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Piezo-Raman measurements and anharmonic parameters in silicon and diamond
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Measurements of the frequency shift of optical phonons in Si with uniaxial stress have been per-
formed by Raman spectroscopy using a laser frequency in the region of transparency. A mean devi-
ation of 25% has been found in the phonon deformation potentials as compared with previous re-
sults obtained with laser frequencies above the absorption edge. The new values are

p /mo = —1.85+0.06, q /coo = —2.31+0.06, and r /coo = —0.71+0.02, and 1.08+0.06 for the
Gruneisen parameter yz. A valence-force-field model with five anharmonic parameters provides a
consistency check between the phonon deformation potentials and the third-order elastic constants
of Si. On the basis of this model, existing uniaxial-stress data for the optical phonons of diamond
and for the pressure dependence of the second-order elastic constants have been reanalyzed and the
corresponding five anharmonic parameters have been determined. In this manner, reliable values
for the third-order elastic constants have been obtained for diamond.

I. INTRODUCTION

The harmonic vibrational properties of diamond-type
semiconductors are rather well known. The Keating
model, ' based on the simple valence-force-field (VFF)
approach developed by Musgrave and Pople for dia-
mond, provides an accurate set of values for the second-
order elastic constants and for the zone-center optical-
phonon frequency. Only two harmonic force constants
are necessary for this purpose. In a later study also based
on the VFF model, Tubino et a/. " fitted the complete
phonon dispersion relations with six spring constants as
fitting parameters. Furthermore, bond-charge models
and shell models, or a combination of these, produce
quite good fits of the phonon dispersion relations.
Ab initio total-energy calculations in the presence of
frozen phonons also predict a good set of harmonic pa-
rameters. '

Despite the agreement between theory and experiment
for the harmonic parameters of Si, large discrepancies ex-
ist in the internal strain parameter g, introduced by
Kleinman, " which represents the change in bond length
under a [111]strain. The experimental values, obtained
by x-ray difFraction for silicon, ' ' range from 0.54 to
0.72, while theories predict values ranging from 0.50 to
0.61. ' ' Cousins et al. ' claim that there is an
enhancement of the strain near the surface of as much as
35%. Taking into account this surface effect, they ob-
tained an experimental value of (=0.54+0.04, in agree-
ment with the theoretical ones. We shall return to this
point in the Discussion (Sec. VI).

For the anharmonic parameters, on the other hand, the
agreement between experimental results and theoretical
estimates is not as good as for the harmonic ones. While
the third-order elastic constants can be fitted reasonably
well with a three-parameter Keating model, ' we have
found that the mode-Gruneisen parameter and the pho-

non deformation potentials (PDP's) of Si obtained
from this model [) G =1.05, r ltoo= —0.41, and

(p —q)/2co&=0. 59; see definitions in Sec. IV] are quite
different from the experimental values. The parameters
(p q)leo—o and rltoo obtained from ab initio calculations
also show considerable deviations from some of the ex-
perimental values. ""

Vanderbilt et al. recently used a generalized Keating
model with 12 parameters to fit, by least-squares, a total
of 22 data corresponding to harmonic and anharmonic
constants. The fitted parameters that describe the depen-
dence of the phonon frequencies on the strain (PDP's),
however, are not in agreement with the experimental
ones.

The PDP values of several semiconductors have been
measured in the past, using laser frequencies either
above or below the gap. ' lt has been concluded from
these studies that there is some relaxation of the stress
near the surface (opposite the increase found by Cousins
et al. ' ), so that the phonon shifts measured in the bulk
are between 10% and 30% larger than those observed
near the surface. This fact is particularly convincing in
the cases of GaAs (Refs. 23 and 24) and InP (Ref. 25),
which have been investigated in both ways, i.e., with laser
frequencies both above and below the gap. The latter
measurements were performed with a cw neodymium-
doped yttrium-aluminum-garnet (Nd- YAG) laser
(h v=1. 165 eV). For photons of this energy, both GaAs
and InP are transparent. A1Sb (Ref. 26) and indium-
hardened GaAs (Ref. 27) have also been investigated.

