. (10b).

In the following subsections we will use the analytical
results for the calculation of the binding energy of shal-
low impurity states and the mobility.

e 1
~1111(q)=»

eL (qRp)

2 32 64+ — I3(qR p)K3(qRp)
3(qRp) 3(qRp) (qRp)

(1 la)

e 1
V]]$2(q) =288

eL(qRo)

1 8

15(qRp) 3(qRp)

64 6
K3(qRp) I3(qRp) — I4(qRp)

(qRp ) qRO
(1 lb)

e2
V;;„(q)=576

ei (qRp)

4 8 64+ I4(qR o )K4(qR o )
15(qRp) (qR p) (qRp)

(1 lc)

and

2
1

V22'z2(q) = 1152
el (qRo)

1 64 96

15(qRp) 15(qRp) (qR p)

64
I3(qRp)—

(qRp)

6 6
I4 ( qR p ) K, ( qR, ) + K4 ( qR p )

qRO qRO
(1 ld)

Asymptotic results are expressed as
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qRO
Viiii(qRo (& 1)= 2 ln

L
1+—,'(qRo) + (qRo) +, (qRo) +

285 210325

73 + (B I (qR )~( 1949 P ) (qR )4( 10673 9P )+
1 0 8 o 1680 285 O 280 (12a)

and

qRO
V&/~2(qRo &&1)=—2 ln [1+O(q')]+O(qo)

E'L

Se
V;2'2, (qRo «1)= [1—O(q')],

7EL

r

Vzz'~z(qRO &(1)= —2 ln
qRO [1+,'(qRO) —+ ]+C —,",,' —(qRO) (,",,"', —C/5)+617 ~ 247

(12b)

(12c)

(12d)

V', P»(q) versus qRO is shown in Fig. 4. The solid line
is the numerical result according to Eqs. (3a) and (7).
The dashed line is the analytical result, see Eq. (1 la). The
dashed-dotted line is the analytical result of Refs. 7 and
8. The dotted line is the asymptotic law for qRO «1, see
Eq. (12a). From Eq. (11a) we get, for qRO ))1,

V]i» (qRo ))1)

72e 1 2 32

eL (qRO) lo 3(qRO) 3(qRO)

We mention the good agreement between the exact result
and our analytical result. The asymptotic law, see Eq.
(12a), is a very good approximation for qRo &1. The
solid circles in Fig. 4 are numerical results for a square
wire. We used the relation L =mR o to scale the side L
of the wire to the radius R o.

V;Pz2(q) and V;z2, (q) versus qRO are shown in Figs.
5(a) and 5(b), respectively. The numerical results (solid
lines) are again in very good agreement with our analyti-
cal results. We mention that V'„'», V&,'22, and V2222 show
the characteristic ln(qRo ) (singular) behavior for

qRo «1. However, V;z'» becomes constant for qRO «0.
The result for V&,', &

is very important for the intrasub-
band plasmon excitations of the system, while V;zz,
determines the depolarization-shifted intersubband reso-
nance. These two results will be discussed in Sec. IV.
The symmetry relations for V~k'I have been given in Sec.
II.

In Fig. 6 we show V&2'2z(q) versus qRO. The solid line
is the numerical result according to Eqs. (3b) and (7), the
dashed line is our analytical result according to Eq. (11d),
and the dotted line is the asymptotic law for qRO «1, see
Eq. (12d).

D. The band bending

Our preceding discussion was restricted to a Q1D ES
confined by an external potential barrier. The filling of
the subbands introduces an additional potential which
can be approximated as a Hartree term. If we assume
that only the lowest subband is occupied by electrons, the

10t

1PO

10 'x~g'
$AI

I

02

10
01 1

qRO

1

qRO

0 3

10

FIG. 3. Electron-impurity interaction potential vs wave num-

ber: (a) V»' and (b) V,,'. The solid and dashed lines represent
the exact result, see Eq. (6), and the analytical result, see Eqs.
(9b) and (9c), respectively.

Nl

ge }

01 I

1

qRo
10

FIG. 4. Electron-electron interaction potential V;,'» vs wave
number. The solid and dashed lines correspond to Eqs. (7) (ex-
act result) and (11a) (analytical result), respectively. The
dashed-dotted line refers to Refs. 7 and 8. The dotted line is for

F0 ((1,see Eq. (12a). The solid circles represent numerical re-
sults for a square wire (Ref. 6), see text.
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FIG. 7. Band bending in quantum wires: influence of a finite
electron density on the subband energies, see Eqs. (16).

