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Anharmonic damping of phonon modes in the fcc metals
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For the fcc metals Cu, Ag, Au, and Al, a theoretical analysis has been made of the one-phonon

linewidth due to cubic anharmonic interactions. Third-order central and angular force constants

have been obtained by using the symmetry properties of the lattice to relate the force constants with

the experimental third-order elastic moduli. The convergence of the value of the nearest-neighbor

third-order force constant has been studied as a function of the range of the cubic interactions. We

have found that for metals for which the third-order Cauchy relations are violated it is necessary to
introduce cubic angular forces to obtain a convergent value of the nearest-neighbor force constant.
For Al and Cu the evaluated linewidths are compared with experimental data.

I. INTRODUCTION

The effects of anharmonic interactions among the nor-
mal modes of vibration of crystals have been studied ex-
perimentally starting from the nineteen sixties, by using
the techniques of coherent inelastic scattering of slow
neutrons. '

Particular attention has been paid to one-phonon
scattering processes from which one can determine the
linewidth, which shows up experimentally in the
broadening of the peaks in the cross section. In addition
to the broadening, there is a shift in the center of the
peak. Both features are temperature dependent. The
theory of these phenomena was worked out in the same
period by Van Hove, Glauber, and Maradudin and
Fein. However, refined calculations, which involve dou-
ble sums in the Brillouin zone, were not possible because
of the lack of suitable computing facilities, which are now
available. In this paper we present calculations of the
linewidth associated with one-phonon processes, which
are the dominant contributions in the scattering experi-
ments. We will consider fcc metals, in particular, the no-
ble metals and aluminum. To determine the linewidth,
one has to know the harmonic phonon frequencies and
polarization vectors. For the simple metals the lattice-
dynarnical problem can be conveniently solved by using a
pseudopotential approach. The phonon frequencies ob-
tained with this method reproduce the experimental
ones to within a few percent. However, for the noble
metals, the presence of the sp-d hybridization makes the
construction of a pseudopotential less accurate and the
theoretical phonon frequencies do not reproduce the ex-
perimental values with satisfactory precision. For this
reason in the present paper we prefer to use a force-
constant parametrization scheme to solve the dynamical
problem with the same degree of accuracy for both noble
and simple metals. ' Another advantage of this method
is that one can perform calculations of the linewidth for

both bulk phonons and surface phonons. The latter pos-
sibility is of current interest in connection with the rapid
growth of surface science. With atom-surface scattering
it is now possible' to perform such measurements (for a
wide range of temperatures) with an accuracy of 0.2 —0.3
meV. We will treat the surface problem in a separate pa-
per.

In our approach we will retain only terms up to cubic
in the crystal Hamitonian, which has proven to be a good
approximation up to room temperature in the range of
the available experimental data for Cu (Ref. 11) and Al. '

The harmonic part of the potential includes central in-
teractions up to sixth neighbors, with both the first and
second derivatives of the potential for each neighbor, and
angular interactions involving triplets of nearest neigh-
bors. The range used for the central interactions and the
determination of the parameters is described in Sec. II.
The anharmonic part of our model contains central in-
teractions up to third neighbors and angular interactions
involving triplets of nearest neighbors. The determina-
tion of the cubic force constants is carried out by expand-
ing the total energy of the crystal both in terms of homo-
geneous deformations, as given by the elastic continuum
approach, ' and in terms of the normal coordinates of the
lattice vibrational energy as discussed in Sec. III. The
two expansions' give relationships between the experi-
mentally known third-order elastic moduli (TOE) and the
unknown third-order force constants. In Sec. IV we con-
sider models with different ranges of cubic central in-
teractions in order to study the variation of the value of
the nearest-neighbor force constant as a function of the
range of the central interactions. A realistic value for
this quantity is essential because the calculated linewidth
depends critically on the value of this force constant. In
Sec. V numerical results for the linewidth are presented
and discussed in connection with the available experi-
mental data. The conclusions are drawn in Sec. VI.
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II. HARMONIC AND ANHARMONIC POTENTIALS

