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We present a detailed study of transient nonlinear optical spectra for the model semiconductor
gallium arsenide in the canonical pump-test configuration with 2-eV incident light pulses of 70-fs
duration. Starting from first principles we show that the shape of the omnipresent "spike" around
zero delay time is closely connected with a transient phase memory of the driven interband transi-
tions. The characteristic time dependence of all nonlinear pump-test spectra reflects the influence of
the dominant momentum- and energy-relaxation processes on the single-particle distributions which
are coupled by the pump and test pulses. The concepts discussed are of general validity for all opti-
cally excited direct-band-gap semiconductors.

I. INTRODUCTION

The classical field of light-rnatter interaction is the sub-
ject of renewed and considerable interest, because ul-
trashort ((100 fs) and very intense () 10' W/cm )

laser-light pulses are now available. ' The interaction of
such pulses with a semiconductor in the absorbing part of
the optical spectrum (laser photon energy %too&EG) can
generate high-carrier densities up to 10 ' cm
Coulomb scattering among free-electron-hole pairs
occurs at n =10' cm on a 10 ' -s time scale. It is, at
least for higher densities, the dominating loss mechanism
for single-carrier momentum [the total momentum of
both single-particle distributions, f, (k) and ft, (k), is con-
served for carrier-carrier scattering]. On the other hand,
the cycle time To for the core motion in typical semicon-
ductors is larger than 100 fs, so that studies of optical
spectra well beyond the Born-Oppenheimer approxima-
tion are now within reach; it is possible to study optical
properties of "frozen-in" lattices under the extreme con-
dition t „„,& To.

An important conceptual feature of such short-pulse
experiments is the occurrence of a transient phase
memory. The action of both driving light fields Ep p
and E„„onthe polarizable carriers induces a correlation
of phases, which is linked to the off-diagonal terms of the
corresponding Green's function. This phase memory is
the microscopic origin of the induced grating effect
(sometimes referred to as "coherent artifact" in the litera-
ture ), which is a general property of coherently excited
optic media with nonlinear response. The phase
memory discussed here is a microscopic property of the
semiconductor and is connected with the existence of in-
dividual driven e h —pair transitions -("optically coupled
states") and their loss of phase relative to the driving
field.

Carrier scattering processes provide the dominating
mechanism for phase and energy relaxation of electrons
and holes. The simplest analogy with atomic systems is a
three-level description of transitions and their T2 and T,
relaxation times. Phase space filling is another factor
which determines nonlinear optical properties on the ul-
trashort time scale. The initial build-up during the light
pulse and the subsequent decay of the electron-hole —pair
population is controlled by (i) the intensity of the driving
light field and (ii) by the net rate of "scattering-out" due
to carrier-carrier or carrier-lattice scattering. Both
effects have been investigated in detail by several
groups.

The aim of this paper is twofold. At first we point at
the intrinsic phenomenon of a phase memory in both the
pump- and the test-polarization fields as well as their mu-
tual interaction. These memory effects are present as
long as the pulse durations of both test and pump pulse
are comparable with, or shorter than, the relevant carrier
relaxation times. The second point is an analysis of quan-
titative experimental data on the basis of a sound many-
particle theory: we illustrate how to analyze experimen-
tal data without simple phenomenological assumptions.

The first section contains a summary of relevant exper-
imental data for GaAs at 2-eV pump photon energy. The
following parts of the paper develop the basic theory on
the basis of a nonequilibrium Green s function ap-
proach, ' ' which was investigated earlier. ' ' We start
from first principles. Relevant scattering processes
within the particle system and with the lattice are taken
into account. Beside these light-matter interaction pro-
cesses the interaction between pump and test fields,
which was investigated only recently, ' ' is taken into
account for the actual experimental arrangement. We
close with a comparison of available experimental spectra
with theoretical results.
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II. EXPERIMENTS

E(t) =EoF(t)sin[too+c (t)]t,
with

(2.1)

c(t)=at+Pt +
and taking for the pulse envelope function F (t),

F(t)-sech(At/t „„,)=1/cosh( At/t „„,),

(2.2)