FIG. 5. Electron-electron interaction potential vs wave nurn-

ber: (a) V~l» and (b) V»». The solid and dashed lines
represent the exact results, see Eq. (7), and the analytical results,
see Eqs. (11b) and (11c),respectively.

finite electron density gives rise to a potential X(r), which
can be calculated by the Poisson equation:

12 1 d 4me lV
, &(r)+ — &(r)= —

~P, (r) )' .
dr r dr EL

(14)

N is the one-dimensional electron density. With Eq. (8a)
we get

11
X(r)=—

4 18
T

Rp

2
1 r
2 Rp

4
1 r
9 Rp

(15a)

and

A = =(24 Ry')Na' .
12e2N

(15b)

The potential X(r) gives rise to a band bending, and this
is schematically shown in Fig. 7. The shift of the energy
levels, AE;, due to this potential can be calculated in per-
turbation theory, and, with Eqs. (8} and (15},we get, to
first order,

and

b,E)= A =(2.4 Ry')Na'= 73

235 (16a)

bE2= A =(1.8 Ry')Na' .
47

3 70
(16b)

IV. PLASMONS

As the first application of our calculated electron-
electron interaction potentials, we discuss in this section
the collective excitation spectrum for the QID ES's.

A. General results

According to Eqs. (16), we expect a decrease of the in-
tersubband energy separation with increasing electron
density, see Fig. 7. However, in our model we assumed
that the effective width of the wire does not depend on
the electron density. In the structures used in experi-
ments, usually the confinement depends on the electron
density, and an additional dependence of the intersub-
band energy on the electron density is expected. This
effect could be qualitatively modeled by a density depen-
dence of Ro=Ro(N).

In this section the band bending due to a finite electron
density has been calculated. An overall charge neutrality
has been assumed. In principle, one should also consider
the effects of donor atoms which we have neglected.

't

qRO

FIG. 6. Electron-electron interaction potential V2&z, vs wave
number. The solid and dashed lines represent the exact result,
see Eq. (7), and the analytical result, see Eq. (l ld), respectively.
The dotted line is for qRO « 1, see Eq. (12d).

The dielectric tensor of a multisubband system is
defined by

e;, „(q,Q)=5;,5 „+X;,(q, Q)V,', '„(q) .

X;,(q, Q) is the generalized Lindhard function for wave
vector q and frequency Q. 5;, is the Kronecker symbol.
We restrict our discussion to a two-subband model,
where only the lowest subband is occupied by electrons.
The collective modes for this model are given by

[ + vl1 1 1 (q)+11(q Q)l[ + ~t221(q)+12(q»))

(18)

A similar model has been discussed for two-dimensional
systems. From Eq. (18) it is clear that in our two-
subband model two collective modes are present. The
first collective mode is the intrasubband plasmon, given
b 21
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1+ V;;„(q)X„(q,n) =0, (19a) and

1+ V&pp~ (q)X&p(q n) =0 (19b)

and the second collective mode is the intersubband
plasrnon,

f, (q) =q (q +4k~)/4m (22b)

With V&,'„(q)= —2e in(qRO/2)/eL for qRp «1, we get,
with Eqs. (19a) and (22a),

B. The intrasubband plasmons
and

n(qRO « 1)/no=qRO[ln(2/qRO]' (23a)

Intrasubband plasrnons for one-dimensional systems
have been discussed in Refs. 22 —24 and recently in Ref.
11. In the following we present some analytical results
for the intrasubband plasmons. The Lindhard function
X»(q, n) for one-dimensional systems is expressed as

O,O=2Xe /eLmR (23b)

The dashed line in Fig. 8 corresponds to Eq. (23). With
Vt »(q)=e f(q)/2@1, we get, with Eqs. (19a) and (22a),

n(qRO « I )/no

m
X), (q, n) = ln

~q

0 —A+

0 —02 =qR 1+ 1+4
2 nc2f (q)(qRO)

]/2 ' 1/2

(24a)

and

+i~e(n, —n)e(n —n ) (20)
which corresponds to the dashed-dotted line in Fig. 8.
The dotted line corresponds to Eq. (24a) with f, (q)=0:

n+ =
~ q +2qk~ ~

/2m . (21)
n(qRO « 1)/no=qRO[f (q)]'~ (24b)

x q' fi(q)—X (q n)= — 1+ +0
m Q Q n4

(22a)

c4
0.2

e(x) is the unit-step function. kz is the Fermi wave
number. The real part of X~, (q, n ) determines the
plasmon dispersion, while the imaginary part determines
the particle-hole excitation spectrum. '

In Fig. 8 we show the intrasubband plasmon energy
versus q (solid line) according to Eq. (19a) and the
particle-hole excitation spectrum versus q (hatched area).
Analytical results for the plasmon dispersion can be de-
rived as follows. The large frequency expansion of the
Lindhard function for QlD ES's is expressed as

It can be seen from Fig. 8 that our simplest expression for
the plasmon frequency, see Eq. (23a), is a very good ap-
proximation to the full solution for q & kF. For higher q,
nonlocal effects [f,(q)] in the dispersion relation become
important, and our analytical result [Eq. (24a)] is in very
good agreement with the exact calculation for q & 2kF.