In this work we present Raman data for the zone-
center phonon frequency coo of Si under uniaxial stress,
taken with a cw Nd- YAG laser. In this case it was neces-
sary to work at liquid-N2 temperature in order to make Si
transparent to this radiation. We have obtained from
this experiment a set of phonon deformation potentials p,
q, and r which are somewhat higher and more accurate
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than those obtained previously. ' We have performed
a fit to all available anharmonic constants related to vi-

brations at the center of the Brillouin zone using a Keat-
ing model which includes two additional VFF anharmon-
ic force constants that were omitted in Keating's original
work. ' First, the two harmonic force constants and the
internal-strain parameter g were obtained from a fit to
the second-order elastic constants and the zone-center
optical-phonon frequency; the value of g established in
this way (=0.533) agrees well with those extracted from
ab initio calculations. Using this set of harmonic force
constants, plus the five anharmonic VFF parameters, we
obtained a satisfactory fit to existing anharmonic data, a
fact which emphasizes the need for incorporating the ad-
ditional two anharmonic force constants introduced here.

In view of the experience gained in the analysis of the
anharmonic parameters of Si, we decided to test the va-

lidity of this model further by reanalyzing data available
for diamond. In this case, however, the only values
known from experiments are those of p, q, and r, and the
pressure derivatives of the second-order elastic constants.
We have found a value of (=0.13 from the fit of the two
harmonic parameters to the zone-center optical-phonon
frequency and to the second-order elastic constants. This
value differs from the one (=0.21) found in the pioneer-
ing work of Martin, but agrees quite well with the
most recent determination by synchrotron radiation
((=0.125). Furthermore, including the two additional
VFF anharmonic parameters in diamond leads, after
fitting, to a complete set of third-order elastic constants
unavailable otherwise.

In Secs. II and III the experimental techniques and the
results from the piezo-Raman data are discussed. In Sec.
IV we present the Keating model with the five anharmon-
ic parameters and explicit expressions for the third-order
elastic constants, the Gruneisen parameter, and the pho-
non deformation potentials. Section V includes numeri-
cal results and the fitting procedure. Discussion and con-
clusions are presented in Sec. VI.

II. RAMAN MEASUREMENTS
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FIG. l. Effect of a uniaxial stress along the [111]direction on

the Raman phonon of Si at 110 K. At 2 GPa the doublet and

singlet components are clearly defined. The Hg line was used

for calibration. The spectra have been displaced for clarity.

III. RESULTS

for singlet-doublet splitting,

he@(&») =2.31+0.08 cm '/GPa;

Figure 1 shows two spectra, at 0 and 2 GPa, taken
from sample c with the polarizer at 45' and no analyzer.
The singlet and doublet components are clearly resolved.
(This was not the case with the previous measurements,
which were performed above the gap and at room tem-
perature. ' ) Most of the present data were taken with
stresses up to —1.2 GPa to avoid possible complications
from nonlinearities.

Figures 2 and 3 show the shift of the phonon frequen-
cies with uniaxial stress applied in either the [001] or
[111] direction, respectively. The solid lines are least-
squares fits to the experimental points, while the dashed
ones represent the calculated shifts due to the hydrostatic
content of the applied stress. The fits yield the following
slopes: For hydrostatic shift,

b,a)H =1.88+0.05 cm '/GPa;

The Raman-scattering measurements were taken at
110 K. At this temperature the indirect gap of Si practi-
cally coincides with the photon energy of the Nd-YAG
laser radiation. A germanium detector and conventional
synchronous detection was used. The samples were
parallelepipeds of 15 X 1.5 X 1.5 mm and 15 X 1.0 X 1.0
mm size and were cut in the directions [100],[010],[001]
(a samples) and [111],[112],[110] (c samples). In the c
samples the stress was applied along the [111]direction.
A third sample (d) oriented along [110],[001],and [110]
was also used for checking the consistency of the data.
The material used was commercial high-purity Si ob-
tained from Wacker Chemitronics (Burghausen, FRG).

The measurements were taken in the right-angle
configuration. A Dove prism was used to ahgn the image
of the beam through the sample with the entrance slit of
the monochromator. A Hg line (h v= 1.098 eV) was used
to ensure the reproducibility of the measurements. Other
experimental details can be found in Ref. 24.
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FIG. 2. Frequency shifts of the singlet and doublet com-
ponents measured with stress along [001). Solid lines are linear
least-squares fits to the experimental points. The dashed line
shows the calculated shift corresponding to the hydrostatic
component.
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spring-constant parameters y, 6, and c. were considered,
and the six third-order elastic constants were expressed in
terms of these parameters. There are, however, two
terms that were not taken into account in the energy ex-
pansion considered by Keating. The corresponding
spring constants are, in principle, of the same order of
magnitude as 6 or c. We have included these two terms
in the energy expansion and represent them by the new
VFF parameters q and 0. The five-parameter model is
then used to fit simultaneously our data and the existing
values of the third-order elastic constants of Si.