The harmonic part of the potential is based on the
force-constant pararnetrization scheme developed ear-
lier. ' In this model are included central forces and
nearest-neighbor three-body angular forces to avoid the
fulfillment of the second-order Cauchy relations (SOCR).
The force constants are determined through a least-
squares procedure by using the experimentally observed
phonon frequencies along the principal symmetry direc-
tions and the elastic moduli. With this procedure the
range of the central interaction, for a given element, is

chosen as the one that gives the minimum y between the
experimental and the theoretical dispersion relations. In
the case of the noble metals we take central interactions
up to fourth nearest neighbors, ' while for Al, in order to
account for the large Friedel oscillations of the potential,
the range of the interaction was extended up to sixth-
neighbor shells. ' In this way the experimental phonon
frequencies for all the noble metals and Al are repro-
duced to within 5%o. The values of the force constants
are given in Ref. 15.

The force constants are defined as follows. The first-
order tangential force constants a, are defined by

r r=r,2

The second-order nearest-neighbor angular force con-
stant 5, is defined by

B2])]]e(cos8,jk )

3a B(cos8;,k ) e„„=e',,„
(3)

where Pe is the angular part of the potential, a is the lat-
tice spacing, and 8;Jk is the angle formed by the vectors
R(i) —R(j) and R(i) —R(k), where R(i) is the equilibri-
um position vector of the ith atom with respect to the
reference atom. In the case of nearest neighbors the
atoms i,j,k are located at the corners of an equilateral tri-
angle. These force constants are determined by the previ-
ously outlined procedure and are reported in Table I.

The harmonic potential that we are using can be easily
generalized to include cubic anharmonic terms. In this
case we can define the third-order central force constants
by

5/3

()r r =r
I

(4)

and the third-order nearest-neighbor angular force con-
stant ~& by

l ~Pe
3a B(cose, k

)' ej„=e'„„

l a(()(r)
C

r ~r r=r,

where r, is the equilibrium distance of the ith atom with
respect to the reference atom and (() is the central two-
body potential. The second-order radial force constants
P; are defined by

(p, -a, )/a
(p, —a, )/a
(p, -a, )/a
(p4 —as)/a
(p, —a, )/a
(p6- a6) /a
5l /a

0.859 05
—0.030 48

0.030 38
0.006 86
0.0
0.0

—0.025 92

0.665 47
—0.002 70

0.026 73
—0.000 90

0.0
0.0

—0.026 16

1.165 60
0.071 77
0.024 99

—0.007 33
0.0
0.0

—0.069 63

0.59443
0.067 42

—0.018 31
0.00608
0.003 00

—0.000 99
—0.01705

where i,j,k designate nearest-neighbor atoms.
The cubic anharmonic force constants that we have in-

troduced must be determined by fitting experimental
values such as third-order elastic moduli, thermal expan-
sion, mode Gruneisen parameters, etc.

III. RELATIONSHIP BET%'EEN FORCE
CONSTANTS AND ELASTIC CONSTANTS

We start by considering how the anharmonic force
constants can be determined from the TOE that are avail-
able for the noble metals and Al. This can be done by
equating the elastic and lattice vibrational energy densi-
ties. In the elastic continuum' theory the energy density
U related to a homogeneous deformation can be expand-
ed in terms of the strain tensor e;k. The third-order con-
tribution which we need is given by

3 6g g g;kjl +Cikls5jr ,Cksil5;„
ik jI r]S

+ kl, rs5lj )eikejl rs

where C;k jI „are the TOE. For a given choice of the
strain tensor one obtains a particular form for U3. We
have employed six different forms of homogeneous defor-
mations, ' since, in our case, the six independent TOE are
available. ' ' The strain tensors related to the six in-
dependent deformations are given by

e p=e5 p(5„+5 2+5 3),
e p=e5 p(5, +5 2),

cap e5ap5a]

e P 'E(5 ]5P]+5 25P3+5 35P2)

e p=e(5 ]5p] 5]5p2 525p—, ), —

e P=e(5, 5P3+5 25P]+5,5P3+5 35P,

+5.25P3+5.35P2) .