In Ref. 11 it was argued that asymptotic results for
qR, «1 have a very small range of validity. The
discrepancy between our results and those of Ref. 11
emerges from the fact that in Ref. 11 the factor 2 in Eq.
(23a) was neglected. The plasmon frequency in Q1D ES's
depends on the confinement (Ro), see Eqs. (23). This
dependence could be used to get information about R o.

For a different model the effects of local-field correc-
tions on the plasmon dispersion have been discussed.
%e have neglected these effects because our main aim
was the presentation of the analytical results. However,
local-field effects, described by G(q), could be easily in-

corporated in our analytical results: One has to replace
f(q) in Eqs. (24) by f(q)[l —G(q)]. In Eq. (19a),
V', P» (q) has to be replaced by V', P„(q)[1—G(q)].
Analytical results for G(q) are easily obtained in
Hubbard's approximation. %'e follow the derivation of
Singwi et a/. for three-dimensional systems and find,
for Q1D ES's,

0

V'' [( +k )' ]

1111

(25)

'I

q/kF

FIG. 8. Excitation spectrum of a quantum mire. The
hatched area indicates the particle-hole spectrum. The solid
line represents the intrasubband plasmon, calculated according
to Eq. (19a). The dashed, dashed-dotted, and dotted lines
represent Eqs. (23), (24a), and (24b), respectively.

g, is the valley degeneracy. The effect of Hubbard's
local-field correction on the intrasubband plasmon is
shown in Fig. 9. It indicates that local-field corrections
have a significant effect on the plasmon dispersion, and a
more sophisticated theory should be used to get quanti-
tative results. However, local-field effects become smaller
for larger electron density, see Eq. (25). The analytical
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0.5

c', 0.2

N=0. 2 Nc

V. SHALLOW IMPURITY STATES

A. The separable-potential approximation

In the separable-potential approximation the electron-
impurity interaction potential is written as

V,';'(q —q')=C(d)[ V,', '(q)]'~ [ V,', '(q')]'~ (28)

0.1

0 0,5 1.0 1.5
q/kF

2.0

C(d) is a numerical coefficient that depends on the
dimensionality d of the system. The binding energy Ez
for shallow impurities and d = 1 is given by the solution
of the following equation:

FIG. 9. Excitation spectrum of a quantum wire. The
hatched area indicates the particle-hole spectrum. The solid
and dashed lines represent the intrasubband plasmon in the
random-phase approximation with and without local-field
corrections [in Hubbard's approximation, see Eq. (25)], respec-
tively.

result for GH(q) gives at least a rough estimate of the
correction to the random-phase approximation.

C. The intersubband plasmons

For qRO « 1 the off-diagonal polarizability is given by

E2i—X,~(qRO &&1, II)=2K (26)

and E2] =E2 E~ is the subband distance. This result
does not depend on the dimension of the system and also
holds for two-dimensional systems. With Eqs. (12c) and
(19b), we get

C(1) ~ Vii (q) 1
dq

2rr — e(q) Ea +q-/2m
(29)

C(1)=0.90 . (30)

For the erst and second subbands, we use

V,", '(q) = V'„'(q) and V,", '(q) = V2z'(q), respectively. In
the following we will discuss unscreened impurities
[e(q)=1] and screened impurities. For screened impuri-
ties we use e(q}=e»»(q) for the first subband and

e(q) =ei2z2(q) for the second subband, see Eq. (17).
The coefficient C(3) was determined in Ref. 30 from

the binding energy of an unscreened Coulomb potential:
C(3)= —,'. For an ideally two-dimensional system, we

used the exact result that Eii =4 Ry*: C(2) =2/~. ' An
exactly solvable Coulomb model is not available in one
dimension. For this reason we used the variational result
of Bryant' to specify C(1). In Ref. 12 the binding ener-

gy for an impurity located in the center of the wire with
radius Ro=0.56a* was given: E~ =5 Ry. ' With Eqs.
(9a) and (29) we find

and

Q(q =0)=(E +0 )' (27a)

(27b)

B. Unscreened shallow impurities

For impurities located in the center of the wire
(R =0), analytical results for the binding energy can be
obtained. With Eqs. (9a) and (29) we get, for the lowest
subband,

Adp is the depolarization shift, wel 1 known for two-
dimensional systems. ' Recently, the depolarization-
shifted intersubband resonance in multiwire superlattices
has been calculated and measured. In two-
dimensional systems a mode-coupling effect between in-
trasubband and intersubband plasmons has been dis-
cussed. This effect is not present in our model because
Vii'i~(q} =0.