The total energy per primitive cell is written, up to
third order in angular and bond deformations, as

FIG. 3. Same as Fig. 2 for stress along [111]. 1 a 2 4
Z= —'- yh„+ —'l' yh, , +„).y h, ,J

for single-doublet splitting,

b,ai(oo, I
——1.16+0.12 cm ' /GPa .

In Table I we compile the Gruneisen parameter yG of the
Raman-active phonon of Si and the three PDP values de-
duced from the above shifts, together with the corre-
sponding values from other experimental and theoretical
determinations. Let us recall that yG= —(p+2q)/6coo
and that p —

q and r represent the single-doublet splitting
under [100] and [111] compression, respectively. For
X~~[110] the analysis shows that the triple degeneracy of
the zone-center phonon is completely removed and the
three new singlet components at frequencies co], co2, and

co3 have their eigenvectors along [110], [001], and [110],
respectively. The right-angle-scattering geometry
with incidence along [001] and detection along [110]al-
lows the observation of all three components with in-
cident (scattered) polarizations along [110] ([001]), [110]
([110]),and [110] ([001]), respectively. Measurements of
the components co&, co2, and co3 produced the slopes 2.50,
2.25, and 0.60 in cm '/GPa, which compare very favor-
ably with those estimated from the POP based on sam-
ples a and c, i.e., 2.80, 2.26, and 0.52, respectively.

IV. THE KEATING MODEL

In the original work of Keating on the theory of third-
order elastic constants ' only three anharmonic VFF

+ —,'5a' g h; + —,'i)a'g h;;h; + —,'Ea g h;, h,

h, ,
= X

I —3
a

X, 'XJ

We have omitted in Eq. (1) the terms in h;;hj~ (coefficient

k„„„ in Ref. 22) since, as shown in Ref. 22, they have little
effect on the fitted data. Physically, these terms imply
"anharmonic crosstalk" between the lengths of contigu-
ous bonds. We feel that the crosstalk should be small, a
fact which is corroborated by the results of Ref. 22 and
the satisfactory fits to anharmonic data obtained below.

This expression fulfills the requirement of translational
and rotational invariance, in the same way as that of
Keating. Only the bonds about one atoms are included in
the first and third terms of Eq. (1), to avoid double count-
ing on the sum over the primitive unit cell. In the
remaining terms, a factor of 2 has been taken into ac-
count in order to include both atoms in the primitive cell
while limiting the sum to only one atom. This procedure
is correct only for the calculation involving the elastic
constants and the zone-center optical-phonon frequen-
cies.

+ —,'Oa' g h„h,,h;, ,
I Cj

where 4a is the crystallographic unit-cell lattice constant
and

TABLE I. Mode-Gruneisen parameter and phonon deformation potentials of Si.

Experiment Theory

VG

p/~,'
q /mo
f' /COo

0.92'
—1.25'
—1.87'
—0.66'

0.91+0.05 0.98+0.06'
—1.49+0.07
—1.97+0.09
—0.61+0.03

1.08+0.07
—1.85+0.06
—2.31+0.06
—0.71+0.02

09'
—1.63'
—1.89'
—0.6'

0.99'
—1.67
—2.13'
—0.97

0.700

0.11g
—2.03g
—2.78'

1.21"
—2.11"
—2.57"
—0.69"

0
'Reference 28, 6328-A laser radiation.

0

Reference 29, 6471-A laser radiation.
'Reference 31, diamond-anvil cell.
Present work.

'Reference 9, ab initio pseudopotential method.
Reference 10, full potential linear muffin-tin-orbitals method (FP-LMTO).
Reference 22, from fitted VFF-like parameters (see discussion, Sec. VI).

