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in ellipsoidal-valley quantum wells
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A new calculation is made of the quantum-well intersubband absorption by electrons that occupy
valleys with ellipsoidal constant-energy surfaces. Application of the results to the special case of
spherical-valley materials yields excellent agreement with recent experimental results for GaAs
quantum wells. According to the calculation, strong intersubband absorption is exhibited by
ellipsoidal-valley quantum wells in indirect-band-gap Al„Ga, „Asand Al„Gal „Sballoys, and

both materials have the advantage over GaAs of being able to absorb light incident normal to the
quantum-well plane. For a wavelength of 10 pm, sheet concentration of 7.6X10" cm ', and a
linewidth of 11 meV, the calculated fractional absorptions for normally incident light on a (111)
Alo, Gao &As and (100) Alo 3Gao 7Sb quantum well are 0.00073 and 0.0022, respectively, independent

of the azimuthal angle of polarization. The absorption is stronger for Al„Gal Sb than for
Al„Gal,As because the ellipsoid eccentricity is greater for L valleys than for X valleys in these
materials.

I. INTRODUCTION

There is considerable interest in using the intersubband
transitions in semiconductor quantum wells' as the basis
for long-wavelength infrared detectors or ernitters. The
primary advantages of the quantum-well approach are:
(1) the ability to vary the well width to adjust the transi-
tion energies and, therefore, the wavelength response of
the detector or emitter, and (2) the ability to utilize semi-
conductor planar technology, which will facilitate the
fabrication of device arrays. At present the most de-
veloped quantum-well material system is (100)
GaAs/Al„Ga, „As, in which the conduction electrons
occupy a valley with spherical constant-energy surfaces.
A major shortcoming of this system for detector applica-
tions is that intersubband transitions require the incident
photon polarization to be perpendicular to the plane of
the well. For many practical devices it is much more
convenient to absorb photons polarized parallel to the
well, i.e., an incident photon flux that is normal to the
wafer surface. The limitation on polarization does not
necessarily apply to quantum wells in which the electrons
occupy valleys with ellipsoidal constant-energy surfaces
(ellipsoidal valleys). This fact was realized during studies
of quantized inversion layers in Si metal-oxide-
semiconductor field-effect transistors (MOSFET's), and
has been observed in several different experiments.
Recently, ellipsoidal-valley materials were proposed for
quantum wells, and calculations were presented for the
Si Ge, system.

In this paper we carry out a new calculation of the
quantum-well intersubband absorption by electrons in el-
lipsoidal valleys. Our theoretical derivation follows
directly from the effective-mass theorem, and is similar in
many ways to the treatments of electron cyclotron reso-
nance in bulk Si and Ge. ' We find it possible for an

ellipsoidal-valley quantum well to strongly absorb in-
cident light polarized in the plane of the well.
Specifically, an ellipsoidal valley of electrons can contrib-
ute to such absorption if none of its principal axes (pro-
jected onto the crystal coordinates) is collinear with the
incident field. The same qualitative conclusion was
drawn by Yi and Quinn" in their study of Si MOSFET's,
and by Yang et al. in their analysis of Si/Ge quantum
wells. However, we find the strength of absorption to be
considerably greater than calculated in the latter work
for the two technologically important examples of (111)-
oriented wells made of Si-like materials and (100)-
oriented wells made of Ge-like materials. Furthermore,
we confirm for these cases that the absorption is indepen-
dent of the azimuthal angle of the incident electric field,
as expected on symmetry grounds. This is an important
advantage in applying quantum wells as infrared detec-
tors of unpolarized radiation.

II. PERTURBATION HAMILTONIAN

The energy dispersion relation for electrons in an ellip-
soidal valley is

3 8 E(ko)
E(k) =E(ko)+ — g (k —ko ) (k„—ko„),

m, n =1 m n

where ko„ is the nth component of the vector ko in
momentum space that locates the center of the ellipsoid.
The set of values 8 E(ko)/t)k t)k„defines a tensor that
is real and symmetric, and thus can be diagonalized along
any one of the three principal axes of the e11ipsoid. In the
presence of an applied electromagnetic field, the electron
momentum and the vector potential are coupled in a
manner described by the Luttinger-Kohn corollary to the
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effective-mass theorem, '

E(ko+ P/k e—A/Pic )F(r)=eF(r ), (2)

A'w„d P,
2 7J~J

where A is the vector potential, F(r) is a slowly varying
(over a unit cell) envelope function, P is the canonical
momentum operator, and c is the total-energy eigenvalue.
Using the functional form for E(k) given by Eq. (1), we
obtain

m, n =1
Pm

eA
Wmn Pn

eAn
F(r)

=EF(r), (3)

where N
„

is the reciprocal effective-mass tensor com-
ponent equal to (A') 8 E(ko)/Bk Bk„,and c, is now
measured relative to E(ko). This expression can be ex-
panded to yield a total Hamiltonian of the form
H =Ho +Hp where Ho =