(es )' =6irC(1)[8[H, (u) —Y, (u)]/u
—2(1+8/u +64/u )/mu I, (31a)

with es =Es/(I Ry*) and u =eiI Ro/a*. H„(u) is the
Struve function and Y„(u) is the modified Bessel function
of order n. ' For the second subband we get, with Eq.
(9c),

(es }' =24mC(1)[48[H2(u) —Yq(u)]/u +8(1—36/u )[H3(u) —Y,(u)]/u-'

96/105iru—+8(1+32/u +576/u )/rru (31b)

The asymptotic solution of Eqs. (31}for u « 1 is given by

(es )' '= —2C(1)ln(u /2) . (32)

The binding energy versus Ro is shown in Fig. 10 for
the first (solid line) and second subbands (dashed line).

I

The dotted line is the asymptotic result for u « 1, see Eq.
(32), and is a good approximation to the exact solutions
only for very thin wires. The solid circles in Fig. 10 are
theoretical results from Ref. 12, where a variational ap-
proach was used. As seen, these results agree very well
with ours. The decrease of the binding energy with in-
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FIG. 10. Binding energy vs wire radius for impurities located

in the center of the wire. The solid and dashed lines represent
Eqs. (31a) and (31b) for the first and second subbands, respec-
tively. The dotted line is the asymptotic result, see Eq. (32).
The solid circles represent variational results for the lowest sub-
band from Ref. 12.

creasing wire radius has also been found within the varia-
tional approach in Refs. 31—34.

In Fig. 11 we show the binding energy versus Ro for
the first subband and for various positions of the impuri-
ties. With increasing wire radius, the binding energy de-
creases. ' From Fig. 11 we conclude that the bind-

ing energy approximately follows the law

Es ~(R/Ro) (34)

and we did not find a significant difference in Ez for the
first and second subbands. As in two-dimensional sys-
tems, the strong dependence of E~ on the position of the

3

C4

UJ

0.5

0.2 0.3 05
Ro/a

FIG. 11. Binding energy vs wire radius for the first subband
and for different impurity positions.

with P=0.8, 0.85, and 0.90 for R =0, Ro, and 2RO, re-

spectively. For very small wire radius our model be-
comes unrealistic, because we neglected the penetration
effects due to the infinite-barrier approximation.

In Fig. 12 the binding energy versus the position of im-

purities is shown for various values of Ro. The solid and
dashed lines represent the results for the first and second
subbands, respectively. For R «R, the binding energy
is nearly independent of R [for the second subband
(dashed lines) the binding energy increases very slightly
with increasing R], and decreases with increasing R for
R &Ro. For R &Rz we find the approximate result

0.1
0.1 1

R/Rp

FIG. 12. Binding energy vs impurity position for different
wire radii for the first (solid lines) and second subbands (dashed
lines).

impurities, see Figs. 11 and 12, may lead to a broad densi-

ty of states for a spread doping, see, e.g., Ref. 34.
For the calculation of Ez for the second subband, we

used Eq. (29) with V;; '(q) = V22'(q) with e(q)=1. So we
neglected the interaction with the continuum of the first-
subband states. For two-dimensional systems it has been
shown that this is a very good approximation, and we
expect the same result for Q1D ES's.

The qualitative behavior of E~ versus R o and versus R
reflects the dependence of the electron-impurity interac-
tion potential on Ro and R, see Fig. 2. A weak depen-
dence of E~ on the subband index for R &Ro has been
found for two-dimensional systems. For R &Ro the
main contribution to the integral in Eq. (29) comes from
qRO «1, see Figs. 2 and 3, but for qRO «1 the electron-
impurity interaction potential is given by V„'„'(qRo
((1)=e ln(qRp/2)/2eL and does not depend on the
subband index n.

C. Screened shallow impurities

The binding energy of shallow impurities in two-
dimensional systems is strongly reduced by screening via
unbound carriers, ' eventually due to a nonvanishing
compensation. This behavior has been confirmed in the
separable-potential approximation. ' With increasing
electron density, the binding energy decreases and ap-
proaches a constant for large electron density.

For Q1D ES's the screening eff'ect on the binding ener-

gy of shallow impurity states has been calculated recent-
ly. With increasing electron density, the binding energy
first decreases and later increases again.

The binding energy versus electron density is shown in
Fig. 13 for the first subband and for an impurity located
in the center of the wire. The relevant static dielectric
function, see Eqs. (17) and (20), has been used in Eq. (29).
In Ref. 6 a wire with a square cross section and side
measuring L = 1.5a * has been considered. The variation-
al results of Ref. 6 are shown in Fig. 13 as solid circles.
We use L =~RO, which corresponds to RO=0. 85a* for
L =1.5a, to compare our results with those of Ref. 6.
However, we have to mention that the theoretical results
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FIG. 13. Binding energy vs electron density in units of
No=1/2a* according to Eq. (29) for the first subband and for
different wire radii. The solid dots represent variational results
from Fig. 2 of Ref. 6 for Ro =0.85a*, see text.

in Figs. 1(c) and 2 of Ref. 2 seem to be inconsistent. We
used the result shown in Fig. 2 of Ref. 6 in our Fig. 13.
We find that the minimum of Ez versus N at N=N*
shifts to lower N with increasing Ro, in agreement with
the results given in Ref. 6.