Transient changes of the reAectivity after excitation
with ultrashort light pulses provide important informa-
tion about relaxation processes on an ultrashort time-
scale. Pulse durations of 50—70 fs are now routinely gen-
erated around AeQ=2 eV with the colliding-pulse mode-
locked dye laser (CPM laser). Our system used intra-
cavity dispersion compensation with a special dielectric
mirror and gave approximately 130 pJ energy per pulse
with a spectral width of 6 nm at 620 nm central wave-
length. The important chirp characteristics of our pulses
were investigated with two independent methods:
(i) comparison of electric field —with intensity-
autocorrelation, and (ii) insertion of BK7 glass and
quartz of different thickness and monitoring the changes
in measured pulse duration. Both methods gave the
chirp function c (t) in the electric field pulse

form of the envelope), we can give an upper limit of
a=1.5X10 fs for the chirp of the laser pulses. As
the pulses get broader with increasing thickness of glass,
the laser pulses are obviously up-chirped. The field and
the intensity autocorrelation function were calculated
and compared with the measured one, using the parame-
ters of Eq. (2.1), and gave very good agreement.

The magnitude of the fast transient effect (see below) in
the measured change of reAectivity is expected to depend
on the pulse chirp. Ippen et al. showed in transmission
experiments that fast transients are shifted to earlier
times when the chirp is varied from positive over zero to
negative values. The theoretical investigations described
below show that the experimentally determined value of
a can affect the calculated reAectivity spectra only to a
small degree ( (5%).

Measurements of the time-dependent change of
reflectivity b,R /Ro (Ro is the reflectivity of the unexcited
sample) were performed in pump-test configuration with
both pulses having the same energy and the same dura-
tion. The exciting beam was focused to a radius of 12
pm, which yields carrier densities up to 10' cm . Sam-
ples of undoped GaAs bulk material of 1 mm thickness
and GaAsQ 9PQ, bulk material were used.

III. BASIC THEORY
with (2.3)

A =2arccosh(3/2)=1, 763 .

Under the assumption that the leading term in the
chirp function is the linear one, we varied the parameters
t

p ] and u to fit the autocorrelation functions. Al though
this procedure is not unique (it depends on the functional

The microscopic description of the interaction of
matter with intense laser-light pulses requires a none-
quilibrium Green's-function technique, ' ' which in re-
cent years was successfully applied to various problems of
nonlinear optics. ' ' ' The basic equations for the di-
agonal and off-diagonal elements of the one-particle prop-
agator are

i' +s„( —i V, ) ——e ( i V2) G" (1—, 2)

E(1)g Im(1 2) g nl(1 2) E(2)+(X nlg Im+X nlg Im g nlX lm g nlX lm)
7

l=u, c
(3.1)

where t =(t, + t2 )/2, s„areband energies, and )Lt„l are dipole transition matrix elements between valence and conduc-
tion bands. The coupling between self-energies and Green s functions is defined by

(XG), 2
—Jd x3 X(x] x3t (x&+x3)/2)6(x3 —xz, (x3+x3)/2), (3.2)

with x =(r, t) Retarded (r) .and advanced (a) Green's functions are determined by Dyson equations, e.g. ,

g nm 5 gOn+ y gOn( E+Xnl)g lm

I

(3.3)

The occurrence of center-of-mass coordinates in (3.2) is an immediate consequence of the nonstationary external field
E, which is assumed to be given as sum of a strong pump pulse E and a weak test pulse E„measuring the linear
response of the excited system. As will be seen later in more detail the linear response can be calculated from the linear
changes 5G in the off-diagonal elements of G induced by the test beam. To obtain an explicit equation for 5G, we intro-
duce 6=G+56 and X=X+5X, where 6 is the solution of (3.1) with E replaced by E and X by X, which contains
only contributions depending on the excite pulse. Substracting the corresponding equation for G from (3.1) and taking
only linear contributions with respect to E, in account one obtains
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iA —+c.„(i—V, ) —sm( —i%~) 5G( (1,2)= g p„(E,(1)6'( (l, 2)—G((1,2)pt E, (2)

+p„tE(1)56'( (1,2) —56"((1,2)p( E~ '

+ ( ynl56 lm +ynl56 lm 56 nlglm 56 nl

elm�

)

+ (5@nlG lm +5ynlG lm 6 nl5ylm 6 nl 5ylm ) (3.4)

This equation takes into account finite lifetime effects
on the basis of a sound many-particle theory, and does
not use the concepts of longitudinal and transversal relax-
ation times of nonlinear optics of atomic systems, as the
early theory of Bloembergen and Shen.