—,
' g „w„PP„.The pertur-

bation term is given by

e 3 Nmn eHp= —— [A, P„]+——A A„,(4)
m, n =1

where [, ]+ denotes anticommutation, and the symmetry
of the reciprocal eff'ective-mass tensor (i.e., w „=w„)
has been utilized. Photon absorption is analyzed with a
vector potential in the form of a harmonic plane wave,

where y is the z component of the total energy for the
jth state. The total energy c. is the sum of y and a
transverse energy c., which is given by the expression'

2

+N XX
zz

2
Jz+ Wyy ky

Wzz

N~z Wyz
k k

Nzz

(9)

For a quantum well that extends from z =0 to L„the
boundary conditions p(z ~L, )=0 and 1(t(z ~0)=0 lead
to the wave functions Pj(z)=(2/L, )' sin(aiz), where
Kj j~/L, . This "infinite-barrier approximation" for the
wave functions allows the explicit calculation of the inter-
subband transitions between these states, but is not ex-
pected to greatly diminish the accuracy of the calcula-
tion. We will apply this approximation consistently,
despite the fact that for one of the materials to be ana-
lyzed (spherical-valley GaAs), the envelope functions can
be calculated exactly for a quantum well having barriers
of finite height. This procedure will put all of the calcula-
tions on equal footing, thus permitting valid comparisons
between different quantum-well materials.

3

A= g A„e„exp[i(pr tot)]+—c.c. , (5)
IV. INTERSUBBAND TRANSITION RATE

where A p=0, p is the propagation vector, and e„is a
unit vector. The gauge is chosen (without loss of general-
ity) so that the scalar potential /=0. We assume

~
A to

be small enough that terms of order An can be ignored in
Eq. (4).

III. UNPERTURBED ENVELOPE FUNCTIONS

We apply this formalism to the problem of intersub-
band transitions in a quantum well. The first task is to
determine the form of the unperturbed wave functions by
solving the following Schrodinger equation:

3

w „PP„F(r)=EF(r).
m, n =1

For an ellipsoidal valley, the solution is greatly simplified
by the boundary condition that F vanish at and beyond
the confining heterojunctions. ' ' Under this condition
the following envelope function is obtained for a state in
the jth subband

exp[i(k x+k y)]
F, (r) =P,(z), exp[ i (k, z )]—, (7)

)1 j2

where k, =(ur, k„+ut,k )/m„, and P (z) specifies the
variation of F along the z axis. We have taken the z axis
to be perpendicular to the plane of the quantum well,
and have normalized the wave function in the plane in a
square of dimension L L . The functions f (z) are the
solutions to

Under the influence of the perturbation Hp(t), the
term of the harmonic vector potential varying with time
as e '"' can cause the transition of an electron in a state
~F, ) in the first subband of the quantum well to a state
~F2 ) in the second subband. For a sufficiently small mag-
nitude of Hp, the transition rate from F, ) to ~F2) is
given by Fermi's golden rule of time-dependent perturba-
tion theory,

R, 2
= ~H„5( s2E, —Ace), (10)

where H2, =(F2~Hp~F, ). In the present treatment we
assume that the harmonic vector potential acts along
with scattering events that are assumed to occur at an
average rate ~, ' for each electron in the quantum well.
In this case, the following generalized form of Eq. (10) is
applicable

=2~ 2
r /2~R„—~H„~'

(~2 —~, —X~i2+r,'/4 '

where r, is the energy-broadening parameter, and is re-
lated to the scattering rate by I,. =A/v,

We evaluate the matrix element H21 by first making
the assumption, e'~'=1, in Eq. (5). This assumption is
valid under two conditions: (1) the longitudinal com-
ponent of photon momentum is much smaller than AK]

(i.e., p, L, &( I ), and (2) the transverse component of pho-
ton momentum induces a change in the electron energy
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that is much less than Ace. Both of these conditions are
satisfied in typical semiconductor quantum ~elis. ' Our
next step in the evaluation of H2, is to note that each of
the terms in Eq. (4) that does not depend on P, (i.e.,

I

n W3) leads to a vanishing contribution to the overall ma-

trix element because of the orthogonality of 1(z(z) and

it, (z) over the range 0 L—, . The three terms with n =3
yield a nonvanishing contribution of the following form:

c LLL, o

X sin(szz) cos(ic,z)dx dy dz . (12)

If we carry out the integrations over the x and y coordi-
nates and let L and L be sufFiciently large, we obtain
the factors L 6& k and L 6& &, where 5 is the

x2' x 1 yZ y 1'

Kronecker delta function. Evaluation of the integral
over the z coordinate then yields a transition rate of the
form

64fie a, (A, w„,+ A w~, + A, w„)I,
9ir c (ez —

s&
—A'co) +I, /4

k2J i ~,2k (13)