The results for E~ versus N for the second subband are
shown in Fig. 14. Behavior similar to that of the first
subband is found. The binding energies for the second
subband are smaller than for the first subband; also see
Fig. 12.

For d =3 it is well known that for large electron densi-
ty the bound state disappears (Ea =0). In two-
dimensional systems Ez becomes constant for large elec-
tron density, and finally in QID ES's the binding energy
has a minimum at N =N* and increases again for
N &N*.

VI. MOBILITY

02
N/Np

ipo )pl

( ~ U(q)
~

) is the averaged squared Fourier transform of
the random potential and is specified later. $i;o(q, Q) is
the density-density relaxation function of the
noninteracting-electron gas (FG means free gas). e(q) is
the dielectric function for the lowest subband:
e(q) =ei, i i(q). Electron-electron interaction effects
within the random-phase approximation are included in
Eq. (35) via the dielectric function. For one-dimensional
systems, we use the results of Ref. 23 to get

Pi;o(q, II =0)"=2irpzmkz[5(2k& —
q ) ]/q (36)

pF is the density of states of the free-electron gas at the
Fermi energy e~: p„=2g„m/m. k~. From Eqs. (35) and
(36) we find

FIG. 14. Binding energy vs electron density in units of
NO=1/2a* according to Eq. (29) for the second subband and
for different wire radii.

A. General results
1

r(0)
kp (IU(2k')l')
&F e(2k~)

(37)

A general expression of the mobility of the d-
dimensional interacting-electron gas in the presence of
disorder was derived in Ref. 39. According to this
theory, the inverse momentum-relaxation time for zero
frequency, zero temperature, and for the lowest subband
is given by

gq t)}„o(q,Q=O)" . (35)
1 1,(

~
U(q)~')

r Q=O dms, [~(q)]'

The relaxation time determines the mobility p via

@=ed(0)/m . (38)

For one-dimensional systems, e(q, T) diverges for
q =2k~ and temperature T=O. According to Eqs. (37)
and (38), the mobility would go to infinity. However, at
finite temperature T, e(q =2k&, T )0) is finite and can be
expressed by '"'

au 2&L ~»'»(2k'} 2e EF
e(q =2k+, T ((ez)=1+ [1—G(2k+)]In

e 2kFQ
(39)

kz is the Boltzmann constant. In Eq. (39}we have intro-
duced the local-field correction. Local-field corrections
have not been discussed in Refs. 7, 8, and 40. For the cal-
culations, we used Hubbard's approximation, see Eq.
(25).

Equations (37)—(39) define the mobility of Q1D ES's in
the lowest-order Born approximation for an unspecified
random potential. In the following we discuss the mobili-

I

ty limits for remote-impurity scattering, homogeneous-
background scattering, and interface-roughness scatter-
ing. It is well known that for one-dimensional electron
systems localization effects are expected to be very impor-
tant; for a review, see Ref. 41. However, we believe that
for finite temperature and weak disorder our results could
at least be used to estimate the mobility. We mention
that the mobility in one-dimensional systems is expected
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B. Remote-impurity doping

Scattering by remote impurities is defined as follows:
Impurities are randomly distributed on a cylinder with
radius R. The random potential for remote doping (RD)
is expressed as

( l[U(q)] I') =N;[ v;,'(q)]' . (40)

N; is the (one-dimensional) impurity density. The mobili-
ty is given by

~e, , N e'
) Rn=

g„ fi N; 2eL V))'(2kF }]2
(41)

0

For a GaAs wire with a *= 100 A and g, = 1, the prefac-
tor in Eq. (41) becomes me(a') /Pi=4. 78 X.10 cm /Vs.

The mobility for remote-impurity doping versus elec-
tron density is shown in Fig. 15. The impurity density is
fixed at N;=1X10 cm '. For uncompensated semicon-
ductors, one expects, because of charge neutrality,
N=N;. With p~ 1/N; one can rescale the mobility.
With increasing electron density the mobility increases
due to the weaker electron-impurity interaction, see Fig.
2(a). With increasing R the density dependence of the
mobility increases due to the strong decrease of the
electron-impurity interaction potential, see Fig. 2(b).

For the solid lines in Fig. 15, Hubbard's local-field
correction to the random-phase approximation has been
included, while for the dashed lines it is absent. Local-
field effects are most important for the small electron
densities: for N = 1 X 10 cm ' the local-field effect
reduces the mobility by a factor of about 3.