(7a)

(7b)

(7c)

(7d)

(7e)

(7

The first one corresponds to a uniform dilatation of the
crystal. The others are related to more complicated de-
formations. The corresponding expressions for the cubic
term U3 can be written as

TABLE I. First- and second-order force constants in units of
10' dyn. These values are obtained by fitting the second-order
elastic constants and the measured phonon frequencies as dis-
cussed in Ref. 15.

Ag



41 ANHARMONIC DAMPING OF PHONON MODES IN THE fcc METALS 7509

U;(a)=( —,'C», +3C»2+C, 23+ —,'C„+3C12)e

U3(b) =(—,
' C111+C112+Cl1 + C12 )e

U3(c) =(—,'C„,+ —,'C„)e

U3(d) =(—,'C», +2C,44+ —,'C» +C» )E

U3(e) =(—,'C„,+2C,66+C„+—,'C12+2C44)e-',

U3 (f ) = ( SC4,6+ 6C44 )e

(8a)

(8b)

(Sc)

(Sd)

(Se)

where the Voigt notation has been used for the elastic
moduli.

To compare these expressions of the energy with those
related to the force constants we start by considering the
case of central anharmonic forces. The cubic term $3 in

the potential energy is given by

43= —,', g g g PI3,(!~!')u (l~!')u&(1 ~1')u (ill'),
1, 1' a, /3, y

(9)

and u ( l) is the atomic displacement component related
to the atomic position vector component R (1) by the re-
lation

u (1)=pe R (1) .
a'

(10)

Finally, 1I) '&~(l
~

l') is given in terms of the force constants
by

where i labels the shell of neighbors, I, I' are unit cells in-
dices, a, P, y are Cartesian components,

u (1~l')=u (l) —u (l'),

P'&z(l, l')= —4(y; —3P;+3a;)R (!~1')R&(l I')Rz(l ~1')+—(P; —a;)[R (l~l')5&~+Res(l ~l')5 +R (1~1')5 &],
1 . . . 1

I'i

where r; is the distance of the ith shell from the origin
and

R (lil')=R (1)—R (l') . (11a)

U3 (a) =—(2y, +2y2+12y, +8y4+20y, +8y6), (12a)
1

a

1
U3 (b)= [ ', y 1+—', y—2+ ", —y3+ ", y4—+ —",—,'ys+ ,",ye—

+ —,'(P, —a, )+ —", (P3 —a3)+2(P4 —a4)

+ ', (p, as)+ —",—(p6 ——a6)], (12b)

1
U3 (c)= [ ,'yl+ ', y—2+—y3+—-', y&+ '„'ys+ —,', y6—

By inserting the six strain tensors of Eq. (7) into Eq. (10)
we can evaluate the cubic anharmonic energy 1)13 of Eq.
(9) in terms of the various e; . However, for a pairwise
central potential, the Cauchy relations (SOCR) and
(TOCR) are satisfied, so that one obtains only three in-
dependent relations. For the moment we assume that
both harmonic and anharmonic central interactions ex-
tend up to sixth neighbors, so that for the vibrational
anharmonic energies we obtain

1
3 ( e ) = [ ,' y

—
1
+—',y 2 +-'y 3 +—"y4+—'"

y s
—+ '"

y 6—

+(P, —a, )+2(P2 —a2)+ —", (P3 —u3)

+4(p4 —a4)+ —",'(ps —as)+ —"(p6 &6)]

(12e)

3ZU3 (f) = —[—", y, +—';"y6+6(pl —1X1)+4(p3 Q3)

+24(p~ —a4)+ 'os(p —a )
——32(p —a )]

(12f)

By equating the elastic U3 and the corresponding vibra-
tional U3 energies one obtains explicit expressions con-
necting the TOE with the force constants. By suitable
manipulations, one can see that these equations fulfill the
TOCR, namely,

C 166 C112

C144 =C456 C123

(13)

(14)

From this analysis, it follows that one can determine, as a
maximum, three anharmonic force constants, so that it is
possible to use anharmonic models with the range of the

+ —,'(P, —a, )+—,'(P3 cx3)+2(P4 —a4)

