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%e present a new method for the determination of the electronic structure of random transition-
metal alloys, which combines the simplicity of empirical tight-binding schemes with the accuracy of
the first-principles treatments. Our method uses the first-principles tight-binding linear muSn-tin
orbitals description of the electronic states and the coherent-potential approximation to describe the
effect of disorder. The central result of our theory is the expression for the configurationally aver-

aged Green's-function matrix, which is then used to evaluate various one-electron properties of ran-

dom alloys. The separation of structural and atom-dependent features in our theory allows us to in-

clude properly the effect of different positions, widths, and shapes of the band structures of individu-

al alloy constituents. Our theory includes the charge self-consistency and lattice-relaxation effects
in an approximate, yet accurate way and it represents a simple alternative to the fully self-consistent
treatment.

I. INTRODUCTION

The linear muffin-tin orbitals (LMTO) description of
electron states in band theory introduced a decade ago by
Andersen' has led to development of very encient first-
principles computational schemes based on the
Hohenberg-Kohn density-functional formalism for the
self-consistent determination of the band structure of
solids.

The most noticeable features of the LMTO formalism
are the following: (i) The description of metals, including
the transition metals, as well as semiconductors and insu-
lators on equal footing. (ii) The LMTO basis set is
minimal, i.e., only one s orbital, three p orbitals, five d or-
bitals, etc. , are needed for an accurate description of elec-
tron states in solids. (iii) The LMTO orbital centered at a
given site may be expanded about other sites in terms of
radial functions, spherical harmonics, and structure con-
stants. Within the atomic-sphere approximation (ASA),
according to which the Wigner-Seitz (WS) cells are sub-
stituted by slightly overlapping WS spheres, this leads to
a factorization of the matrix elements of a given operator
into products of structure constants and radial iiitegrals.
(iv) The original, infinite-ranged LMTO basis set can be
transformed exactly into new basis sets, called muffin-
tin-orbital (MTO) representations, with varying degrees
of localization in the real space. (v) The LMTO set is
complete for the muffin-tin (MT) potential used in its
definition, but it can be used also to treat potentials other
than MT ones.

The especially simple, yet very accurate description of
the electronic structure of solids is obtained ' within the
so-called orthogonal MTO representation in the ASA.
Starting from first principles, one may construct the
tight-binding (TB) Hamiltonian, whose hopping integrals
factorize into potential parameters and canonical struc-
ture constants, describing, respectively, the scattering
properties of atoms and the geometry of the lattice. Of
great importance is the existence of a simple scaling rela-
tion connecting the Green's functions (GF) in the orthog-
onal and in any other MTO representation. This scaling

property can be conveniently used if one applies the
LMTO description to the study of such complicated sys-
tems as disordered alloys, both metallic and semiconduc-
tor, ' or solid surfaces and interfaces.

It is the purpose of this paper to discuss in detail the
application of the LMTO formalism to the evaluation of
the electronic structure of disordered binary transition-
metal alloys within the coherent-potential approximation
(CPA) originally due to Soven and Taylor. The resulting
formalism has the simplicity and physical transparency of
empirical TB-CPA schemes, while it retains the accuracy
of the first-principles Korringa-Kohn-Rostoker (KKR)
CPA approach. The separation of structural and atom-
dependent properties allows us to perform the CPA
averaging without limitations inherent to empirical TB-
CPA approaches. In addition, we shall demonstrate how
the flexibility in the choice of sizes of the WS spheres in
random binary alloys makes possible approximate, yet ac-
curate and consistent, treatment of charge self-
consistency and lattice-relaxation effects.

The central result of our paper is the expression for the
configurationally averaged one-electron GF matrix from
which various physical properties of random alloys can
be determined. The paper elaborates in detail and further
generalizes the ideas developed in a recent paper.

The paper is organized as follows. In Sec. II we briefly
review the LMTO method in a form suitable for further
development and in order to establish notation. The cen-
tral part of the paper is Sec. III, in which we give the ex-
pression for the GF matrix configurationally averaged
within the CPA. The explicit expressions for evaluation
of various physical quantities are presented in Sec. IV.
The approximate inclusion of the effects of charge self-
consistency and lattice relaxations is discussed in Sec. V,
while in Sec. VI we present the computational aspects of
the theory. Conclusions and additional comments are
given in the last section.

II. THE TB-LMTO FORMALISM

In this section we briefly review the TB-LMTO formal-
ism in order to introduce notation and formulas neces-
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sary for application of the theory to random alloys. For
further details, we refer the reader to a comprehensive re-
view of the LMTO approach in Ref. 2.

A. MufBn-tin orbitals (MTO) and their representations

The energy-independent muffin-tin orbital yRL (r„)
with collective angular momentum index L = ( Im ) cen-
tered at the lattice site R and corresponding to a general
MTO representation a is

XRL R pRL R X p R'L'( R' R'L', RL KRL~( R )

functions PRI (E) and the elements aRL of the diagonal
matrix a defining the MTO representation a,

RL(E) RL(E)[ RL RL(E)] (3)

The quantities PRI (E) have direct physical meaning: they
are proportional to cotangents of the phase shifts related
to the solid-state potential VR(rR ) in a sphere at R. The
potential functions PRL(E) can be parametrized over a
broad range of energies in terms of potential parameters
describing the positions C„I,the widths A~L, and the
distortions y~l of the "pure" RL bands:

R', L'

0 RL(rR ) —0 RL(PR )+PRI. (PR )oRL
PRL(E) =(E CRI,

—)[~ RL+r RL(E CRL
—)] (4)

The potential parameters are elements of diagonal ma-
trices C, 6, and y and, via P and P, they characterize
the scattering properties of atoms placed at lattice sites.
Using Eqs. (3) and (4), we express the potential function
in the MTO representation a via the potential function of
any other MTO representation, say P, as

+(~RL ) RL, R'L'(~RL') (lb)

where SzL z L ~ are the matrix elements of the structure
constant S in the MTO representation a, and 5 and c
are the so-called potential parameters, which can be, as
well as o, expressed via the potential function PzL evalu-
ated at the energy E,«, and its first P ~L and second
PzL energy derivative at the same energy in the following
manner:

~RL ) RL(EvRL )

RL EvRL RL EvRL [ RL( vRL )]

RL RL EvRL )[ RL(EvRL )]

(2)

Below we often drop indices R and I, and use the matrix
notation for simplicity of writing. For example, the
quantities P~L and S~I ~ L are elements of the diagonal
matrix P and the matrix S, respectively.