The system of Eq. (3.4) is valid for arbitrary pump in-
tensities and determines the linear optical spectra of the
excited system. The various contributions to (3.4) have
different physical origins: The off-diagonal elements
56",num, contain two contributions depending on the
test beam. They describe saturation effects due to Pauli
blocking, whereas the two contributions depending on
the pump pulse are responsible for transient effects in the
test spectra, which are caused by a coherent interaction
between pump pulse and test pulse. In the limit of sta-
tionary excitation these contributions lead to light-
induced gaps in the spectra, which have been discussed
for some time & 9, 28 —3o Other transient effects which are
described by these contributions, are (i) oscillations in
transmission spectra, which occur if the test pulse pre-
cedes the pump pulse; ' ' (ii) the blue shift of the exci-
tonic resonance in the case of off-resonant excitation, also
called the optical Stark effect. ' '

We have to distinguish between two types of the self-
energy contributions to (3.4): diagonal terms describe
scattering within the particle system and with phonons
(X &, X& ), and the renormalization of one-particle states
(X„,X, ). Off-diagonal self-energies determine the
electron-hole correlation which leads to bound states.
One well-known special case of (3.4) is obtained if all
scattering contributions (diagonal elements of X) are
neglected. This can be justified for off-resonant excita-
tion. Diagonal and of-diagonal elements of 5G are con-
nected by a conservation law which makes a kinetic equa-
tion for diagonal elements redundant. ' ' A generaliza-
tion of this conservation law to the case of nonvanishing
dephasing time is straightforward. " If we consider, how-
ever, real excitation processes, energy relaxation becomes
crucial and an explicit treatment of the kinetic equation
for diagonal elements is unavoidable as long as the pump
pulse acts upon the system. This can be seen for n =m in
(3.4). The test and the pump pulse couple to off-diagonal
elements of G and 6G, respectively, in the first two contri-
butions, which act as source contribution and thus dies
out on the time scale of the pump pulse. The meaning of
diagonal and off-diagonal contributions to the self-energy
in (3.4) is the same as already discussed for the case
n Apl.

In the following we will restrict our treatment to the
case of excitation far above the band edge, i.e., to excita-
tion energies at which the bare electron-hole correlation
becomes negligible and off-diagonal contributions to the

I

self-energy, which depend only on the bare Coulomb in-
teraction, can be neglected (see Sec. VI).

IV. APPROXIMATION SCHEME

In order to make a numerical solution of the coupled
kinetic equations for G and 5G feasible, some basic ap-
proximations are necessary. From a conceptional point
of view the most drastic one is the Markovian approxi-
mation in which a "local" macroscopic time scale is in-
troduced and memory effects in the scattering eUents are
neglected. Formally this implies the replacement of
(t, +t3) and (t3+t2) by (t, + t2) in (3.2). A rigorous intro-
duction of a local time scale can only be enforced by an
infinite expansion with respect to microscopic deviations
of macroscopic variables from t =(t, +tz)I2. ' ' Up to
now a practical evaluation of such an expansion is out of
reach. One can estimate the importance of memory
effects in scattering processes: Their range is determined
by the lifetime of one-particle states, which is in turn
determined by the scattering processes. From the known
damping of one-particle states one can estimate the time
scale on which memory effects will inAuence the relaxa-
tion process. For the density range considered here, this
time is of the order of 100 fs. The Markovian approxima-
tion for scattering can be justified, if within time intervals
of this order of magnitude the changes of one-particle
distributions due to scattering are not too large. The rap-
id changes of one-particle distributions due to the excita-
tion, as well as the interaction between pump and test
pulses, are fully taken into account in our approach and
lead to memory effects with a duration of the order of
magnitude of 100 fs.