The overall transition rate per unit area, 5,2, is ob-
tained by summing R12 over both subbands and weight-
ing by the probability of occupancy in subband 1 and the
probability of vacancy in subband 2:

1
S,z= g QR, zf(e, )[1—f(Ez)],

x y kI k2

(14)

X Q f[s,(k, )] . (15)

We convert this sum to an integral by multiplying by the
two-dimensional density of states 2L L /4ir (factor of 2
in numerator for spin degeneracy), and by taking L„and
L to infinity. These steps result in

64Ae
1 ( 3& W&z y Nyz z Wzz )

9~ c (yz —y, —fico) +I, /4

where f is the Fermi function. For practical purposes,
we assume that the second subband is unoccupied [i.e.,
f(ez)=0] and sum over the second-subband transverse
( k, z, k~z ) states. The condition of momentum conserva-
tion, represented by the Kronecker 6 functions, couples
each state in the second subband to only one in the first
subband, so that the double sum reduces to a single sum
over the first subband. Furthermore, the application of
transverse momentum conservation and Eq. (9) leads to
2 61 f2 y 1

and we obtain

64fie ic, ( A„w„+A w, + A, w„)I,
S12

9a c L„L~ (yz —y, —%co) +I, /4

k~T
o = md ln[ 1+ exp[(e+ —y&)/kT]], (17)

where c~ is the Fermi energy, and md is the density-of-
states mass in the transverse plane of the quantum well
for the conduction-band valley which the electron occu-
pies.

%e expect that the infinite-barrier approximation leads
to an underestimation of the transition rate compared to
the rate for real, finite barriers. This is because the en-

velope functions extend far into finite barriers, such that
the transition matrix element 02, is larger than predicted
by Eq. (12) for the same well width. This matrix element
cannot be calculated for ellipsoidal-valley quantum wells

with finite barriers because the exact forms of the en-

velope functions are not known. In quantum wells made
of spherical-valley materials (e.g., GaAs) for which exact
envelope wave functions are known, finite-barrier and
infinite-barrier calculations can be compared directly. '

In this case, a calculation for finite barriers yields a larger
transition-matrix element, or similarly, a larger dipole
moment than a calculation for infinite barriers, as expect-
ed.

V. ABSORPTION STRENGTH

A. Fractional absorption

where g is the ellipsoid index, and M& is the number of
ellipsoids that contribute to the absorption at frequency
~. The intensity I is related to the harmonic plane-wave
form of the vector potential by I =n

~ A~ co /(2irc),
where n is the refractive index of the quantum-well ma-
terial. This leads to the expression

]28$2g2
(co)=

9mn coc

An experimentally measurable quantity is the fraction-
al absorption per quantum well, g, as a function of fre-
quency co. This is found by summing over ellipsoids and
normalizing to the incident photon Aux

C

g(co)= g S,)',I
1

X
2 C1k1 dkl

2a
(16)

The quantity in large parentheses is the sheet density 0.,
and evaluates to'

Ic1~0 ~I

(yz„—y,„—iiico) +I,„/4
(19)
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In general, each ellipsoid has a first-state energy y', "'
that depends on the spatial orientation of the ellipsoid
through the term w,',"'. In the present treatment, we will
evaluate Eq. (19) for the special case that only the ellip-
soid with the lowest y', "' is occupied. For certain sym-
metric crystal orientations, several or all of the ellipsoids
may share the same value of minimum y &. In any case,
Mc becomes the degeneracy of the first state, i.e., the
number of ellipsoids that have the minimum y &. Each of
these ellipsoids necessarily has the same value of m„and
yz

—y &
because the infinite-barrier approximation makes

K& and K2 independent of ellipsoid orientation. Thus we
can write a, =2(yz —yi)/3R w„=2roo/3flw„,where roc is

the intersubband Bohr frequency. Furthermore, symme-
try considerations dictate that all ellipsoids with the same
principal masses (mi and m, ) and oriented to have the
same w„component, must also share a common value of
transverse density-of-states mass md. ' The electron
population is then equally distributed among the first-
state ellipsoids. These facts lead to the following expres-
sion:

FIG. 1. Spherical coordinate system for analyzing the depen-
dence of absorption on the polarization of an incident plane
wave characterized by P. e, and e~~ are the unit vectors into
which any linearly polarized vector potential A (lying normal
to P) can be decomposed. The x and y axes are oriented with

respect to the conventional cubic unit cell of the quantum-well
material, as described in the Appendix.

256fie cuoo. T r,
g(ro) =

roMcw„(fico fico) +1 /—4

(A ta'"'+ 3 w'"'+ 3 ur'"I')
X XZ 3' Z ZZ

g=l I
Al'

(20)

where o z
= g„I o

„

is the total sheet charge density in

the first state. For I', &(%coo, the maximum value of this
expression occurs very near co=coo, and is well approxi-
mated by

1024fie a c ( A w'"'+ A w'"'+ A w'~')'
g(coo) = T X XZ g PZ Z ZZ

27m.nc I,Mc M
I
Al'

fto r 1024e w„G(8,$)
27%71C

(21)

The function G(8, $), which we call the crystallographic
factor, is given by the dimensionless expression

Mc „=& A

It does not depend on impurity concentration, tempera-
ture, or intrinsic scattering processes, so that it is useful
in analyzing the different crystal structures and
quantum-well orientations considered in this paper. The
quantity in Eq. (21) in large parentheses is useful for com-
paring specific quantum-well materials.