The structure constant S and the potential function
P (E), which enter the definition of MTO's, play a cen-
tral role in the LMTO theory. We shall discuss their
properties in some detail. The potential functions
PRL(E) are expressed in terms of conventional potential

Here, IpRL(rR ) =pRL(~R)Y( PR), 'where rR =r —R,
=

~ rR ~, and PR =rR /~R, and YI is the spherical harmon-
ics. The function IpRL(rR ) is the solution of the radial
scalar-relativistic Schrodinger equation for the spherical-
ly averaged one-electron solid-state potential VR (rR )

determined within the density-functional formalism and
calculated at the energy E„RI. Similarly, IpRL(rR ) is the
energy derivative of qzL for the same energy. The ener-

gy E„zLis usually chosen in the middle of the energy in-
terval of interest. The function of cpzz is normalized to
unity in its sphere of the radius sz centered at R:

f SR

yRL(~R )~Rdi-=1. The quantity ORL is the overlap

of yRL and j RL, oRL=(IpRLl j'RL & &n«h«parameter
to be used is pRL

= ( jpRL ~ jRL ), which turns out to be the
small parameter of a linear method. The function
KRL(rR ) is the contribution to the MTO coming from the
interstitial region. The matrix hRI „.I. is determined in
such a way that the wave function [Eq. (la)] is continuous
and differentiable on the sphere boundary at each sphere.
Its explicit form is

RL, RI. ' ( RL EvRI. ) RR'~LL'

RL(E) RL( )[ (+RL PRL ) RL(E)] (5)

The geometry of the lattice sites enters the theory via
the structure constant S which is expressed via the
canonical structure constant S, known analytically as

SRL„L=[S (1—aS ) ']RL„.L. . (6)

The elements SRL R L depend only on R Iw and R'Iw,
where R and R' are the atomic positions, and w is the
average WS radius of a solid. The structure constant S
depends only on the geometrical arrangement of the lat-
tice sites, but not on their occupancy by atoms of varying
type. Here we shall assume an ideal periodic lattice ran-
domly occupied by atoms A and B. Consequently, the
structure constant S is nonrandom. The effect of possi-
ble structural distortions due to the lattice relaxations
will be discussed in Sec. V. The quantities S„LzL

behave like (w/d)'+'+', where d=~R —R'~. For low
orbital indices, 1=0 or 1, S is thus long ranged in the
real space. On the contrary, the elements SzL z I ~ of the
matrix S, behave like exp( —

A,»d/w), with A,
~~

depend-
ing on the choice of the MTO representation a. It has
been found that for close-packed lattices the MTO repre-
sentation P, which is site independent but I dependent
and specified by values

P, =0.3485, fl =0.0530, Pd =0.00107, and I3~ =0

for I )2, (7)

gives the fastest and essentially monotonic decay in the
real space. In practice, S~ vanishes beyond the second-
nearest-neighbor shell for close-packed lattices. Conse-
quently, the MTO's g~L are strongly localized in real
space contrary to the infinitely ranged conventional
MTO's, g&L, with a&L =0.

Similarly to (6), we can express S in terms of S~ as

SRL„.I ~ =IS [1—(a —P)S ] ')RLRL

This form, expressing S via the most localized S~, is fre-
quently used in applications.
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B. Hamiltonian

The scalar-relativistic Schrodinger equation for a solid
is solved by seeking the wave function g (r) as a linear
combination gR LyRL(rR )uRL of the MTO's which form

a basis set of conventional variational principles. The
eigenvectors u&L and eigenenergies F. are found to be a
solution of the eigenvalue problem:

g (HR'L', RL E R'I. ', RL ) RL
R, L

(9a)

IsR+sR —d li'd &0.3, d = IR —R
I

(10)

where d is the distance of neighboring WS spheres of ra-
dii sR and sR . The close-packed (fcc, bcc, or hcp) transi-
tion metals fulfill this condition very well. The fact that
the charge distribution can change in all space together
with the flexibility in the choice of the WS radii of species
in random alloys are important advantages of the ASA to
be exploited in Sec. V. Within the ASA, the last terms in
0 and H vanish. We note that the majority of the ex-
isting LMTO calculations for various solids have been
performed in the ASA. The ASA results for transition
metals and band energies up to 0.5 Ry above the Fermi
energy nearly coincide with those based on the full
LMTO expressions [Eqs. (9)].

The quantities p« turn out to be small parameters '

of the LMTO theory and their neglect still allows us to
perform fairly accurate band-structure calculations (with
an error not exceeding 1% of the bandwidth, i.e., approx-
imately 5 mRy for d bands). We thus obtain, within the
ASA,

0 =(1+h o )(o h +1),
H =h (1+o h )+(1+h o )E (o h +1) .

The overlap oRL R I = (g„LlgR I ~ ) and Hamiltonian

HRL, R 'I ' (+RL [ ~ + v( r )] I yR L ) matrices are evalu-

ated straightforwardly, because involved functions yzL
and jvRL are nonzero only in their own spheres. The re-
sult, ' in matrix notation, is

0 =(1+h o )(o h +1)+h ph +(E"IE '),
(9b)

H =h (1+o h )+(1+h o )E,(o h'+1)

ph ++ (/+ il [—qz+ V~(r)]l/+ i )

Here, the matrix h is defined in (1);o, E„,and p denote
the diagonal matrices with elements oRL [Eq. (2)], E„RI,
and pRI. Finally V'(r)=V(r) —gR VR(rR) is the inter-

stitial, nonspherical part of the solid-state potential and
the last terms in 0 and H, coming from the interstitial
region, are called "combined-correction" terms. '

The solution of the eigenvalue problem, Eqs. (9), can be
significantly simplified in the ASA, which is the central
approximation adopted in this paper. In the MT approx-
imation the interstitial region is poorly treated because
the real potential is not Hat here. The simplest way to get
rid of the interstitial region is the ASA, which consists of
replacing the MT spheres by the WS spheres in all formu-
las. It has been proved that the ASA gives an accurate
description of the electronic structure provided that

An especially simple form is obtained in the site-
dependent MTO representatio~ y, a« =y«, i.e., when
a&L's are given by one of the potential parameters. Then

cgL =CgL, , 6gL =5gL, and opl =0, so that

a 1/2 1/2
HRL, R'L' CRL5RR'5LL'+ARLS jL,R'L'6R'L

OIL, R 'L ' 5RR '5l.l. '

SPLRI. —[S (1 XS ) ]RI.RI.
(12)

C. Green's functions

For random alloys, the proper quantity to be evaluated
is the configurationally averaged one-electron GF. With
the help of this, any physical quantity of interest can be
determined. The GF corresponding to the Hamiltonian
(12) is

)RL, R'L'

~RL [( ( ) ) ]RLR'L'~R'L' (13)

Here, I denotes the unit operator, z is the energy in the
complex energy plane, and P~(z)=(z —C)lb, is the po-
tential function in the MTO representation y [see Eqs. (3)
and (4)]. Using the relation between GF's in different
MTO representations valid in the ASA, we express 6 (z)
in the genera1 MTO representation a as

There is no overlap; hence the MTO representation y is
called the orthogonal representation. Note, that the ei-
genvalue problem (9a) leads to the same spectrum for any
choice of the MTO representation a. The Hamiltonian
(12), specified to the case of the random alloy A„B,„,is
the starting point in the forthcoming development. Its
properties can be summarized as follows: (i) It is first-
principles, with hoppings factorizing into structure con-
stants characterizing the geometry of the lattice and the
potential parameters characterizing the scattering poten-
tials in WS spheres, and obtained from the solutions of
the radial scalar-relativistic Schrodinger equation there.
(ii) It describes the valence states with accuracy compara-
ble to the KKR method or to any other first-principles
approach. (iii) Contrary to the empirical TB Hamiltoni-
ans, it describes properly not only variations in atomic
levels due to alloying, but also the variations in band-
widths and shapes of alloy species just as the KKR-CPA
method does. In addition, the element HgL"RR. L between
the site R occupied, e.g. , by atom A and the site R' occu-
pied by atom B, which is unknown in the empirical TB
method, is also given by (12). It even depends on the oc-
cupation of all other sites than R and R' via the random
quantity y. (iv) The separation of structural and atom-
dependent parts of H~, mentioned above and inherent in
the ASA, allows us to perform the CPA averaging
without any constraints common to other TB-CPA ap-
proaches.
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GRL R L (Z)=XRL(z)5RR 5LL +I RL(z)gRL R L (Z)PR L (Z)

gRL, R L (z) [[P (z} S ]

RL( ) ( VRL aRL )PRL(z)~+RL

i RL(z}=[P—RL(z)]'"

/[5RL+(yRL —aRL)(z —CRL)] .