Our calculated mobility is smaller [even for G(q) =0)]
than the mobility calculated in Refs. 7 and 8. This is due
to our larger electron-impurity interaction potential, and
the difference is larger for higher electron densities, see
Fig. 2(a).

to be temperature dependent in the Born approximation.
Effects of disorder on the polarizability will weaken this
temperature dependence. "

The effect of local-field corrections on the mobility of
Q1D ES's is calculated for the first time in this paper.
We shall see that the mobility is considerably reduced
due to local-field corrections.

&0'

10)
E

C)

&0

10

5x~p~ ~p5 5xfp~

FIG. 15. Mobility for remote doping vs electron density for a
GaAs quantum wire, see Eq. (41). The solid (dashed) lines
represent calculations with (without) local-field corrections to
the random-phase approximation [see Eq. (25)].

Very recently, numerical results for the mobility of
Q1D ES's for impurity scattering have been presented in
Ref. 42. However, within the harmonic-oscillator model
analytical results have not been derived in Ref. 42.

C. Homogeneous-background doping

Equation (42) can be written as
T 2

2

('l[. U(q}]B) (B2)l ~ NB) (B2)RO FB)(B2)(q»
26L

(43)

with form factors F~, and F&2 for models 1 and 2, respec-
tively. We find the analytical results,

For homogeneous-background (B) doping, we consider
two models. For model 1 (B 1 ), impurities are homogene-
ously distributed in the wire (0&R &Ro). The (three-
dimensional) impurity density is NB, . For model 2 (B2),
the impurities are homogeneously distributed outside of
the wire (R & R o ). The (three-dimensional) impurity
density is N~2. The random potential is defined as

Ro (oo )

& l[U(q)]B) (B2)l'& =NB) (B2)f„'„««lv;j'(q «)I' .

(42)

FB)(q}= [I('3(qRo)] I [Io(qRo)] [I)(qRo)] ]+ Io(qRo)I('3(qRo)
2X96' 2 2 2 32

(qRo) (qR() }

(qR() )

(qR()) (qRo) (qRo) (qRo) 24
J

(44a}

and

2x96'
FB2(q)= [I3(qRo}] [[+)(qRo)] [&o(qRo}] l .

(qR() )

(44b)

The mobility for homogeneous-background doping is ex-
pressed as

[e(2kF, T)]
PB) (B2) g„NB) (B2)R () B) (B2)(2kF )
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The mobility versus electron density for model 1 is
shown in Fig. 16. For charge neutrality in uncornpensat-
ed semiconductors, we used N& &R o j2=N. Again, we
find that local-field effects strongly reduce the mobility.
The density dependence of the mobility is weaker in Fig.
16 than in Fig. 15. This is because in Fig. 16 the (one-
dimensional) impurity density is set equal to the electron
density.

In Figs. 15 and 16 the mobility was calculated for
T =0.02 Ry*. For GaAs this corresponds to about 1 K.
The Fermi energy for N=1X10 cm ' is 1 K too. We
conclude that for N ) 1 X 10 cm ' our results are con-
sistent with the condition T & eF, see Eq. (39). For
N (10 cm ' the higher-order effects in the temperature
dependence of the screening function must be considered.

D. Interface-roughness scattering

(~[U(q)]2)$2211f2eqf/ I4Poi 2 2

m' R' (46a}

for interface-roughness scattering in the first subband. 5
and g are the height and the range parameters of the
roughness, respectively. A Gaussian-like decay of the
fluctuations has been assumed. For intrasubband
scattering in the higher subbands nl, Pz, in Eq. (46a) must
be replaced by g„'&, see Eq. (2). For intersubband scatter-
ing between subband nl and subband mk, g~, in Eq. (46a)

It has been shown recently that interface-roughness
scattering is the dominant scattering mechanism for a
two-dimensional electron gas in thin quantum wells.
Within an infinite-barrier model the mobility for
interface-roughness scattering p, R follows the law

p, R
~ L . L is the width of the quantum well.

Very recently, interface-roughness (IR) scattering for
quantum wires has been discussed in connection with the
fluctuation of the subband energies. For the derivation
of the random potential for Q1D ES's, we follow the
derivation for two-dimensional systems. With Eq. (1),
we get

has to be replaced by P„IP k. The random potential can
be expressed in terms of the subband energy Eo]. With
Eqs. (2) and (46a), we get

dEO)
g2 1/2 —

q g /4

dRO
(46b}

For small electron density (kF21 «1) the mobility in-
creases with electron density: l2tR=Nx[e(2kF, T)] . In
the case of large electron density (kF21 » 1), backscatter-
ing is reduced and the mobility is strongly enhanced:
)tt)R=exp(kF21 }. The reduction of the backscattering was
originally suggested by Sakaki' as a possible mechanism
for a strong mobility enhancement in case of remote-
irnpurity doping. The mobility versus electron density
for interface-roughness scattering is shown in Fig. 17 for
various values of the range parameter for the roughness.
It is clearly seen from Fig. 17 that for GaAs quantum
wires one is between the above discussed limits. The den-
sity dependence of the screening function [e(2kF, T) de-
creases with increasing density, see Fig. 3 of Ref. 7] is im-
portant in this regime and gives rise to a mobility which
decreases weakly with increasing density. For GaAs
quantum wells it was found that g=60 A. ' With this
value for the range parameter, we find for a GaAs quan-
tum wire the value kF g = 1 for N = 1.1 X 10
cm =2.2No ~ As for impurity scattering, the mobility
for interface-roughness scattering is also strongly reduced
if local-field corrections are taken into account, see Fig.
17.