In the quasiparticle approximation the kinetic equa-
tions for the diagonal elements of the Green's functions
can now be reduced to Boltzmann-type equations which
include source contributions. The situation is more com-
plicated for off-diagonal elements. In Fourier space 6"
depends on (co, k, t). The knowledge of the frequency
dependence, which is necessary in order to evaluate the
coupling of G" and 6G", respectively, to the self-
energies can only be obtained from the solution of the ki-
netic equation for G™(co,k, t) First attempts to. treat
such a problem numerically were reported recently and
were based on simplifying assumptions concerning the
self-energies. In the present investigation the prob1em is
tackled with the so called Shindo approximation
which has also been discussed within the nonequilibrium
Green's-function formalism. ' ' This approximation is
often used in high excitation physics in order to treat the
dynamically screened electron-hole correlation and be-
comes trivially exact in the stationary limit, if these
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correlations are neglected. In the nonstationary case,
however, the application of the Shindo approximation
implies a Markovian approximation and a slowly varying
amplitude approximation (SVA), as can be shown from a
formal solution of (3.4) or (3.1), respectively. The SVA
approximation leads to very small modifications of im-
proved results (see Sec. V), whereas the Markovian ap-
proximation in this case is justified as long as distribution
functions are small in comparison with unity. The latter
is always fulfilled in the present investigation, as well as

I

at densities much higher than the Mott density, due to
the high density of states far above the band gap.

V. KINETIC EQUATIONS FOR ONE-PARTICLE
DISTRIBUTION FUNCTIONS, INDUCED DENSITIES,

AND NONEQUILIBRIUM PHONONS

We apply the approximations discussed in the last sec-
tion and obtain from (3.1) for n =m the following equa-
tion for the one-particle distributions:

i}t—f'(k) = —ip(k)E (t) [P' (k) —[P' (k)]*)
—X'((k, s, (k) )[1—f '(k)]+X"(k,e, (k) )f '(k)

—X ((k, eg(k) )[1—f '(k) ]+X) (k, s, (k) )f '(k), (5.1)

where we have switched from the band picture to the
electron-hole picture; ahab denotes e or h, respectively.
One-particle distributions and propagators are related by

with

H(k, coo) =e, (k)+sb(k)+X'„'(k,coo)+X „(k,coo) . (5.5)

f'(k)= i f— 6'((k, co) .2' (5.2)
The rapidly oscillating phase factors of I' and E have

been eliminated (rotating frame) by introducing

Correspondingly we introduced the off-diagonal elements
P ab( k )

—e
'0 Pah( k ) (5.6)

P' (k) = i f —G'( (k, co),2'
which obey the equation

(5.3)

i' +H(k—, coo) fico() P ' (k—)
a

=p(k)E (t)[1—f'(k) —f (k)] (5.4)

I

and the corresponding definition for E . X denotes the
effective self-energy obtained in the Shindo approxima-
tion and will be explained below, as well as the particle
and phonon self-energies in (5.1) in Sec. VI. Equation
(5.4) describes the coupling of the system to the excita-
tion pulse; correspondingly one obtains from (3.4) the e-h
pair density induced by the test pulse

ig —+H(k, co) gco 5P 'b(k)—=p(k)E, (t)[1—f'(k) —f (k)]—p(k)E~(t)e ' [&f'(k)+&f (k)] . (5.7)

gP is defined in correspondence to (5.6) but with coo replaced by co, the central frequency of the test pulse. The induced
one-particle distributions 5f occurring in (5.7) are given by

ih' —5f'(k) = —ip(k)E, (t) [P' (k) —[P' (k)]' I
—ip(k)E&(t) [5P' (k) —[5P' (k)]' I

+ ( X"+X"+Xt'"+Xi'" )5f '( k )
—( 5X"+5X~")[ 1 —f '( k )]+( 5X"+5Xi'" )f '( k ) (5.8)

where the arguments of the self-energies are the same as in (5.1). Further we have already neglected in (5.7) the very
small self-energy corrections corresponding to induced renormalization and dephasing processes. The occurrence of
the time derivative in (5.7) reflects that under nonstationary conditions the dependence of optical spectra on one-
particle distributions is non-Marcovian, as was already shown earlier. This point has usually been overlooked in the
literature, where the analysis of optical spectra on an ultrashort time scale was based on the assumption that changes in
the one-particle distribution are instantaneously followed by corresponding changes in the optical spectrum.
Furthermore, in the transient regime the interaction between excite and probe pulse leads to further deviations from the
simple picture, which has usually been applied.