(14)

The structure constant S, Eq. (6), is generally random in

alloys. There are, however, two important exceptions:
the canonical MTO representation, u&L =0, and the
most-localized MTO representation aRI =pL [Eq. (7)].
These nonrandom MTO representations will play a cen-
tral role in the alloy theory to be developed in this paper.

III. THE COHERENT-POTENTIAL APPROXIMATION

In this section we shall perform the configurational
averaging of the GF of random alloys, (14), within the
CPA. In a binary alloy A„B, , characterized by the
Hamiltonian (12), the site-diagonal potential parameters
XzL, X =C, 6, and y, randomly take on two different
values, XL" with the probability c =x, and XL with the
probability c =1—x. Due to random AzL and y&L, the
hoppings HgL R L, (12), have a complicated off-diagonal
randomness. Consequently, the CPA, which can treat
only the site-diagonal disorder, cannot be applied to G (z)
in the form (13). The remedy is to express G(z) in the

I

form (14) with aRL =—pL, i.e., to go over to the nonran-
dom most-localized MTO representation, independent of
the occupation of sites by atoms [see Eq. (7)]. The struc-
ture constant SRL R.I ~ is then nonrandom, and the ran-
dom quantities P„L(z), A.RL(z), and iM„L(z), which enter
the definition of G(z}, are all site-diagonal quantities.
They are expressed via the potential parameters, and con-
sequently randomly take on two different values Pg'~(z),
Af'~(z), and iM~z'~(z) with probabilities c~, Q = A or B.
We introduce the occupation index rig; qg =1 if an atom
of the type Q is at the site R, and rig =0 otherwise. The
configurational average of GRL R L (z), ( G (z) )RL R L, is

expressed as

})RL,R'L' g ~L ( )( IP )5RR'5LL'
Q

+ y pR ~(z)(g~(z))g)', p~ ~'(z),
QQ'

(15)

(g (z) )@RL
—(rl)gRL R L (z)7Jg ) with Q) Q'= A, B

The site-diagonal term, proportional to l}g, averages
trivially,

y A,@~'2(z)(rJII ) =y ce,~~&( z) . (16)
Q Q

The evaluation of (g~(z) ) ~~ is nontrivial, and the details
are given in the Appendix. The result is

(g (z))@R.L = ' [[PL' (z}—P~(z)](g (z))„LR L [PL' (z) —P~,(z)]+[(PL(z)) Pq(z)]5RR.5LL I
—.sgn(, Q')

Apg(z)Ape. (z)

(17)

Here, (Pg(z) ) =gg c ~Pq~'~(z), b PLR(z) =PLR'"(z)
Pz~ (z), and—sgn(Q, Q') =1 for Q =Q', and sgn(Q, Q')

= —1 for QXQ', while Q, Q'= A or B The mean. ing of
Q or Q is Q=B if Q = A, and Q= A if Q =B, and simi-
larly for Q '. The quantity (g (z))RL

„ I is

or

C l,'(.) =pc~a },'~(z),
Q

e~'~(z) =4~ (z) t I+ [PP~(z) —P (z)]e~ (z) I

X [Pi~' (z) Pi(z)], —

e},'(.) =—' y [[H(z}—SR(k)]-'I„.
k

(19)

(20)

Finally, the quantity SgL ~ (k) is the Bloch transform of
S~l ~ L. Alternatively, the CPA equations can be put
into other forms useful in applications, namely

g c~H ~(z) =0,
Q (19')

Pg ~(z) Pi(z)—
L ~(z) =

1+[Pg ~(z) P~(z)]4RL(z)—

(g (z))RL R L
—[[H(z)—S ]

The coherent-potential function P (z) is, for cubic lat-
tices, a site- and symmetry-diagonal matrix with elements
Pz (z), and it is determined from a set of coupled CPA
equations:

P (z) = ( Pg(z) ) + [PR' "(z)—P (z) ]OR (z)

C ~ ~(z) = [Pg ~(z) nR(z)—]-',
n~(z)=P (z) —[e~(z)]

(19")

P (z}=PP (z)+c "T '™(z),
SPl'(z)

P, imp(

I+aPl'(z)C l,'i"(z) '

AIL'oi(z)= —g[[P~' (z) —S~(k)]1

(21)

The quantity HL'~(z) is easily recognized as the T matrix
for the "potential" PP'~(z) embedded in the effective
medium characterized by Pz (z), while A~L(z) is the
coherent interactor to be discussed in Sec. IV. The CPA
equations can be thus considered as equations for un-
known quantities Pz (z) or A~L(z).

The following remarks are now in order: (i) In the
low-concentration limit, c„~0,we obtain from (19)
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The quantity rL'™(z)is the T matrix corresponding to
the impurity "potential" EPg(z) =Pz~' "(z) P—LP (z) Our
result coincides with that obtained from the LMTO-ASA
Green's-function method for the single impurity. Note,
however, that due to the CPA, the impurity perturbation
is limited to the impurity site in our theory. (ii) The
theory can be formulated also in the MTO representation
a„L=0, which is also nonrandom. In this case, as ex-

plained in Sec. II, the matrix S&1 &.L. is long ranged in

real space, and the evaluation of SLL (k) is complex, re-

quiring the Ewald summation. ' On the contrary, in the
MTO representation p, (7), the matrix SLL.(k) is evalu-

ated straightforwardly using the Slater-Koster tables, "
or, even more directly, the tabulated values of S&L z L

matrix elements. ' (iii) For noncubic lattices, e.g., for the
hexagonal lattice, the related quantities P (z), 4~(z), and
Q~(z), are nondiagonal matrices with respect to indices L

(G(z))RL, R'L' AL(z)5RR 5LL

+ML(z)(g (z))RL, R,L™L(z)

(g (z})RL R L ( [H(z) S ] !RL, R'L' '

(22)

In these equations

and L' (see the Appendix). On the contrary, for cubic fcc
and bcc lattices, these matrices are diagonal with respect
to L and L'. For all lattices, however, these quantities
are diagonal with respect to the site index R in the CPA.
In cubic lattices, out of nine elements Pz (z) only four are
independent, nainely P, (z) (L =s), Pz(z) (L =x,y, z),
P, (z) (L =xy, yx, zx), and P, (z) (L =x —y, 3z —1).