Our calculation has been performed within the
infinite-barrier approximation. With a finite-barrier mod-
el we expect that the effect of the roughness is reduced, as
was found for two-dimensional systems. ' However,
we find it instructive to show that the width dependence
of the mobility in the infinite-barrier approximation is the
same for one- and two-dimensional systems: p ~ R 0.

A similar result was found for two-dimensional systems.
The mobility for interface-roughness scattering is given
by

R A2 2

g )rt 4n o, '215 (a )

(47)

O
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FIG. 16. Mobility for homogeneous-background doping
(model 1) vs electron density for a GaAs quantum wire, see Eq.
(45). The solid (dashed) lines represent calculations with
(without) local-field corrections to the random-phase approxi-
mation [see Eq. {25)].

FIG. 17. Mobility for interface-roughness scattering vs elec-
tron density for a GaAs quantum wire, see Eq. (47). The solid
(dashed) lines represent calculations with (without) local-field
corrections to the random-phase approximation [see Eq. {25)].
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VII. DISCUSSION

In this section we discuss the ground state (Fermi
liquid), which we have assumed in our calculation, and
the model (cylindrical wire). Some experiments on inter-
subband plasmons are compared with our theoretical re-
sult.

A. The ground state

From a theoretical point of view, unusual electronic
properties are expected for Q1D ES's. The Peierls transi-
tion is a characteristic property of an electron-phonon
system with quasi-one-dimensional electrons (for a re-
view, see Ref. 47). Recently, the existence of a Peierls
transition in Q1D ES s with long-range Coulomb interac-
tion has been questioned. Neglecting phonons, other
electronic instabilities (charge-density waves, spin-density
waves, and singlet and triplet superconductors) have been
discussed in connection with the Tomonaga-Luttinger
and Luther-Emery models (for a review, see Ref. 49).
However, these models consider a short-range interaction
potential. These instabilities have not been observed in
artificial quantum wires. ' Only recently have some ex-
perimental results on the density dependence of the con-
ductance been discussed in terms of a Wigner crystal.

In our calculations we assume a Fermi-liquid-type be-
havior of the electrons. Nearly all of the experimental re-
sults indicate that this assumption is adequate. Howev-
er, even for a Fermi-liquid-type ground state, very
different phenomena have been discussed in the litera-
ture. We mention locahzation effects, ' conduction fluc-
tuations, ' and, recently, ballistic transport.

Direct experimental evidence for subbands in Q1D
ES's came from transport measurements, ' capaci-
tance measurements, and infrared experiments.
For a review, see Refs. 1 and 2. The infrared experiments
gave evidence for intersubband plasmons, which we dis-
cussed in Sec. IV. Intrasubband plasmons in Q1D ES's
have not yet been observed. The observation of intrasub-
band plasmons and the verification of the dispersion rela-
tion would be a strong indication for a Fermi-liquid-type
ground state. Moreover, the validity of the random-
phase approximation and the importance of local-field
corrections could be studied.

Experimental studies on shallow impurity states in
Q1D ES's have not yet been published. For such mea-
surements the impurity position must be well defined,
which is a difficult technological task. However, our
theoretical results on the binding energy of shallow im-
purities are in agreement with variational calculations,
see Sec. V.

The conductance fluctuations have been neglected in
our calculation of the mobility, see Sec. VI. However, it
has been shown that in multiwire systems, as used in the
experiments of Refs. 29 and 56—58, the fluctuation effects
average out and are less important. Therefore we think
that our results on the mobility could be useful for mul-
tiwire systems. Unfortunately, systematic experimental
results on the mobility and the relevant scattering mecha-

nism are presently not available.
Our analytical results for the electron-impurity and

electron-electron interaction potentials can be used to
study other properties of Q1D ES's. In Ref. 60 the super-
conducting transition temperature in dirty Q1D ES's has
been studied under the assumption that the electron den-
sity is constant within the wire. The authors used for the
electron-electron interaction potential the analytical re-
sult originally derived in Refs. 7 and 8. Clearly, our
analytical result, see Eq. (11a), is a better approximation
for the electron-electron interaction potential.