To complete the system of kinetic equations we now turn to the distribution function for nonequilibrium LO pho-
nons. Within the present formalism the phonon propagator is in the Markovian approximation given by

M )
D~& (q, co, t)= —[D~)"(q, co, t)P((q, co, t) D~"(q, co, t)P) (q—, co, t.)],

2( )
(5.9)

with the well-known Frohlich coupling
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AQ)LO
M (q) = V(q)

EO

(5.10}

and the longitudinal dielectric function e(q, co) of the excited system. If the phonon Green s function is approximated

by an Einstein model and the polarization propagator is treated in random-phase approximation (RPA), one obtains
after frequency integration of (5.9) the following kinetic equation for the LO-phonon distribution n:

n(—q) =-a 4~ M'(q)
dt R, ~ p (q, e~ —s~)

k

5(sf, +
—

sf,
—A'coro) [[1+n (q)][1—f'(k)]f'(k+q) —n(q)f'(k)[1 —f'(k+q)]] .

(5.11)

Together with certain approximations for self-energies the kinetic equations (5.1), (5.4), and (5.11) completely deter-
mine the time evolution of the system under the action of a strong laser pulse, whereas (5.7) and (5.8} describe the time-
resolved response of the excited system to a weak test pulse.

VI. PARTICLE AND PHONON SELF-ENERGIES

A widely used approximation in studies of relaxation properties of highly excited semiconductors is the first
Born approximation for the scattering rates with a statically screened interaction. More generally the screened
Hartree-Fock self-energy is given by

X( "(1,2) W((2, 1)G((1,2)

W, (2, 1)G) (1,2),

where the propagator of the longitudinal interaction obeys the relation

W)(1,2)= fd3fd4W, (1,3)P)(3,4)W, (4, 2) . (6.2)

Using P in the RPA and taking also into account the exchange diagram corresponding to (6.1), the total particle self-

energy reads

X"(1,2)=2' f d3 fd4 g W„(3,1)G (3,4)G';(4, 3)W, (2, 4)G (1,2)
c

1

2
——W„(3,1)G') (1,4)G'((4, 3)W, (2,4)G'('( l, 2) (6.3)

Equation (6.3) can be evaluated by using a quasiparticle representation for the particle propagators and again a Marko-
vian approximation. One obtains

X'((k, co, t)= g 5(fico+Eq sk ~
—sq +q )[2~ W„(fico—si, k, ki)~ —5„W„(fico—Ek k, ki)

c=e, h

kl, k2

X W, (%co—
ef, +„k,k, +ki —k)][1—f'(sf, )]f'(ef, „)f'(ef,+„). (6.4)

The corresponding X) is obtained by interchanging f and (1 f) in (6.4). In the d—erivation of (6.4) renormalization
effects on the time scale of the excitation pulse, which would lead to light-induced modifications in the one-particle
spectrum, are neglected for the following reason: Sharp light-induced gaps do not occur if the finite spectral width
of the driving pulse is considered. Nevertheless, the one-particle density of states can be modified considerably for
high-field intensities. The effect, however, is negligible, as long as the Rabi frequency is small in comparison with the
spectral width of the pulse.