Because of the two-dimensional nature of the quantum
well, the fractional absorption may be a strong function
of both the propagation direction and the polarization of
the incident radiation. We characterize the polarization
in the conventional way shown in Fig. 1. A linearly po-
larized A, normal to P, is resolved into two components
All and A~ that are parallel and perpendicular, respec-
tively, to the plane of incidence, which is defined by P
and the z axis. The spherical coordinate system shown in
Fig. 1 leads to the relations A„=cosecosp A ~~+sing AI,
Ay=cosesiny A~~

—cosy AI, and A, = —sine Ai. The
orientation of the x and y axes in the plane of the quan-
tum well is chosen to take advantage of any symmetry in
the effective-mass tensor for the quantum-well material.

B. Absorption coefBcient

exp[ —a(co)L, sece] = 1 —g(ro) . (23)

We have assumed implicitly that the magnitude of the
vector potential decays negligibly across the width of the
quantum well (i.e., between z =0 and z =L, ). This is
equivalent to g(co) «1, which leads to the approximate

The fractional absorption given by Eq. (21) is valid for
any orientation of the plane wave relative to the quantum
well, but it does not reflect the length over which the
fraction absorption occurs. This length is highly depen-
dent on the direction of propagation P because of the
small extent of the quantum well along the z axis. For ex-
ample, suppose a quantum well of width L, yields the
same fractional absorption for radiation incident normal
to the plane of the quantum well and at an angle 8 with
respect to the normal. From geometrical considerations
alone, the absorption will occur over a length L, in the
former case, and over a length L,secO in the latter case.

We call L,secO the length of absorption, and use it to
define a directionally dependent absorption coefficient
(Fig. 2):
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AIR

BARRIER

QUANTUM WELL

BARRIER

ecg
Lz

the quantum well intercepts an infinitesimal fraction of
the plane wave or, equivalently, the geometrical filling
factor of the quantum well approaches zero. This ap-
pears to be inconsistent with the result, derived later, that
the crystallographic factor for the A

II
component has its

largest value at 0=90' for many of the quantum-we11
configurations analyzed. We resolve the apparent incon-
sistency by noting that a real beam of 1ight impinging on
the quantum well at 0=90' is, in the sense of Fourier op-
tics, a distribution of plane waves of different spatial fre-
quencies. Each spatial frequency (except the dc com-
ponent) corresponds to a plane wave incident at a 8
different than 90', so that the absorption of the beam as a
whole is nonzero.

FIG. 2. Cross-sectional view of quantum well of width L, .
L,sec0 is the length of absorption.

a(wu) = A'o T 1024((2firoow„ /3 )
'

277T n
cos8 G(8, $)

(24)

where (=e /Rc —=—„',is the fine-structure constant. Note
that the absorption coefficient decreases to zero as 0 ap-
proaches 90'. This can be understood from further
geometrical considerations. Our derivation has been car-
ried out for an ideal plane wave that, by definition, has
infinite lateral extent. However, the quantum well neces-
sarily has a finite width. Therefore, as I9 approaches 90',

expression for the absorption coeScient, a(co)=g(co)/
L,secO. From the infinite-barrier approximation,
L, =(3A'n. w„/2coo)' . These relations and Eq. (21) lead
to the following expression for the absorption coefficient
at co=coo.

C. Crystal structure and quantum-well orientation

Although Eq. (21) can be applied to any material in
which the electrons occupy ellipsoidal valleys, we will
deal only with a subset of this class characterized by cu-
bic crystal symmetry. The following three band struc-
tures are analyzed: (1) conduction-band minimum locat-
ed at k =0 with a spherical constant-energy surface (I-
valley material), (2) conduction-band minima located
along the equivalent (100) axes near the X points (X-
valley material), and (3) conduction-band minima located
along the equivalent (111)axes at the L points (L-valley
material). For X-valley materials there are six separate
ellipsoids, while for L-valley materials there are four
separate ellipsoids consisting of a half ellipsoid located at
each of eight equivalent L points.

%'e will evaluate Eq. (21) for quantum wells grown on
each of three low-index planes: (100), (111), and (011).
For each of the assumed material types, the crystallo-
graphic factor for the two polarization components can
be obtained by deriving the elements of the reciprocal
effective-mass tensor in a coordinate system defined by
the conventional cubic unit cell. This derivation is car-

TABLE I. Crystallographic factor G(8, $) defined by Eq. (22) and derived in the Appendix. Aii and A, are the components of the
vector potential that are parallel and perpendicular, respectively, to the plane of incidence defined by P and the z axis in Fig. l.
m» =(m(m, )/(m( —m, ).