2g g

Using Eqs. (15) and (17), we can put ( G (z) )RL R.L into
another more compact form,

A~(z) = (A~(z) )+[by~(z)]'[(P~(z) ) —&(z)]l[&PP(z)]',

ML(z)= IpL'"(z)[Pp (z) —Pi(z)] IJ~q' (z)—[Pp "(z)—Pi(z)]) IbP~~(z),
(23)

and we have denoted (XL ) = g&c~X~, Xp=A~L'~(z),
P~~'~(z) and EXL =XL"—XL, Xz~= @PL'~(z), Pz~ ~(z). The
Bloch transform of (22) is

( G ( k, z) )LL, =A~L (z)5LL +MLR(z) (g ~( k, z }) LL Mz~ (z ),
(24)

(g (k, z))LL =I[& (z) —S (k)] ')LL

nal in the site and orbital indices, by the relations

A~ (z) = [y (z) —P ]2)~ (z),
MI'(z) =3, ,'"(z)XI,'(z),
H(z) =[z —C, (z)]a~(z),

nR(z)=P (z)A~(z) —[M~(z)]

(25)

Equations (22) or (24), for the configurationally averaged
GF in the site or Bloch representations, are the central
result of our paper. Any one-electron property related to
random alloys can be determined from the
configurationally averaged GF.

To put (22) into a physically more transparent form,
we introduce new quantities C(z), b.(z), and y(z), diago-

I

An important identity,

lynii(z) =a, (z)+[7-,(z) —p, ][z —C, (z)],

immediately follows from (25). Using basically the same
algebra as employed in Ref. 8 to derive the identity (91),
we find that (G(z)) =[zI.—H' (z)] ', where

HRL R L (z)=CL (z)5RR 5LL, +b, L (z)tS [1 3'(z)S ] ')RL R L 6 L (z) . (27)

The energy-dependent translationally invariant e6'ective
Hamiltonian H' (z) represents just the intuitively expect-
ed result of the application of the CPA to the Hamiltoni-
an (12): the random-potential parameters CL, b, L, and

yL are substituted by their coherent-potential counter-
parts: CL (z), the effective atomic levels; hL (z), the
effective band widths; and yL(z}, the effective band dis-
tortions. On the other hand, the common TB-CPA
theories are able to treat correctly only the diagonal dis-
order (different atomic levels). The off-diagonal disorder
(different bandwidths and band shapes) can be treated
within these theories only if one adopts further approxi-
mations which, however, may introduce uncontrollable
errors.

IV. PHYSICAL QUANTITIKS

In this section we will apply the expression for the
configurationally averaged GF, Eqs. (22) or (24}, to evalu-

ate some physically relevant quantities related to random
alloys.

A. The charge density and the density of states

pP«r)=lmP«r)1'~P(E» (28)

where yp(E, r) =pic(E, ~r~ ) YL(r) is the normalized solu-
tion of radial scalar-relativistic Schrodinger equations in
the sphere occupied by atom Q, and pp(E) is the project-
ed local density of states (DOS):

These are the simplest quantities obtained from the
on-site elements of the averaged GF. The projected
charge density related to the orbital symmetry L and to
the atom Q= A, B is
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pP(E) =—P ~~(E)
Im+~z'~(E +i0),

C&~~~(z)=
g &g~(z))gy„, .

1

C

1yL(E)= ——
& G(E+ '0) )RL itL

&G(z))„L~L
= gc~P~~~(z)@L~(z) .

Q

(30)

The total projected DOS is given by

In writing (29) and (30), we have employed (15) and the
fact that A~z(E) is the real function. It holds, e.g., for

[PP (z) —P'(z)]'@~ (z) —[P (z) —
& Pg(z) ) ]eiL" Z =

c" [bPq~(z}]t

P,"(z) ~ (z) @',(z)
a i,'(z) =

c "b,Pi~(z) 1+[PLP "(z)—Pi(z)]@~i(z)

if we employ the CPA equation (19). Using the definition
of Q~z (z), Eq. (19"),we obtain finally

p)(E)=—
P P Q(E)

Im[Pg'~(E) Q~~(E—+iO)] ' . (31)

This surprisingly simple expression allows us also to un-
derstand the physical meaning of the coherent interactor
Q~L(z) introduced in (19"). It describes the effective
energy-dependent coupling of a given site 8 to all other
sites in a random alloy.

The total DOS is

~(E)= g ZL(E) = g g c~+$(E),
L Q L

(32)

g f [pP(E, ~)] pg(E}dE . (34)

and, in terms of it, the Fermi energy EF of a random al-
loy is

f p(E}dE= gc~Z~, (33)
Q

where Z Q is the number of valence electrons correspond-
ing to the alloy component Q.

The electron density n ~(~), r = ~r~, spherically aver-
aged in its own sphere and corresponding to an atom Q is

E
~n(~)= g f p)(E, ~)dE

4m.

In order to perform the charge self-consistent alloy calcu-
lations in the ASA within the density-functional formal-
ism, ' one merely needs the electron densities n~(r }.
One remark is now in order: the functions P ~z ~(E) have
poles at energies ef =Cp —b p/(yp —

pL ). If E =ep, the
expression (29) is singular and it will contribute by spuri-
ous 5 functions to the local DOS. These contributions
are canceled by the site-diagonal term A~L'2(E), Eq. (14),
which was neglected when we derived Eq. (29) because, in
practice, these poles usually lie above the occupied states
for standard choice ' of E,L in the middle of the occu-
pied energy states.

B. The integrated density of states

This quantity, which gives the number of states up to
an energy E, is defined as

1 EN(E)= — ™g f & G(g+iO))RL RL dg
n.X

Im Tr 6 +iO1 E

vrS oo

(35)

The CPA expression for N(E) for a single-band TB mod-
el has been given by Ducastelle, ' while its matrix gen-
eralization was given in Ref. 15. Here, we generalize it
for energy-dependent potentials Pz~'~(z), which appear in

our CPA theory. It holds (the overdot denotes the ener-

gy derivative, and we omit the energy argument to sim-

plify the writing):

g pc 1n[1+(PP ~ 'l~ )4~]= g g—c~[[1+(P~'~ P)+~] '[(Pf ~ ~—)+~+(P ~~ 'P~ )&'~]]-
L Q L Q

= yyc~e~~(P~~ ~I,')= y[&G)„]—y~', ~', .