The scattering contribution of LO phonons is given in analogy to (5.11) by

M ( )X((1—f') —X)f'= g 5(s[+ —
Ef,

—AcoLo)
~ (q sa+q

X I[1+n(q)][1—f'(k)]f'(k+q) —n(q)f'(k)[1 —f'(k+q)]) . (6.5)

Now we turn to the discussion of the effective self-energies, which enter the kinetic equations for the off-diagonal ele-
ments (5.4) and (5.7). The first contribution is the well-known static exchange self-energy

X;„;(k)=—g V(k —k')f'(si, ) . (6.6)



G. BOHNE, T. SURE, R. G. ULBRICH, AND %'. SCHAFER 41

It causes a nearly k-independent shift of electron and hole bands to lower energies.
The second contribution can be calculated from the dynamical electron-hole interaction, which occurs in the self-

energy contributions in (3.4). As was shown in detail' ' using the screened Hartree-Pock scheme and the already dis-

cussed Shindo approximation, the dynamical contribution to the electron-hole interaction can be cast into the form

hw(co, k, k')=[1—f'(k') —f"(k')] ' J j
X ( —G'& b w, G'& —G„'w& G'& +G'& w & G,'

(6.7)

where we have used the abbreviations G'= G'(0+ 0', 4+k'), O'= G "(0+0'—co, k+ k'), O' =O'(0', k'),
G" =G "(fl' —co, k'), w =w(Q, k), and hw =w —U. To obtain insight into the physical processes determining this
effective interaction it is advantageous to consider the imaginary part of (6.7), which is given by

dQ'
Im{bw(co, k, k')j =[1—f'(k') —f"(k')] 'f f g (G;w, G; —G;w, G; —G;w, G;+G;w, G", ),2' 277

(6.8)

with w & and w &, respectively, defined by (6.2).
As a result the imaginary part of the dynamical contributions to the effective self-energies in (5.4) is obtained

Im{ AX(co, k) )
= g [Iin{Aw(co, k', k) )

—Im {6 w(co, k —k', k') }P(k')/P(k)]
k'

(6.9)

and the real part of AX can be calculated from the Hil-
bert transformation of (6.9). The corresponding contri-
bution in (5.7) is obtained from (6.9) with P replaced by
5P.

The second contribution on the right-hand side of (6.9)
corresponds to vertex corrections. Their inclusion is
essential for the following reason: If only the pure self-
energy contribution to (6.9) would be considered, one
would obtain the unphysical result that in the limit of
vanishing density (respectively, vanishing screening) the
damping would approach a finite value. This is an im-
mediate consequence of the singularity of the bare
Coulomb interaction. As can be seen from (6.9) together
with (6.8), the vertex corrections cancel this singularity
exactly. They guarantee that Im(b, X) vanishes with van-
ishing density and cause that electronic dephasing pro-
cesses are necessarily off diagonal in k space. Beside this
technical detail a comparison of (6.8) with (5.1) and (6.1)
demonstrates that the processes governing the effective
electronic dephasing time of the off-diagonal elements are
the same which determine the relaxation of one-particle
distributions. Although this point is intuitively clear, up
to now only phenomenological approaches have been ap-
plied. The result (6.9) represents the first microscopic ap-
proach to dephasing times in highly excited serniconduc-
tors.

To complete this section, we explain the approximation
used in actual calculations for the screened interaction.
An approximation scheme, fully consistent with the Born
approximation already used for the scattering cross sec-
tions in (6.1},requires the calculation of the RPA dielec-
tric function under nonequilibrium conditions. Unfor-
tunately the Pade approximant technique applied,
which allows a full RPA calculation of screening proper-

ties in quasiequilibrium cannot be applied to the case of
nonmonotonous one-particle distributions. Therefore, we
restrict ourselves to the common plasmon approximation,
in which the dielectric function is given by

2

e(co, q) =1-
(cu+iI ) +cop( —co (q)

with the plasmon dispersion defined by

(6.10)

2

1+ +—,'[s, (q)+ei, (q)] (6.
K

and the screening vector

(6.12)

The explicit consideration of the coupling between
plasmons and phonons, which results from the level
crossing of the plasma dispersion with the LO-phonon
energy, can be neglected for the densities under con-
sideration. Divergence problems occurring in principle
in (6.5} are avoided by a small numerical damping I in
(6.10).