Material

I -valley

Polarization

Ai
A)i

(100)

0
sin 0

Quantum-well orientation
(111)

0
sIn'0

(011)

0
sin'0

X-va11ey A,

A)i sin 0

--2
Wzz

9m„2
wzz cos 0—+sin 0

9m,',

w„cos4
4m(,2

w,, cos Osin P +sin'0
4m(,

L-valley Ai

Aii

Wzz

9m 2

w„cos'0
+sin 0

9m
sin'0

2w,, sin P
9m 2

2w„cos l9cos 4 +sin 0
9m,'(
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ried out in the Appendix, and the resulting factors are
compiled in Table I. Some of these results deserve em-
phasis. The crystallographic factors for a I -valley ma-
terial in all three quantum-well orientations imply zero
absorption of light at normal incidence to the quantum-
well plane. An X-valley material in a (100) quantum well
and an L-valley material in a (111)quantum well display
the same behavior. This follows from the fact that the
off-diagonal components m, and w, vanish for each el-
lipsoid. In contrast, both an X-valley material in a (111)
well and an L-valley material in a (100) well can absorb
normally incident light. There exists no azimuthal
dependence of this absorption because the z axis is a
threefold rotation axis in the X-valley (111) well and a
fourfold axis in the L-valley (100) well. However, azimu-
thal dependence is predicted for both L- and L-valley ma-
terials in (011) quantum wells because the z axis is then a
twofold rotation axis.

VI. EXAMPLES
A. GaAs

To establish the validity of the present formalism, we
first calculate the fractional absorption and absorption
coefficient for I -valley GaAs quantum wells, since there
are sufficient experimental data for (100) GaAs wells to
permit a significant comparison with theory. Our calcu-
lation is carried out for the technologically important
wavelength of A, =10pm. The GaAs quantum-well width
that yields a maximum first-to-second-state absorption at
this wavelength is L, = 11.6 nm, according to the
infinite-barrier approximation. Most of the electrons in a
moderately doped GaAs quantum well of this width oc-
cupy the first state. If we substitute the appropriate I-
valley crystallographic factors from Table I into Eq. (21)
along with the values w,, '=0.067mo and n =&10.9, we
obtain g(coo) =0.46(Ao T/I, )sin 8 and a(coo) =3.9
X10 (Ro'T/I, ) cos8sin 8 cm ' for the A~~ component,
and (=a=0 for the A~ component. The maximum ab-
sorption coefficient with respect to 0 is a = 1.5 X
10 (bio T/I, ) cm ' at 8=sin '&2/3=54. 7'.

We compare our prediction with the experimental re-
sults for a (100) GaAs quantum well obtained by Levine
et al. ,

' who measured a at a wavelength of A, =—10 pm
for light incident at 45', polarized in the plane of in-

cidence. Substituting the values of cr T=7.6X10" cm
and I, =11 meV given by Levine et al. , we predict
g(coo) =0.010 and a(ruo) =6.4 X 10 cm ' for the given il-
lumination conditions. The latter value is in good agree-
ment with their experimental value of 7. 1 X 10 cm

B. Si and Ge

Silicon is an X-valley material for which the six
constant-energy ellipsoids are characterized by a princi-
pal transverse mass m1=0. 19mo and a principal longitu-
dinal mass mI =0.98mo. These mass values are entered
in Table II along with the other fundamental material pa-
rameters required to calculate the absorption strength.
Table III gives the calculated peak fractional absorption
and corresponding well width for 10-pm radiation in-
cident on (100), (111),and (011) quantum wells. In each
case the well width is that value found by using the ap-
propriate w„values in Table II and the infinite-barrier
approximation. For the (111) orientation, the peak frac-
tional absorption of normally incident light is
g(coo)=0.015k'crT/I, per quantum well, independent of
azimuthal angle. For the (011) orientation, we find

g(coo) =0.042ficr T/I, with the incident field oriented
along [011],and g(coo) =0 with the field along [100].

Germanium is an L-valley material with four
constant-energy ellipsoids having the principal mass
values m, =0.082mo and mI =1.64mo. The (100) and
(011) quantum-well orientations yield absorption at nor-
mal incidence. The X=10pm fractional absorptions and
well widths for these orientations are given in Table III.
From Table I, we see that the geometrical characteristics
of the absorption are very similar to those for (111) and
(011) Si quantum wells. However, in both cases the ab-
sorption strength for Ge is at least three times that for Si.
This difference is caused primarily by the greater eccen-
tricity of the Ge ellipsoids.

C. AlGaAs

The Al Ga, As alloys with x 20.45 are X-valley ma-
terials. ' We consider an alloy with a large enough Al
fraction that the first I state has a much higher energy
than the first X state, and thus contains a negligible frac-
tion of the total sheet charge. Mixing between this I

TABLE II. Fundamental quantities for selected quantum-well materials. w„ is a reciprocal
effective-mass tensor component for the ground state of each quantum well in the infinite-barrier ap-
proximation.