The third form follows after invoking Eq. (19) and the last form after using (30) and (19"). Employing (20), we verify
the identity

d 1—g Tr In[P (z) —S'(k)]= g ln det((P~(z)5LL —SLiL (k)([
d

k k

=—g Tr['P (z) —S~(k)] 'P~(z)= g P~~(z)4~~(z) .=1
k L
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Using this, we obtain finally

1m X X» detllPL(z)5LL —~gL (k) ~~a+, o
——lm y y chnI1+ [PP g(z) PPL—(z)]@'c(z)I z+ o

1 p
m.X VT I Q

(36)

The integrated DOS enters the formula for the
configurationally averaged ground-state energy of ran-
dom alloys. '

C. The Bloch spectral density and the self-energy

The notion of energy bands ceases to exist in random
alloys due to the loss of the translational symmetry. It is
substituted by the notion of Bloch spectral density
A (k, E). For a perfect solid, A (k, E) is simply a sum of
Dirac 5 functions located at the band energies E,,(k),

as the Hamiltonian (12) exhibits the of-diagonal random-
ness. Alternatively, in the site representation, the self-
energy is not the single-site quantity, but it couples a
given site R to its few nearest neighbors. This should be
contrasted with common TB-CPA theories, where X(z) is
the site-diagonal or k-independent quantity. The
knowledge of XLL (k, z) allows us to understand the finest
details of the influence of disorder on the electronic struc-
ture, as shown in Ref. 17, to which we refer the reader for
further details.

A(k, E)= +5(E —E,(k)) .

In random alloys

(37)
V. APPROXIMATE TREATMENT

OF CHARGE SELF-CONSISTENCY AND
LATTICE-RKLAXATIONS EFFECTS

3 (k, E)= ——I g (G(k, E+'0))1

L
(38)

Here, H"' is the reference Hamiltonian with respect to
which X(z) is defined, e.g. , the virtual-crystal average of
(12). The self-energy X(z) is obtained from (39) as

~RL, R'L'( ) 5RR'5LL' +RL, R'L' I ( (x) ~ ) RL, R I.''
It is expressed via the inverse of the configurationally
averaged GF matrix. Such an inverse can be found in a
closed form for the GF, (22), as we have demonstrated re-
cently. ' The result is

[ ( G (z) ) ]RL 8 L
—[AL(z)] 5RR 5LL

NI (z)(g (z)) R—L, R''1. NL (z),

Ng (z)=[A~i(z)] 'Mg(z),

(g (z))RL R L
—t[P (z) 5 ] IRL R L ~

P~(z)=P (z)+[My(z)] [A~(z)]

(41)

There is thus a striking formal similarity between ( G (z) )
and its inverse. The expression for XRL z I (z) in the site
representation is obtained from (40) and (41), while the
Bloch transform of (40) gives X~L (k, z) in the wave-
vector representation. The self-energy is, generally, non-
diagonal with respect to orbital indices I, and L', even for
cubic lattices, in contrast with the coherent-potential
function Pl (z). The self-energy is naturally k dependent

which can be evaluated straightforwardly using (24). The
Bloch spectral density (38), when compared to its crystal
counterpart (37), gives a valuable information concerning
the shift and broadening of crystal bands E„(k)on alloy-
ing. Such information, and even more detailed informa-
tion, can be obtained from the self-energy operator X(z)
defined in the following manner:

(39)

x V"+(1—x) V = V' '"~ (42a)

Assuming the linear pressure-volume relations with bulk
moduli B~~ for the elements, we have

( VA V.4 )yVA. ( VB VB)yVB gB.g A (42b)

The solution of Eqs. {42) is

Inputs of our theory are the lattice structure and the
potential parameters CP, AP, and yg of species Q = A, B
forming a disordered alloy A„B,„.We have demon-
strated in the last section that our theory allows us to
construct the spherical charge density n ~(~), which is all
we need to perform the charge self-consistent calculations
for random alloys within the ASA. The necessary formu-
las are given in Ref. 13. We only need to substitute the
MT spheres by the corresponding WS spheres and
neglect the contributions from the interstitial space.

The flexibility in the choice of the ASA radii allows us
to include the effects of charge self-consistency and lattice
relaxations approximately, yet accurate without the need
for full self-consistency. Our method represents an adap-
tation of the method proposed by Andersen for the case
of ordered binary alloys to the case of random alloys.

The starting points are the potential parameters and
their volume derivatives' for elementary metals. The
idea is to choose the atomic-sphere radii of alloy species
in such a way that spheres are approximately charge neu-
tral. The constraints are that spheres fill in all space and
that the validity of the ASA, Eq. (10), is preserved. The
simplest choice is to use generally different equilibrium
WS radii of pure species. As we shall see later, this is the
proper choice when Vegard's law is satisfied. The gen-
eralization to the case, when Vegard's law is not satisfied,
which is the case if the binding in the alloy is different
from that in pure crystals, is also possible. If V~ and Vo~

(Q = A, B) are the actual and equilibrium WS-sphere
volumes, the preservation of the alloy volume V""" re-
quires
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0 0 0 0
BBValloy+(1 —„)V(BA B—B)

x Vo Bo +(1 x—) VOB0

B A Valloy VA(B A BB )0 0 0 0

xV ABB+(1 x)VBB A

(43)

If Vegard's law is satisfied, V"""=xVo +(1—x ) Vo, the
solution is trivial, Vg= Vog (Q = A, B), as mentioned
above. New ASA radii sg=(3VQ/4m)'~', and equilibri-
um radii sf = (3 Vog /4m )' are used to determine new po-
tential parameters as

s
CL C0L + ln

d lns so&

sg
1'P=roL+

so~

S g d ]nb L /d lns &

op=kg,
$0

(44)

Here, the subscript 0 denotes equilibrium quantities. The
volume derivatives dCLQ/d lns g,

d yP /d lns g, and
d lnb, p/d lns g are obtained from the self-consistent
LMTO-ASA calculations at different sphere radii, and
their values for s~=so are used in the definition of the
potential parameters. ' Thus, after extrapolation of po-
tential parameters to new radii, we must take into
account that the WS radius of the alloy,
w'"'y=(3V""y/4m)', is different from sg's. To correct
this, we should multiply hp and yp by (sg/w""") '+',
and leave CL~ unchanged. The different sizes of atoms
cause some structural deformations in random alloys, so
that the structure constant SzL z L is slightly changed
and dependent on the occupation of sites R and R' by
atoms Q and Q', respectively. Such deformations are
missing in ordered binary alloys. To account for them
approximately, we set

Sog)' So [ alloy/( Q g)1/2]l+l'+ l
7 a

(45)

HSL JFL
—CL 5RR'~LL'frigg'+(~P ) SkL, R'L' (~P' )

SgL gL =[S +S yS + }gPR L

(46)

It can be verified that factors [(sgsg )' /w'""]'+'+'
coming from (AP)'~ (b,P )'~, and

where SzL„.L
~ is the structure constant of a perfect, unre-

laxed lattice. In deriving (45), we have assumed the
dependence of SzL z L

~ on the relative change of distance
dgg = ~R

—R' between the sites R and R' occupied by
atoms Q and Q', in the form dgg =do[(sg+sg )/2w"""].
Here do is the corresponding average distance between
the points R and R ' in an unrelaxed lattice with the aver-
aged WS radius m'"'". For values of s~ typical for transi-
tion metals, the quantity (sg+sg )/2w""" is close to
(sgsg )' /w""", from which follows Eq. (45). Also, we
assume that (45) holds locally; this means that it is not
influenced by the occupation of sites other than R and
R '. The alloy Hamiltonian now becomes

[w""y/(sgsg')'~ ]'+'+', coming from SRLgg L, cancel
each other. We thus arrive at a surprisingly simple re-
sult: we can use the unrelaxed structure constant S&L z L

0

and the potential parameters as given by (44). If Vegard's
law is valid, the alloy parameters are equal to the param-
eters of pure crystals evaluated at their equilibrium lat-
tice constants. Note, however, that this simple result is a
consequence of a rather sophisticated interplay between
the charge self-consistency and lattice relaxations due to
different sizes of atoms forming the random alloy. We
have essentially employed the fact that the radii of WS
spheres of atomic species can be different within the
ASA.