"Present work, from fitted VFF parameters.
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Following a procedure similar to that of Keating, ' it is
straightforward to show that the anharmonic elastic con-
stants are given by

c))) =y —5—3q+9c —30,

c~~2 =y 6 3YI+E 38

c,2,
——X+3&—3&—3~—36,

c,44=(1—g) y+(1+() 5—(1—g)(3+()rt

+( I+()(3g—1)e+(5(—1)(g—1)8+c,2(

c&66=(1 g) y (1+()5 (1 g)(3+()g

+ ( I+g)(3 —g)e —(1—g)(3+g)8+ c,2(

e ~56 =(1—g)'y —3(1—g)'(1+ g)(g —8) .

(2)

The internal-strain parameter g and the elastic constants
c,, are related to the harmonic force constants a and P
by 1

a+f3 '

a+ 3P
4a

CX

C12 4a

a
C14 a(a+@)

(3)

where M is the mass of the Si atom. The mode-
Griineisen parameter and the phonon deformation poten-
tials take the following form in our model,

5a —P+4a (3y 5+3rt+s+7—8)
6(a+p)

r 4a[y(1 —g) —(g —8)(3(—1)]
COO a+P
p —

q 4a (5+2s+28)
2coo &+I3

(6)

while the zone-center optical-phonon frequency can be
written as

8
coo= (a+p),

The term equal to 1 on the right-hand side of Eq. (6) is a
geometrical term produced by the bending of bonds and
is independent of anharmonicity; the second term con-
tains the anharmonic parameters. In the case of p —

q of
Si, the two terms have opposite sign. For diamond the
signs are the same (see Table IV below). Note that the
value of r depends rather critically on the internal-strain
parameter g.

V. FITTING PROCEDURE

The values of the VFF parameters a and 13 reported by
Keating and Martin in Refs. 1 and 2 were obtained
through the requirement of best fit to the second-order
elastic constants only. However, as pointed out by Mar-
tin, these values lead to phonon frequencies coo which are
by 5% (15%) different from the experimental ones for Si
(diamond). Since the theory provides the elastic con-
stants and the phonon frequency in terms of a and P, we
believe that more reliable values of a and P can be ob-
tained by fitting the second-order elastic constants and
the phonon frequency simultaneously.

In Table II we present the fitted values of a and P, the
corresponding value of g for silicon and diamond, and the
most reliable experimental data of the latter. Also, for
comparison, we give the values of g which Martin de-
duced by fitting only the elastic constants. The values of
a, P, g which we obtained, together with available experi-
mental values for the second-order elastic constants, were
next used as fixed parameters in the fitting of the anhar-
monic coefficients.

A. Silicon

The third-order elastic constants of Si are known.
They allow us to obtain the five VFF constants used in
the present model from a simultaneous fit of these third-
order elastic constants, of the Gruneisen parameter, and
of the phonon deformation potentials. The inverse of the
squared experimental uncertainties has been used as a
weighting factor in the 1east-squares fit. The resulting
values of the VFF constants are given in Table III, to-
gether with those obtained through the same procedure
with the three-parameter model of Keating, and with the
values obtained from the anharmonic constants of Van-
derbilt et al. (the necessary conversion equations are

TABLE II. Harmonic force constants (in units of 10' dyn/cm) and internal-strain parameter for Si
and diamond.

Si
C

0.49' 0.431' 0.485'
1.068' 1.293'

0.140' 0.134 0.138
0.821' 0.848'

0.533' 0.546 0.56' 0.54' 0.53 0.51~

0.131' 0.21' 0.125
+0.02

'Present work.
Reference 22, see Sec. VI.

'Reference 2, fit to second-order elastic constants only.
Reference 30, synchrotron-radiation measurements.

'Reference 16, x rays.
'Reference 9, ab tni tio pseudopotential.
gReference 10, LMTO.
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TABLE III. Anharmonic force constants (in 10' dyn/cm )

obtained from least-squares fit as explained in the text.
~-,'(c ii

—c iz)

—3.50'
0.45'
0.20'

—0.46'
—0.19'

Si

—3.80
034
0.52

—0.52
0.17b

—3.51'
0 47'

—0.47'

—14.78'
1.40'

—2.27'
—6.54'

1.81'

—16.7
0.95

—4.99

Diamond
C 11 +C I 2 +2c44 )

AP
l= —1 — (c„+e )2+ 2c44+ —'c, ), +2c „q38 2

+ c i4~+2ci«+ —,'c i&3 ),
'Present work.
bReference 22, as deduced from Eq. (9).
'Reference 1.
dReference 33, based on /=0. 21.

given in Sec. VI). Table IV shows the improved values
(obtained from the present fit) for the anharmonic elastic
constants, and the phonon deformation potentials
(p —q)/2coii and rlcoo, together with the experimental
values and uncertainties.