Quantity

m

mr

m

w,, ' (100)
w,, ' (111)
w,, ' (011)

'Reference 20.
Reference 26.

'Reference 22.
Reference 23.

si (x)

3 45'
0.98'
0 19'
0.236
0.98
0.26
0.32

4.0'
1.64'
0.082'
0.086
0.12
1.64
0.22

Alp 5Gap 5AS (X)

3 30
1.20'
0.21'
0.25
1.20
0.29
0.36

Alp 3Gap, Sb (L)

3 80
1.20
0.08
0.086
0.12
1.20
0.21
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TABLE III. Peak fractional absorption and width of selected quantum wells for A. =10-pm radiation
at normal incidence.

Orientation

(100)

Quantity

g(cop) XI, /AcrT

L, (nm)

g(cop) X I, /Acr T

L, (nm)

Si (X)

3.0

0.015

5.9

Ge (L)

0.046

8.7

2.4

0.048

2.8 8.7

0.016

5.6 2.8

Alp 5Gap 5As (X) Alp 3Gap 7Sb (L )

(011)
g(cpp) X I, /ficrr 0.042 sin'P 0.168 cos'P 0.044 sin'P 0.169cos 0

L, (nm) 5.3 6.4 5.0 6.6

state and the first or second X state is ignored in the
present treatment. We choose an alloy with x =0.5, for
which the exact values of the principal masses of the el-

lipsoids are not known. Thus we estimate them by linear
interpolation between the GaAs and A1As values. This
procedure yields m, =0.21mo and m& = 1.2mo.

The (111)A1GaAs quantum well, like (111)Si, absorbs
light incident normal to the plane. The fractional absorp-
tion of (111) A1GaAs for A, =10 )tcm and L, =5.6 nm
(Table III) is g(coo) =0.016ficr T/I, per quantum well, so
that the absorption per electron is nearly identical to that
of (111) Si. For err=7. 6X10" crn and I, =ll meV,
the fractional absorption is 0.000 73, about 13 times lower
than the value for a (100) GaAs quantum well at 45' in-
cidence. However, the (111) A1GaAs exhibits this ab-
sorption for all polarizations and at normal incidence,
whereas the GaAs well absorbs just the A

~~

component
and only at oblique incidence.

D. A1GaSb

While there is no A1GaAs alloy that is an L-valley
material, Al„Ga, ,Sb is an L-valley material for
0.25~x 0.55. Because the values of the principal L-
valley masses are not known for the AlGaSb alloys, we
assume that these masses are equal to the values obtained
by a k p calculation for GaSb: m, =0.08mo and
m& =1.2mo. As in the treatment of the A1GaAs well, the
Al fraction is assumed to be large enough so that the first
I state is unoccupied, and any mixing between this 1"

state and either L state is ignored.
The most practical A1GaSb quantum-well orientation

is the (100) since this is the one most commonly used for
the A1GaSb crystal growth. Use of the appropriate crys-
tallographic factors, as listed in Table I, yields a fraction-
al absorption of g(coo)=0 048fior/I, .for normally in-
cident A, =10-pm light and for L, =8.7 nrn. This absorp-
tion is three times larger per electron than in the (ill)
A1GaAs well. For the same values of o.T and I, as used
for the A1GaAs well, we calculate g(coo) =0.022 for any
polarization of light at normal incidence.

The (011) A1GaSb quantum well is not as practical as
the (100) well, but it yields higher absorption. From
Table III, we see that the peak fractional absorption of

normally incident light at A, = 10 pm is given by
0 169(.lcrT/I, )cos P. At /=0 this is about four times
larger than the fractional absorption of the (011) A1GaAs
quantum well at P=m/2, and is also about four times
larger than the azimuthally independent absorption of
the (100) A1GaSb well. Thus the (011)
AlGaSb quantum well could be very useful in applica-
tions that utilize linearly polarized light at normal in-
cidence.

The enhancement of absorption for A1GaSb compared
to A1GaAs is caused primarily by the greater eccentricity
of the L-valley ellipsoids compared to the X-valley
ellipsoids —the same reason that (100) Ge exhibits
greater absorption than (111)Si. Physically, the greater
eccentricity of the L ellipsoids leads to a greater coupling
between a force applied along a nonprincipal direction
and a momentum change in the plane perpendicular to
the force.