On the contrary, in the KKR-CPA one chooses the
common radii r""" of touching MT spheres,
r'""=xr "+(1 x)r—, in a random binary alloy
A„B

& „,where r " and r are MT radii of atoms A and
8. The interstitial space, which is about one-third of the
alloy volume for close-packed lattices, is thus excluded
from self-consistency. The use of common radii even for
atoms with very different sizes (e.g. , for Cu and Pd) thus
introduces artificially some sort of the charge transfer,
which must be treated self-consistently. The greater Pd
atom then becomes overscreened within a small MT with
the radius r""",especially for a low concentration of Pd
atoms, when r""~=r "&r . This overscreening is due
to a limited space where the self-consistency is per-
formed. The impurity Pd potential becomes more attrac-
tive and shifts the d states of Pd downwards. ' This in-
consistency can be relaxed either by a proper treatment
of the charge transfer outside the impurity MT sphere by
performing self-consistent calculations for a cluster con-
sisting of a central Pd sphere surrounded by Cu spheres,
or, by enlarging the radius of Pd spheres as in our case.
The results are similar in both cases, ' as well as the
ability to include approximately the effect of lattice relax-
ations. The main advantage of our approach in compar-
ison with that adopted in Ref. 18 is that it can be general-
ized also to the case of concentrated random alloys.

The experience with ordered binary alloys as well as
with numerous applications to random binary al-
loys ' using the method outlined above confirms its
accuracy. The success of our approximate treatment is
due to the fact that the internal energy zeroes of the near-
ly neutral ASA spheres line up, which should be contrast-
ed with the mismatch of the MT zeros of constituents in
the KKR-CPA method. This allows us to relate the po-
tential functions of constituents on the energy scale with
respect to a common energy zero without performing
self-consistent calculations. Also the trimodal (A- A,
A B, and B B) dis-tribution o-f interatomic distances,
which is a consequence of our choice of different sizes of
ASA spheres, is consistent with experiment. Our ap-
proximate method thus gives a simple, yet consistent and
accurate, treatment of the combined effect of charge self-
consistency and lattice relaxations in random transition-
metal alloys.

VI. COMPUTATIONAL ASPECTS

In this section we present the results of numerical stud-
ies on a number of transition-metal alloys, using approxi-
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mate treatment of the charge self-consistency and lattice
relaxations described in the previous section.

0. 10

A. Computational details

The screened fcc and bcc structure constants SLI (k),
which enter the CPA equations, have been obtained by a
Bloch transform from the tabulated values of the real-
space screened structure constant. ' Only the first, and
the first- and second-nearest neighbors of SzL z.L are
needed for accurate band structures of fcc and bcc transi-
tion metals, respectively (see Figs. 1 and 2). The k in-

tegration necessary to evaluate 4~L (z) [Eq. (20)] has been
performed for a regular network of k points in the irre-
ducible wedge of the Brillouin zone (BZ). Division of the
I -X edge into 14 equal parts for the fcc lattice, and the
I"-H edge into 16 parts for the bcc lattice, representing
approximately 250 k points in the irreducible BZ in both
cases, has been used. However, the calculations using ap-
proximately 100 k points [the I —X ( I —H) edges divided
into 10 (12) equal parts] yielded essentially the same re-
sults. The integration method employed takes advantage
of using energy variables with finite imaginary parts,
thereby smoothing out the integrand and speeding up the
iteration process. The desired quantities are found by the
numerical analytical continuation back to the real axis '
in the last step of the numerical calculations. The step in
energy and its imaginary part were chosen to be 0.01 Ry.
The CPA equations (19) or (19")converged in every case.
In practical calculations, Eqs. (19") for unknown Q~(z),
p=s, p, t2g, and e, have been preferred. Below, we
present results of the full CPA solution, but nearly the
same results ' ' are obtained for a simplified case,
when only A~f and Q~ are calculated from the corre-

2g

sponding CPA equations, but the approximation
Q~(z)=xQ&~'"(z)+(1 —x)Q~' (z) is employed for p=s
and p. Here, Q~'~(z), Q = A or 8, are given by (19")with
P„(z) substituted by its "virtual-crystal" value
xP~ "(z)+(1 x)P~@ (z). T—he simplicity of computer
codes makes it possible to run the CPA program easily
even on personal computers.
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FIG. 1. The band structure of fcc copper along the
I -X-W-L-I line in the Brillouin zone. The horizontal line
indicates the position of the Fermi level E&.

0.20

transition-metal alloys Ag„Pd, , Cu Pd, „and
Ti„Fe& „,as well as of the Bloch spectral densities for
selected alloy concentrations. The reasons for this choice
are the following. (i) The (Ag, Pd) system represents an
alloy with dominating diagonal or level disorder, weak
off-diagonal disorder, and small mismatch in atomic sizes
of constituents, as they come from the same row of the
Periodic Table. (ii) The (Cu, Pd) system is a typical non-
isocoric alloy of elements belonging to different columns
of the Periodic Table; in this system the off-diagonal dis-
order and the charge self-consistency play an important
role. In addition, there is a sizable difference in lattice
constants of pure constituents. (iii) The (Ti,Fe) system is

B. Band structures

In Figs. 1 and 2, we present the band structures of two
typical transition metals, namely fcc copper and
paramagnetic bcc iron, to give the reader a feeling of the
accuracy of the TB-LMTO method. The bands were ob-
tained from the solution of the eigenvalue equation (9a) in
the orthogonal MTO representation y. The valence
bands and the conduction bands not very far from the
Fermi energy agree nicely with the textbook ones.
They were obtained using the tabulated values of poten-
tial parameters for equilibrium lattice constants. ' The
corresponding densities of states are given in Figs. 5 and
7, and they also agree well with the standard ones.
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C. Specific alloy systems

Here we present the result of calculations for total and
component densities of states of random substitutional

FIG. 2. The band structure of paramagnetic bcc iron along
the I -H —1V—P —I line in the Brillouin zone. The horizontal
line indicates the position of the Fermi level EF.
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a bcc random alloy with very different sizes of atomic
constituents and strong diagonal disorder, exhibiting a
pronounced tendency to form an ordered CsC1 structure
for the Ti~oFe~o composition. (iv) For all systems studied,
the theoretical results based on the self-consistent-field
(SCF) KKR-CPA method as well as a number of experi-
mental results are available, thus making a direct com-
parison possible.