B. Diamond

The complete set of third-order elastic constants of dia-
mond is not known, and therefore the procedure applied
in the case of Si had to be modified. Following the ap-
proach of Grimsditch et al. ,

' but with (=0.13 (instead
of (=0.21), and with our five-parameter model, we were
able to obtain a set of third-order elastic constants from
the simultaneous fits of the three pressure derivatives of
the elastic constants plus the three PDP's (a total of six
experimental data). The expressions of the pressure
derivatives of the second-order elastic constants in terms
of the third-order elastic constants are

Ac44 = —1 — (c44+c,~+2c,6s) .
hP 3B

Table IV includes the values of the third-order elastic
constants obtained in this way. These can then be used to
generate values of the pressure derivatives through Eq.
(7). Such values are also included in Table IV and refiect
the consistency of the whole procedure.

VI. DISCUSSION AND CONCLUSIONS

The Keating model with two harmonic parameters a
and p fits the elastic constants and the zone-center
optical-phonon frequency at the I point very well, as dis-
cussed earlier (also see Table II). However, it does not fit

the phonon frequency of the TA mode at the X or L
point. According to the model, these frequencies depend
only on p. A very good fit to the TA frequency at the X
point is obtained in the Vanderbilt model with six
second-order VFF constants, by loading the latter with a
very large weighting factor. For convenience, we give the
following expressions connecting the harmonic force con-
stants used in Refs. 1 and 2:

QQ 4kff +
3 kgb +8k' (9

pa =4kee .

In order to calculate the elastic constants and the

TABLE IV. Third-order elastic constants (in 10" dyncm '), pressure derivatives of second-order
elastic constants, mode-Gruneisen parameter, and phonon deformation potentials deduced from the
force constants given in Tables II and III. The standard deviations for Si and diamond are 0.0035 and
0.0025, respectively.

C112

C123

C 144

c456

VG

r /coo

(p —q) /2coo
5

2 (c11+c12 ) /AP
6—'(c„—c,2 +2c44 ) /hp
Ac44/hp

—8.16'
—4.46'
—0 79'
—0 14'
—3.44'
—0.76'

1.21'
—0.69'

0.23'

Si

—8.25+0. 1b

—4.51+0.05
—0.64+0. 1

0.12+0.25
—31+0 1

—0.64+0.2
1.08+0.06'

—0.71+0.03'
0.25+0.05'

—73.67'
—21.36'

10.40'
1.86'

—32.92'
0.76'
1.06'

—1.90'
—0.52'

1 45'
7.65'

2.95'

Diamond

1.06+0.08
—1.9+0.2
—0.52+0.08

1.45+0.7'

7.55+0.7'

3.00+0.3'

'Present work, theoretical values.
Reference 32, experimental values.

'Present work, experimental values.
Reference 33, experimental values.

'Reference 34, experimental values.
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zone-center phonon frequencies, however, Pa should be
replaced by an effective constant 4kgg+8k so as to in-

clude the additional VFF parameter k + absent in the

original Keating model. ' The corresponding value of P is
given in Table II. In this manner Keating's model and
the one used in Ref. 22 can be shown to give results for
the harmonic parameters at the zone center.

The internal-strain parameter of silicon obtained here
agrees very well with the theoretical values of either Ref.
22 or that from ab initio calculations. However, most of
the experimental data suggest a larger value of g. Several
reasons appear to be responsible for this discrepancy. It
could be due to the displacement of the electron cloud
and that of the core under stress. X-ray measurements
can only measure the electron density, while VFF models
apply to the cores. Neutron-scattering experiments un-
der stress, sensitive only to the cores, would test the qual-
ity of old x-ray measurements and the validity of the
above conjecture. Recent calculations by Labrot et al.
give two different internal-strain parameters, one for the
core ((=0.54} and one for the shell ((=0.58). The
difference, however, is not sufficient to explain the large
experimental values.

The distribution of strains on the surface and in the
bulk of the material is another point of concern. Cousins
et al. io attribute the large values of g (-0.7) obtained in
most of the experimental work for Si to a strain enhance-
ment near the surface. It is difficult, however, to figure
out how this enhancement may arise. Our piezo-Raman
measuremepts under opaque and transparent conditions
suggest that the opposite is true: smaller stress-induced
phonon shifts are obtained in the former than in the
latter case.