VII. DISCUSSION

By providing the capability for absorbing light at nor-
mal incidence, the ellipsoidal-valley materials can over-
come the difficulties encountered in coupling radiation to
quantum wells in I -valley materials such as GaAs. Ac-
cording to our theory, the absorption coefficient of I-
valley wells is proportional to cos8 sin 8, so that the max-
imum absorption coefficient a,„occurs for 0=54.7'.
If we assume that the light passes through a
semiconductor-air interface with an angle of incidence 0
before impinging on the quantum well (Fig. 2), then
Snell's law of refraction limits the maximum j9 to the
value sin '( n '

) for 0=90 . If n is large, as in most
semiconductors, this angle is much less than 54. 7 .
Therefore the highest absorption coefficient that can
be obtained is a,„divided by the factor
2n /[3&3cos[sin '(n ')]). For GaAs with n =3.3,
this factor is 4.4. In practice, 0 is chosen to be no larger
than Brewster's angle, A&=tan 'n, to avoid a prohibi-
tively high reAection coefficient. For Q=O~, the absorp-
tion coefficient for GaAs is 4.8 times less than a,„.One
way to avoid this reduction is to modify the topography
of the wafer surface. For example, an angled facet can be
lapped into the edge of the wafer —the procedure fol-
lowed in making the GaAs quantum-well measurements
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at 0=45. ' It is also possible to etch two-dimensional
triangular gratings into the wafer surface by using selec-
tive wet etchants. However, both of these schemes com-
plicate device fabrication and preclude the use of
absorption-enhancement techniques such as the applica-
tion of antireflection coatings to the front surface of the
wafer and high-reflection coatings to the back surface.

In addition to Si, Ge, AlGaAs, and AlGaSb, other
ellipsoidal-valley materials are potential quantum-well
absorbers. For example, GaP is an X-valley material
with principal mass values comparable to those of Si and
A1GaAs. Thus, according to our theory, it could achieve
an absorption per electron comparable to that of the
latter materials. However, it is doubtful that high-quality
GaP quantum wells can be grown at present, since the
techniques for epitaxial growth of heterojunctions involv-

ing this material are less developed than those for
A1GaAs and A1GaSb. Another possibility is the I.-valley
material PbSnTe, a rocksalt-structure IV-VI alloy, which
has much smaller principal masses [ml -=0.22mo and

m, =—0.028mo for n-PbTe with a carrier concentration of
3.0X10' cm (Ref. 25)] than the other materials con-
sidered. For (100) quantum wells, these masses yield

mI, =0.034mo and m,, '=0.042mo, which lead to an ab-
sorption coellicient per electron about 30% greater than
that of A1GaSb.

Finally, we note that the III-V materials discussed here
have an important advantage over Si and Ge, since the
III-V quantum wells can be lattice matched to the barrier
material and to the substrate. In the case of
AlGaAs, lattice matching is automatic, since GaAs and
A1As have nearly equal lattice constants. For
A1GaSb, lattice matching to GaSb can be achieved by in-
corporating a small fraction of As to make the quater-
nary alloy Al, Ga&, As Sb& . For example,
Ale»Ga04, Sb has a 0.36% mismatch relative to GaSb,
but Alo»Ga045Aso05Sbo95 is lattice matched to GaSb.
Such a small change in composition has an insignificant
effect on the band structure, but should eliminate strain-
induced defects (e.g. , misfit dislocations).

VIII. SUMMARY

TABLE IV. Reciprocal effective-mass tensor components for
X-valley materials in quantum wells. m(, =(m(m, ) /(m( —m, ).

Number of ellipsoids xz Wyz

A. (100) Quantum well

0 0
m(

1

B. (111) Quantum well

0
v'2

3mlt

2m(+m,
3m(mt

1

&6m(,

—1

&6m„

—1

3&2m„
—1

3&2m„

2m(+ m

3m(m,

2m(+m

3m(m,

C. (011) Quantum well

0 0

2m(t

1

2m lt

m,

m, +m
2m(mt

m(+m,
2m(m

A. (100) Quantum well

1 1

3mlt 3m(,

1 —1

3m(t 3m It

—1 1

3m(t 3mlt
—1 —1

3m(r mlt

2m(+ m

3m(m
2m(+m,

3m(m,
2m(+ m,

3m(mt
2m(+m,

3m(mt

TABLE V. Reciprocal effective-mass tensor components for
L-valley materials in quantum wells.

Number of ellipsoids

We have derived general expressions for the fractional
absorption and absorption coefficient due to intersubband
transitions by electrons confined to a quantum well. Our
formulation applies to any material in which unconfined
electrons occupy valleys with ellipsoidal constant-energy
surfaces. In the special case of spherical-valley materials
such as GaAs, quantum wells absorb only the polariza-
tion component that is perpendicular to the plane of the
well. In contrast, our theory predicts that ellipsoidal-
valley quantum wells can absorb light having any direc-
tion of polarization relative to the plane of the well, in-
cluding light polarized in the plane. The only require-
ment for this effect is that at least one of the ellipsoids
must be oriented in k space such that its principal axes
are not collinear with the longitudinal (k, ) axis of the
well. The physical basis for the effect is that the crystal
potential for an electron in an ellipsoidal valley is aniso-
tropic, and thus can couple orthogonal components of
the momentum and the vector potential. The strength of