B. Cylindrical mire

In the numerical work it was found that the confining
potential is somehow between a harmonic-oscillator po-
tential (E„~I ) and a square-well potential (E„~n ). n

is the subband index. The subband energies of the
cylinder model are given by the zeros of Bessel functions,
see Eq. (2). For the ten lowest subbands we get, for I3„&,

2.4, 3.8, 5.1, 5.5, 6.4, 7.0, 7.7, 8.4, 8.65, and 8.8. We
rewrite Eq. (2) as

E„=Eo,(n ) for n =1,2, . . . , 10 . (48)

C. Intersubband plasmons

In recent experiments ' the subband spacing
determined from infrared measurements was found to be
larger than the subband spacing determined from quan-
tum oscillations of the magnetoresistance. It was argued
that the difference is due to the depolarization of the opti-
cal resonance. In Refs. 56 and 57 the classical depolari-
zation energy was estimated as

+=1.22 is an averaged value. The average was per-
formed with the 10 lowest subbands. Equation (48) is
compatible with the numerical results of Ref. 5. In our
model the first, fourth, and ninth subbands (for n (11)
have a degeneracy of 1; all other subbands are double de-
generate. Of course, all subbands have an additional spin
degeneracy of 2.

We mention that a finite confining potential will reduce
the subband energies in comparison to the energies in the
infinite-barrier approximation. We conclude that our
model is in reasonable agreement with the oscillator mod-
el used for interpretation of experiments ' and with
numerical calculations.

Our calculations are for wires with cylindrical symme-
try. Shape effects of the wire cross section on the energy
of hydrogenic impurity states have been found to be very
small, especially if the area of the wire is kept fixed. '

For the electron-electron interaction potential we found
very good agreement between results for a square wire
and a cylindrical wire, see Fig. 4. For these reasons we
consider shape effects not very important and we think
that the wire cross section is the relevant quantity. This
is certainly true for quantities for which one has to aver-
age over the wave functions: V. ', V.I,'I, 0, Ez, and p.
The energy levels and the wave functions are certainly
more sensitive to shape effects.
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8me

m8'
(49a)

and K would be in much better agreement with our pre-
diction.

8 is the width of the one-dimensional channel. With
W =trRo and Eq. (4) for the subband distance we get

Qd, /(I Ry') =3.6Na'[E2, /(1 Ry')] . (49b)

This expression exhibits the same Xa*E2, dependence as
found in Eq. (27b). However, we got a prefactor
—"=4.57. . . instead of 3.6.

We analyze the experiments "' by rewriting the equa-
tions for the depolarization shift as

Q~, /(I Ry") =KNa'[E2, /(1 Ry')], (50)

and calculate E from the intersubband plasmon energy,
the subband distance, and the electron density according
to Eqs. (27a) and (50). From the experiments done on
InSb (a' =670 A, 1 Ry' =0.61 meV), we get, from Fig. 3
of Ref. 56, K(N=1. 5X10 cm ')=0.72, K(N=2. 2
X106 cm ')=0.63, and K(N=3. 0X10 cm ')=0.55.
From the experiments done on GaAs (a'=100 A, 1
Ry' =5.3 meV), we get, from Fig. 3 of Ref. 57,
K(N=3. 7X10 cm ')=0.68, K(N=4. 9X10 cm ')
=0.51, and K (N =6. 1 X 10 cm '

)=0.40. We conclude
that the experimental results on InSb and GaAs give
roughly the same values for E. EC decreases with increas-
ing electron density.

The results for E from the experiment are much small-
er than our theoretical prediction. In the samples used
for the experiments, several subbands are occupied.
Therefore we used an overly large electron density for the
calculation of the experimental K. Equations (27) could
also give a rough estimate for the depolarization shift for
higher subbands, if the electron density of the last occu-
pied subband is used in Eqs. (27). A calculation of K with
the electron density of the last occupied subband would
drastically increase the E deduced from the experiment,

VIII. CONCLUSIONS

Analytical results for the electron-impurity and
electron-electron interaction potentials and for the band
bending for quasi-one-dimensional electron systems in a
cylindrical semiconductor quantum wire have been
presented. We have demonstrated that these analytical
results are useful for the calculation of electronic proper-
ties. We discussed plasmon excitations, shallow impurity
states, and mobility limits in quantum wires. Our results
have been derived within the random-phase (plasmons),
separable-potential (shallow impurity states), and Born
approximations (mobility).

Our model calculation for cylindrical wires does not
represent a very strong restriction to more general
geometries. We believe that shape effects are not very
important and, for the quantities discussed, the leading
effects in quantum wires are determined by the area of
the wire.

Owing to the absence of detailed systematic experimen-
tal results on the electronic properties of Q1D ES's quan-
titative comparison with experiments is presently not
possible. We hope that our analytical results stimulate
theoretical investigations and help to clarify future exper-
imental results.
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