Table III shows the third-order VFF constants of Si
and diamond obtained from our five-anharmonic-
parameter model. It is interesting to realize that the con-
stants y, 5, and c. of Si are in very good agreement with
those derived by Keating. This indicates that the two
new constants introduced here il and 8, do not contribute
much to the third-order elastic constants, a fact which
may explain why they were not considered by Keating.
From the expressions of the third-order elastic constants
[Eq. (2)], we realize that the numerical coefficients of rl
and 8 are always the same, except for those of c&44, furth-
ermore, the fits yield values of q and 8 of the same order
and with opposite sign. These new parameters, however,
contribute strongly to the phonon deformation potentials
p, q, and r, and must be taken into account if a reasonable
fit to them and the elastic constants is desired.

The relationships between our five anharmonic param-
eters and the corresponding ones of Ref. 22 are

ya =2k„„„+6k„„g+k„gg+ —,', k ggg,

5a =2k ggg

ga =4k„,g+ —', k„gg+ —,'kggg,

Ea =4k gg+ 3 kggg

Oa =—', krgg+ 9kggg+4krr'g

The values of y, 6, and c obtained in Ref. 22 for Si are

rather similar to ours, our g is half that of Ref. 22. In the
case of 0, however, the magnitude is the same, but the
sign is the opposite. If we set k„„g=0, the resulting value
of 8 (

—0. 193) is in near coincidence with ours. Howev-
er, k,„.g/a =0.0897X10' dyn/cm is overweighted in
Ref. 22. This large value of k„, g and also its large
coefficients listed in Ref. 22 in the expressions of p, q, and
r, produce large differences between the experimental
values of p, q, and r and the theoretical ones found in Ref.
22 (see Table I). The large value of k„„.s in Ref. 22 origi-
nates from the large weight given to the anomalous
Gruneisen parameter and other deformation potentials of
the TA(X) phonon as compared to those of the zone-
center phonon. We believe this procedure involves an in-
trinsic inconsistency: In order to fit the harmonic
TA(X)-phonon energies and the complete dispersion rela-
tions of the TA modes along (100},four VFF parameters
were introduced in Ref. 22 in addition to those which
correspond to a and P. The anharinonic part of the ener-

gy, however, was restricted to contributions which corre-
spond solely to anharmonicities in a and P. Hence we
have the poor fit of p, q, and r, as a result of the emphasis
(large weight} on fitting the anharmonic properties at the
X point. Our internally consistent approach has been to
fit only anharrnonic properties at the zone center with
anharmonicities in the parameters a and P, which, by
themselves, give an excellent fit to the harmonic proper-
ties at the zone center.

There are still two points concerning the present exper-
irnent that should be commented on. First, the available
experimental values for the complete set of third-order
elastic constants of Si have been measured at room tem-
perature, while the piezo-Raman data were taken at
liquid-N2 temperature. The variation of c; A. with temper-
ature may be significant. Thus a consistent set of exper-
imental data, taken all at low temperatures, would prob-
ably lead to a better fit with the five VFF parameters.
Secondly, as our measurements were carried out at 110
K, there were no traces of indirect-band-gap lumines-
cence at zero stress in the region from 5 to 2000 cm
At stresses over 0.5 GPa, however, strong emission ap-
peared in the region ~700 cm ' below the Nd-YAG ex-
citation line. The peak position, strength, and band
shape of this rather broad luminescence band appeared to
depend critically on the amount of stress applied and the
temperature of the sample. A detailed account of this in-
vestigation is now in preparation.

In conclusion, we have measured the shift of the
Rarnan-active phonon of Si under uniaxial stress with a
Nd-YAG laser. Because of the transparency of the ma-
terial to this radiation, we believe we have obtained a set
of phonon deformation potentials p, q, and ~ representa-
tive of the bulk material. For the analysis of the results,
we have used the anharmonic VFF Keating model with
two additional anharmonic parameters. These two pa-
rameters have been shown to have important contribu-
tions to p, q, and r. In view of the good results obtained
for Si, the model has been used to reanalyze available
data for diamond and to obtain a complete set of third-
order elastic constants unavailable from independent ex-
periments.
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