1. fcc Ag, Pd, random alloy

The results for this alloy are presented in Figs. 3 and 4
for the total, Eq. (32), as well as for the Ag and Pd com-
ponent densities of states, Eq. (31), and for the Bloch
spectral densities (38), respectively. For the Ag-rich alloy
there is a clearly pronounced impurity peak due to Pd
atoms, which reflects itself also in a highly nonLorentzian
behavior of the spectral density peaks. Note that the
disorder-induced part of the spectra does not move with
the change on the k vector, contrary to weakly damped
s-band peaks below and above the region of d states. This
justifies the approximate solution of the CPA equations
for the s and p states mentioned in Sec. VI A and adopted
in previous papers, Refs. 4 and 20, where also coarse
mesh of k points in the irreducible wedge of the Brillouin
zone was used. The comparison shows no significant de-

N
W
M

N

R

Cl

Agy)Pdga

-0.0 -0.6 -0. I -0.2 0.0
ENERGY (Ry)

AgaPcf1-a

FIG. 4. The spectral densities for fcc Ag75Pd» random al-
loys. The points in the Brillouin zone are as follows: point X,
k = (1,0,0) (top line); k = ( —,', 0,0); point I, k = (0,0,0);
k = ( 4, —,', 4 ); and point L, k = ( -,', —,', —,

'
) (bottom line). The short

vertical lines indicate the position of the Fermi level.

x=1.o

I duo 5

viations from the present full CPA treatment. We note
overall quantitative agreement of our results with the
SCF KKR-CPA results of Ref. 28. On the other hand,
the non-self-consistent KKR-CPA method overesti-
mates the splitting of the Ag- and Pd-related d reso-
nances and it gives quantitatively incorrect results, as dis-
cussed in Ref. 28. The corresponding empirical TB-CPA
results agree reasonably with our results and those of
Ref. 28 because the dominating level disorder is properly
described, and the shapes of the densities of states of con-
stituents are similar and the relative position of the Ag
and Pd bands on the energy scale determined by align-
ing crystal Fermi levels works well in this particular case.

2. fcc Cu„Pd, „random alloy

-o.a -o.s -o. ~ -o.z o.o

ENERG Y (Ry)

x=o.o

FIG. 3. The total (solid line) and the local (not
concentration-weighted) densities of states on Ag (long-dashed
line) and on Pd (short-dashed line) atoms in fcc Ag Pd, ran-
dom alloys. The concentrations x are assigned to corresponding
curves. The vertical lines indicates the position of the Fermi
level.

The results for this alloy are presented in Figs. 5 and 6
in a form similar to that for the (Ag, Pd) system. Con-
trary to the previous case we observe a common-band be-
havior for all alloy concentrations. The overall effects of
disorder, which is predominantly an off-diagona1 one, is
weaker than in the (Ag, Pd) system. This can be clearly
seen on spectral densities. Let us note that the effect of
disorder is stronger at the BZ boundaries than in the BZ
center. Overall agreement of our results with those of the
SCF KKR-CPA ones is again very good, but there are
still some important differences to be noted. Our Pd den-
sity of states for a Cu75Pd25 alloy is narrower by about
0.75 eV, and the low-energy peak approximately at —0.5
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x=1.0

x=Q.75

xM.5

Ry is much less intensive and its center of gravity is shift-
ed upwards. This is in accordance both with experi-
ment ' and the sophisticated single-impurity calculations
of Ref. 18, and the reason for this was discussed in Sec.
V. On the other hand, the agreement of the empirical
TB-CPA approach in this case is much worse than for
the (Ag, Pd) alloy. It particularly concerns the details of
the densities of states and spectral densities. This is due
to the inability of the empirical TB-CPA method to treat
properly the off-diagonal disorder and to determine the
relative positions of the alloy constituents on the energy
scale without empirical adjustment. It is important to
note that also the non-self-consistent KKR-CPA
method fails to give correct results without empirical
adjustment of the relative positions of the d-phase shifts
of Cu and Pd. No such adjustment is needed in our ap-
proach, as was discussed in Sec. V.

X

A

-0.0 -0.6 -0. I -0.2 0.0

ENERGY(a~~

FIG. 5. The same as in Fig. 3, but for fcc Cu, Pd, , random
alloys. The local densities of states on Cu and Pd atoms are
given by long- and short-dashed lines, respectively.

3. bc' Ti Fe& „random alloy

The results for this alloy are presented in Figs. 7 and 8
in the form similar to previous cases. This alloy exhibits
strong diagonal disorder, non-negligible off-diagonal dis-
order, and the constituent atoms have very different sizes.
This indicates a necessity for, at least an approximate,
treatment of the lattice-relaxation effects, as explained in
Sec. V. The bcc disordered phase exists for Ti-rich alloys
(x ~0.77), and for x =0.5 the ordered CsCl phase is
known to exist and to be very stable. We have calculated

Cu7sPd2s
Ts&Fey
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M
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A k=I xM.8
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ENERGY (Ry)
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x=1.o

FIG. 6. The same as Fig. 6, but for fcc Cu75Pd» random al-

loys.

FIG. 7. The same as in Fig. 3, but for bcc Ti„Fe, random
alloys. The local densities of states on Ti and Fe atoms are
given by short- and long-dashed lines, respectively.
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FIG. 8. The spectral densities for bcc Ti,OFe,o random alloys.
The points in the Brillouin zone are as follows: point P,
k=( —,', —,', —,

'
) (top line); k=( 4, 4, 4 ); point I, k=(0,0,0);

k=( —,', 0,0); and point H, k=(1,0,0) (bottom line). The short
vertical lines indicate the position of the Fermi level alloy.

also the density of states and the spectral densities for the
hypothetical disordered bcc phase of Ti5oFe~o. A similar
study was done in Ref. 33, where comparison of the SCF
KKR-CPA results for the disordered bcc phase of
Ti~oFe~o with the self-consistent LMTO results for its or-
dered CsC1 phase was made. Such comparisons allows us
to explain the order-disorder phenomena in the alloy sys-
tem and the stability of the ordered phase. This point
was discussed in detail in Ref. 33 and it need not be re-
peated here. Instead, we compare our densities of states
and the spectral densities for disordered bcc-based
Ti50Fe5O alloy with the results of SCF KKR-CPA calcula-
tions. We have assumed the lattice constant of the
disordered phase according to Vegard's law, which is
about 3% greater than the lattice constant of the ordered
CsC1 phase. It seems to be a reasonable choice due to the
disorder and the size mismatch of Ti and Fe atoms. %e
note again very good overall agreement with the results
of Ref. 33, especially concerning the disappearance of the
pseudogap at EF present in the ordered phase. The fact
that the minima and maxima in the Ti and Fe densities of
states do not follow each other and the non-Lorentzian
behavior of the spectral densities, clearly show, again in
agreement with Ref. 33, that the strong disorder is
present in this alloy. On the other hand, our Ti density
of states (larger atom) has a center of gravity shifted up-

wards, and the local maximum at = —0.3 Ry is missing
in our calculations in comparison with the SCF KKR-
CPA ones. This situation is quite similar to that found
for Pd atoms in the Cu7~Pd25 alloy, and it is thus reason-
able to assume that it has the same origin (see Sec. V).
We have found a similar effect also in the Au density of
states in Cu75Au&~ random alloys, and the detailed
analysis of this interesting phenomenon and its conse-
quences for the experimental results will be discussed in a
separate paper.