VII. CALCULATION QF TRANSIENT
REFLECTIVITY SPECTRA

The theory outlined in the last sections has led to a
closed system of equations determining one-particle dis-
tributions and transition amplitudes (off-diagonal ele-
ments) induced by the excitation pulse. Energy relaxa-
tion of diagonal and dephasing of off-diagonal elements of
the induced density are treated on an equal footing. Now
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the question of measurable quantities has to be discussed.
The concept of Fresnel's formulas for the reflectivity at
an interface under stationary conditions (i.e., cw light)
has to be critically tested in the case of ultrashort tran-
sients discussed here. The effect of scattering of the
pump beam into the reflected test beam has been treated
in detail by Eichler, and will not be discussed here.
From Maxwell's equations and the usual boundary condi-
tions one obtains for the reflected field

1.0

0.8

06

o 04

02

b 5P'"(h) C b 5P'"(h)

no(no+1) dt

00
(7.1) I

-800 800-400 0 400
delay time T (fs)

where no denotes the complex index of refraction of the
unexcited system, and E, has been linearized with respect
to 65P'"=5P'"[E ] 5P'"[—E =0]. Corrections to the
first two terms of the right-hand side of (7.1), which be-
come important for ultrashort pulses and very high densi-
ties, have been investigated. " For pulse durations of the
order of about 100 fs and densities of the order of
n =O. lrb these corrections are less than 1%. Recent
investigations at higher densities seem to indicate that
these corrections indeed become important. In our
present investigation we concentrate ourselves on smaller
densities, so that these corrections are small in compar-
ison with the dominating change of reflectivity spectra.
Thus we obtain from (7.1) for the relative change of the
reflection coeScient

NRO
bR (co, r) =2 Re ICh E,'(h)b 5P'"(co, h r)—

no(no+1)

(7.2)

with the normalization constant defined by
' —1N= tE, t (7.3)

Equation (7.2) is valid for a photodetector which in-
tegrates the reflected field without preceeding spectral
filtering. " Note that the test field implicitly depends on
its central frequency and the time delay ~ with respect to
the excite pulse.

FIG. 1. Measured time-dependent change of test-beam

reAectivity for GaAs.

Figure 2 shows the maximum value of the change in

reflectivity bR /Ro for different excitation densities. The
absolute value of hR /Ro grows linearly with the excita-
tion intensity up to a density of 10' cm . For higher
densities n ) 10' cm deviations from this linear behav-
ior correspond to the onset of saturation due to phase
space filling.

To analyze the experimental data on the basis of the
theory outlined in the preceding sections, it is necessary
to solve the kinetic equations obtained in Sec. V together
with (6.4)—(6.6) and (6.9) for a realistic model of the band
structure of GaAs. A corresponding model should in-
volve light-, heavy-, and split-off hole bands, and a suit-
able parameterization of electron bands including non-

parabolicity, multivalley degeneracy, and warping. First
attempts to include some of these band-structure effects
in Monte Carlo simulations ' have been reported re-
cently. A full description, however, of the various
scattering processes within and between different bands
and valleys is out of reach at the moment. Therefore we
focus our interest on a two-band model, describing two

VIII. RESULTS AND DISCUSSION

Figure 1 shows the measured time-resolved change of
test-beam refiectivity bR/Ro. The fast increase of the
reflectivity follows closely the time dependence of the ex-

citing laser pulses and reaches its maximum value with a
time delay of ~=+40+30 fs of the test pulse. Two time
scales are obviously relevant for the decrease of the mea-
sured signal. First a fast component of the order of the
pulse duration, followed by a slower decay, which de-

pends on the excitation density. The slow relaxation time
is 8 ps for an excitation density of 10' cm and in-

creases to 12 ps at excitation density 10' cm . The
slow decay is caused by carrier scattering within the par-
ticle system and by carrier-phonon scattering, both lead-

ing to a quasiequilibrium distribution. %'e emphasize
that the shape of the spike is (within the accuracy of the
measurements) independent of the excitation density.

1.2—
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CC

0.8—

E 0.6—
E
X 04-

C) 02-

0 00 4 6

carrier density (10 cm )

10

FIG. 2. Carrier-density dependence of the peak value of
hR /Ro (see text).
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ments which we performed in a GaAs&9P0, sample,
where the I ~X transfer is not allowed. ' The same be-
havior of the time evolution of AR/R0 was found after
the sample was excited by the laser pulse (see Fig. 4).