B. (111) Quantum well

—v'8

9m(r
v'2

9m
v'2

9m(,

—&2/3
3

&2/3
m(r

C. (011) Quantum well

0
ml,
v'2

0
3m lt

m(

8m(+m,
9m(mt

8m(+m,
9mI m

8m(+m,
9m(mr

2m +m(
3mtm

2m, +m
3mtm

1
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this coupling (as expressed by the off-diagonal com-
ponents of the reciprocal effective-mass tensor) increases
with the eccentricity of the ellipsoids, so that L-valley
materials in (100) quantum wells display greater absorp-
tion than X-valley materials in (111) wells. At present,
the most promising L-valley material system appears to
be Al Ga, Sb with 0.25~x ~0.55.
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APPENDIX: DERIVATION
OF CRYSTALLOGRAPHIC FACTORS

The crystallographic factors compiled in Table I are
obtained by evaluating Eq. (21) in the coordinate system
of the conventional cubic unit cell for each of the three
material types considered. This requires a derivation of
the reciprocal effective-mass tensor components, of which

w„is useful in calculating eigenstate energies, and w„,
and w, are useful in understanding the momentum
vector-potential cross coupling.

Because of spherical symmetry, a I -valley material has
the tensor components w„=0 and w, =0 for all
quantum-well orientations. The reciprocal effective-mass
tensor has three identical diagonal components equal to
1/m'. Similarly, an X-valley material in a (100) quan-
tum well has vanishing w„and w, components because
the z axis is a principal axis of each ellipsoid. The four el-
lipsoids lying in the plane have a longitudinal component
w„=1/m„and the two perpendicular to the plane have
w„=1/mI. These components are given in Table IV.
Since ml &&m„electrons in the four ellipsoids in the
plane will have (by the infinite-barrier approximation) a
lower first-state energy than electrons in the ellipsoids
perpendicular to the plane. Summation over the first-
state ellipsoids according to Eq. (22) leads to the crystal-
lographic factors given in Table I.

The reciprocal effective-mass tensor for an X-valley
material in a (111)quantum well is obtained by a similari-
ty transformation. If we choose e„ande„to lie along the
[110] and [112] axes, respectively, of the conventional
cubic unit cell, we obtain the components given in Table
IV. As expected from geometrical considerations, the
longitudinal component w„is the same for all ellipsoids,

and thus the first state of the quantum well is sixfold de-
generate. The crystallographic factors for this first state
are given in Table I.

An X-valley material in a (011) quantum well has a
four-fold-degenerate first state. By choosing e„and ey to
lie along the [100]and [011]axes, respectively, of the unit
cell, the four ellipsoids that contribute electrons to this
state are found to have the tensor components given in
Table IV. From the crystallographic factors given in
Table I, it is clear that the absorption is zero for light po-
larized along the [100] axis, and is a maximum for light
polarized along [011]or [011].

The tensor components for an L-valley material in a
(100) quantum well are easily determined by choosing e„
along [100] and e„along [010]. As shown in Table V, the
longitudinal components are all identical, so that the first
state of the well is fourfold degenerate. The crystallo-
graphic factors for this state are identical to those for the
X-valley (111)quantum well.

An L-valley material in a (111) quantum well is some-
what more complicated than the above configurations,
but the results are very similar. The x and y axes of the
quantum-well coordinate system are chosen to lie along
[112]and [110],respectively. The ellipsoid lying normal
to the plane has vanishing off-diagonal tensor com-
ponents and w„=1/mI. Electrons in this ellipsoid will

occupy the first state of the quantum well. The other
three ellipsoids have identical longitudinal components in
agreement with Stern and Howard, ' and nonzero off-
diagonal components given in Table V. These ellipsoids
thus define a threefold-degenerate state that may or may
not be the second level in the well, depending on the well
width (the second and possibly some higher levels of the
longitudinal ellipsoid could lie lower). The crystallo-
graphic factors for this state are consistent with absorp-
tion at normal incidence, and are given by 4w, , /8lmi,
and 4w,, cos 8/81m&, +sin 8 for the A~ and A~~ com-
ponents, respectively. The weakness of these factors, in
comparison to those for (100) wells of L-valley materials
and (111) wells of X-valley materials, follows from the
fact that the three-fold degenerate ellipsoids lie very near-
ly in the plane of the well. Thus they have small w„,and

wy components, as shown in Table V. The crystal lo-
graphic factors do retain the azimuthal independence of
the other structures, because in this case the [100] axis is
a threefold rotation axis.

The final structure we analyze is an L-valley material
in a (011) quantum well. The crystallographic factors are
similar to those for the X-valley (011) quantum well, ex-
cept that now only two ellipsoids contribute to the first
state. If we again choose e„and e„to lie along the [100]
and [011] directions, respectively, we find the w," com-
ponents for these ellipsoids given in Table V, and the
crystallographic factors listed in Table I.
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