The results presented in this section demonstrate the
ability of the present approach to describe the electronic
structure of random transition-metal alloys with accura-
cy comparable to that of the SCF KKR-CPA method.
Its first-principles character and the possibility to treat
approximately, yet consistently, the charge self-
consistency and lattice-relaxation effects are important
advantages in comparison with other TB-CPA ap-
proaches.

VII. DISCUSSION AND CONCLUSIONS

In the last few years the KKR-CPA method, particu-
larly its charge self-consistent version, ' supplanted cal-
culationally and interpretationally simpler TB-CPA ap-
proaches. Main objections against the TB-CPA method
had been summarized as follows. (i) It is a semiempirical,
rather than a first-principles theory which suffers from
ambiguities in determination of the Slater-Koster param-
eters of the alloy. (ii) It is inadequate to treat the off-

diagonal randomness which frequently occurs in
transition-metal alloys. (iii) The charge self-consistent
solution is impossible due to the lack of reliable wave
functions.

Recently, there were some attempts to weaken at least
some of the above limitations of the TB-CPA theories.
The highly accurate Slater-Koster fits to first-principles
band structures of constituents, superior to earlier sets of
TB parameters, were used in the TB-CPA method of Ref.
30. However, only the diagonal randomness is included
properly, while the off-diagonal disorder is treated ap-
proximately, within the virtual-crystal approximation.
Also, the element H~z z I of the alloy Hamiltonian be-
tween the sites RAR' occupied by inequal atoms is un-
certain and it has to be guessed in some way. The effect
of of-diagonal disorder in the d states was included prop-
erly within the universal TB parametrization scheme of
Harrison, employing the multiplicative nature of hopping
integrals. However, the quality of the description of
band structures of transition metals is not sufficient in
this scheme when compared to the KKR or LMTO
methods and the approach still remains an empirical one.
The first-principles LCAO-CPA method, based on the
density-functional approach, has been developed recent-
ly. ' This method provides, in addition, a reliable wave
function that can be used eventually for the charge self-
consistent alloy calculations. The formal difference from
the current TB-CPA methods, like that of Ref. 30, con-
sists of the explicit appearance of the overlap matrix in
the CPA equations. A special linear combination of
atomic orbitals (LCAO) basis, optimally localized in
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space, allows us to reduce the o6'-site disorder in the
Hamiltonian and overlap matrices to some extent, but it
still must be treated approximately as in Ref. 30.

The above approaches can be now contrasted with our
new TB LMTO-CPA method, which preserves the com-
putational and interpretational simplicity of the empirical
TB-CPA schemes, but offers, in addition, the following
novel and attractive features: (i) It is a first-principles
method, based on the density-functional formalism and it
describes the electronic structure of metals with accuracy
comparable to that obtained from other first-principles
approaches. (ii) It treats the diagonal as well as off-

diagonal and hybridizational disorders on equal footing
within the CPA just as the KKR-CPA method does. (iii)
It provides the explicit expression for the element

Hai z,i. of the alloy Hamiltonian. (iv) It allows for an

approximate, yet accurate treatment of combined effects
of the charge self-consistency and lattice relaxations. (v)
It provides the reliable wave functions, the TB-LMTO's,
which can be used, e.g. , for the charge self-consistent cal-
culations or the evaluation of the optical transition-
matrix elements needed for the calculation of the dielec-
tric function ez(co) or the photoemission spectra. (vi) The
simplicity of the TB LMTO-CPA scheme allows a
straightforward application to various physical effects re-
lated to random transition-metal alloys, including the
transport properties and surface phenomena.

APPENDIX

We shall derive the expressions for (g~(z) ) gg & z.
= ( gg ger R i. (z)qg ). From the definitions

Pg~(z)= yr/gPP~(z), yi})=1, (A 1)
Q Q

we obtain

Pg' (z) —Pgi(z)
aPi'(z)

P~~ "(z) P—~i (z)
(A2)

where APP(z)=Pg "(z) PP —(z). The next step is to
eliminate the random quantity Pgz(z), employing the
definition of g~(z) [Eq. (14)] and (g~(z)) [Eq. (18)]. We
obtain, in the matrix form,

P~(z) =+(z)+ [g~(z)] ' [(g~—(z) ) ] (A3)

X[EPg(z)b,P~ (z)]

We shall further employ the matrix identities

(P~(z)g~(z) ) =~(z)(g~(z) ),
(gp(z)P~(z) ) = (g~(z) )&(z),
(P~(z)g~(z)PP(z) ) =~(z)(g~(z) )~(z)

+(P~(z)) —P (z),

(A4)

(A5)

which can be verified by a direct substitution of (A3) into
the left-hand sides of Eqs. (A5). Taking the (RL,R'L')
elements of matrix equations (A5) and using the fact that
P (z) is the matrix diagonal with respect to the site index
but, generally, nondiagonal with respect to the orbital in-
dices L and L', we rewrite (A4) in the form

Let us evaluate, e.g. , the quantity (g (z) )„"r"~.i . Using
(A2), we have

(g (z))ar a.c ([P—P' (z) Pgc(z—)]ggc a r. (z)

X [PP (z ) Pg~ (z—}] )

1
(g~( )),","„,= gg [[Pg'( )5„—P,', -( )]

APE(z)AP~~, (z) i. ~ i. ~

X (g (z) )ai-a r -[Pi ~ (z)5r ~ i. Pq -i. (z)]+[(—Pc(z))5LL' ALL (z)]5RR'l}

(A6)

The expression (A6) is simplified for cubic lattices, where due to their symmetry the coherent-potential function 'P (z) is
diagonal with respect to the orbital indices L and L'. Then

1
(g (z) )Rigj. ii , ii [ [Pz (z) Pg(z)](g (z) )gi. R j [P—i (z) —Pg (z)]+ [ (Pg(z) ) Pg(z))5ii 5sg )—

EPP(z}b~g (z)

(A7)
The results for remaining elements (g~(z) ) z~~z z,z, , Q, Q' = A or B, are obtained by changing corresponding indices in

(A6) or (A7), and taking care of signs in Eqs. (A2). Consequently, the result given by Eq. (17) is obtained.
The determination of the coherent-potential matrix Pzi, {z)by the configurational averaging of Eq. (14), is obtained in

a standard manner, ' employing the fact that P~(z) is the random, but site-diagonal, matrix and S~ is a nonrandom
matrix. We obtain, within the CPA,

c "8,",(z)+c'8;,(z) =O,

vq~~(z)=([P~'~(z) —P (z)]( 1+4~(z)[P~'~(z) —P (z)]] ')~i ~ i. , Q= A, B (A8)

@~ir. (z)= X [[~(z) ~ (k)l 'l~c, ii c
k
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Here, St L.(k) is the Bloch transform of SgL tt t, and P ' (z) is the site- and symmetry diagonal potential-function ma-
trix. Let us remark that the quantities Pz L (z), ALL (z },and rL'L (z} appearing in (A8) are, due to the single-site approxi-
mation used here, independent of the site-index R. The quantities P and 4~ are even translationally invariant, and v '~
depends on the type Q of atoms at a given site. For cubic lattices, P (z) and 4~(z), and hence also v '~(z), are all diago-
nal matrices with respect to indices L and L'.
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