The numerical results are now discussed in more detail
by insertion of the real and imaginary part of the time-
averaged-induced density entering (7.2). In Fig. 5 the
time averaged difference spectra, 65P', occurring in
(7.2), are shown for various delay times v between the
pump pulse and the test pulse at the density n =4X10'
cm '. The structure of the spectral hole around the exci-
tation energy, shown in Fig. 5(a), can be understood in
principle if the interaction contributions between excite
pulse and probe pulse [second term on the right-hand
side of (5.7)] are considered in the limit of vanishing re-
laxation and dephasing. In this limit 5n" can be ob-
tained from the already mentioned conservation rule,
leading to

5n "(k,t)=P' (k, t)5P '(k, t)+P '(k, t)5P' (k, t) . (8.1)
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FIG. 6. Energy-dependent electron distribution function for
various delay times between pump pulse and test pulse.

Thus 5n contains the product of the real and the imagi-
nary parts of P and 5P, respectively. These two contribu-
tions cause an energetically localized and an extended
contribution to the spectral hole. The duration of this
effect is limited by the pulse duration, if it is short in
comparison with the duration of dephasing processes, or
by a mean dephasing time in the opposite case. The Pauli
blocking in Eq. (5.7) causes the third contribution to the
spectral hole, which is present as long as the one-particle
distributions peaks in the vicinity of the excitation ener-

gy. Apart from the spike at the excitation energy, similar
hole-burning effects are well known in saturation spec-
troscopy of atomic systems. ' For delay times longer
than = 120 fs only Pauli blocking contributes to the spec-
tral hole burning. For larger times the hole contribution
becomes considerably broadened and is shifted to lower
energies.

The hole in ImI b,5P'
I leads to an immediate decrease

of the absorption observed in transmission experi-
ments. ' ' The change in reAectivity bR /R0, howev-

er, is dominated by the temporal change of Re[55P'").
Whether the change in b,R /Ro at the excitation energy is

larger or smaller than zero depends crucially on the
asymmetry of the one-particle distributions with respect
to the excitation energy. If the first moments of the dis-
tribution functions are smaller than the excess energies
with respect to the band minima, the zeros of
ReI 55P'"'I, shown in Fig. 5(b), are shifted to energies
smaller than the excitation energy %coo. The immediate
consequence of this shift is an increase of the reflectivity,
i.e., hR/Ro) 0 at Actino.

The calculated energy-dependent distribution functions
for different delay times are plotted for the electrons in

Fig. 6 and for the holes in Fig. 7. For the holes the pho-
non sideband becomes significant already at t = —15 fs.
Carrier-carrier scattering causes a fast broadening of the
distribution function. After 400 fs the holes are practi-
ca11y thermalized and can be described by a thermal dis-
tribution.

The electron distribution function is much broader
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FIG. 7. Energy-dependent hole distribution function for vari-
ous delay times between pump pulse and test pulse.

than the distribution function for the holes. This is due
to the smaller effective mass of the conduction band com-
pared with the valence-band mass. Thus for small times
phonon sidebands appear only as structures within the
energetical range of the distribution generated by the
pulse. These structures are effectively smeared out by the
Coulomb scattering of carriers. For later times the distri-
bution shows a significant broadening and a shift of the
energy peak to smaller energies. But even after 2.5 ps the
electrons are not thermalized. It should be noted that
within the present treatment of the Coulomb scattering
cross sections the relaxation processes are faster by near-
ly a factor of 2 in comparison with a statically screened
interaction. This surprisingly long duration of the re-
1axation process is confirmed qualitatively by recent
transmission measurements.

IX. SUMMARY

On the basis of a microscopic nonequilibrium theory of
energy relaxation and dephasing processes of e-h pairs we
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have shown that on an ultrashort time scale of the order
of 100 fs the mutual interaction between pump and test
beam leads to a significant modification of the spectral
hole caused by Pauli blocking. Together with the dom-
inant relaxation processes due to LO-phonon and hole-

hole scattering this effect leads to a spike in transient
reflectivity and transmission spectra. Our theoretical
description of the shape and magnitude of nonlinear
reflectivity spectra agrees very well with experimental re-
sults.
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