+-;(ps-~s)+-, (p, -~,)], (12c)
Cu Ag Au Al

TABLE II. Room-temperature-measured third-order elastic
constants of Cu, Ag, Au (Ref. 17), and Al (Ref. 18). Units: 10'
dyn cm

1
U3 (d) =—[—'Yl+ —,'Y2+ 9 y3+T~y4+ —ys+ —y6

+
2 (Pl lX1 ) + 3 (P3 (X3)+6(P4 —a4)

+ —", (Ps —
CXs)

——", (P6 —1X6)], (12d)

C112

C123
C ]44

C456

—12.71
—9.14
—7.90
—0.50
—0.03
—0.95

—8.43
—5.29
—6.37
+ 1.89
+0.56
+0.83

—17.29
—9.22
—6.48
—2.33
—0.13
—0.12

—12.24
—3.73
—3.68
+0.25
—0.64
—0.27
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central forces extending from the first to the third shell of
the neighbors. We want to remark that the choice of a
central anharmonic model is reasonable for Cu and Al,
since in this case the experimental values of the TOE do
satisfy the TOCR given by Eqs. (13) and (14). This can be
seen from Table II, where the experimental TOE are re-

l

ported.
We pass now to the discussion of the role of the

nearest-neighbor second- and third-order angular interac-
tions. Similar to Eq. (3), we define the third-order angu-
lar force constant in Eq. (5). The third-order angular
force-constant tensor can be easily written as

1) cosH,,„BcosH, ,„BcosH;,„8cosH;, k 8 cosH;,„
2, k

' BR (m) dR&(n) BR (p) BR (m) aR&(n)BR&(p)

0 cosO;.k 0 cosO; k+
r)R &(n) M (m ) BR ~(p)

cosO;p 8 cos8; g+
BR&(p) BR (m) BR&(n)

(15)

UvA( ) ()

U3 "(b)=—
(
—

—,'r, —75, ),1

(16a)

(16b)

(16c)

The third-order angular force constant is the new param-
eter that should be determined by fitting the TOE. The
contribution of the angular forces to the vibrational ener-
gies results are found to be

From Eqs. (17)—(22) it is clear that the violation of the
TOCR occurs because of the presence of the harmonic
angular force 51. The third-order angular force constant
~1 appears with the same coefficients both in Eqs. (18) and
(19) and in Eqs. (20)—(22). Only by going beyond nearest
neighbors do the third-order angular forces produce a
violation of the TOCR. For these reasons, with our mod-
el containing central and first-nearest-neighbor angular
forces it is possible to determine only three independent
parameters.

U3 "(d)=—( —"r,—475, ),
0

(16d) IV. NUMERICAL DETERMINATION
OF THE FORCE CONSTANTS

1
U, '(e) =—( —

—,'r, —85, ), (16e)

U, "(f ) = —
( 24r1 —16851) .=1 (16f)

C111=—
( 3r1 —6651),

1
(17)

By equating the elastic and vibrational energy densities
one obtains elastic moduli that violate the Cauchy rela-
tions.

The angular contribution to the elastic moduli after a
lengthy calculation turns out to be

Using the harmonic force constants tabulated in Table
I, we present the calculations of the third-order force
constants as determined from the experimentally known
TOE, ' ' reported in Table II. Within these models we
can determine up to three force constants. To investigate
the importance of the range of the central interactions
and of the angular force on the determination of the
anharmonic coefficient y &, which gives the leading contri-
bution to the linewidth, as discussed in the next section,
we have performed calculations for the nearest-neighbor
central cubic anharmonic model (1CM) by equating
U3(a) to U3 (a), Eqs. (8a) and (12a), with

112 2 1 1

1

1
C,66= —( ——', r, —155, ),

1
C,q3

=—(3r, +65, ),

C,44
= —,'(3r, —185,),

1
C~56= —(3r, —3051) .

(18)

(19)

(20)

(21)

(22)

y2=y3=y4=ys=y6=o .

The results are reported in Table III for Cu, Ag, Au, and
Al. No significant changes in the value of y, are obtained
by employing Eqs. (8b) and (12b). In Table IV are report-
ed the values of the force constants for the second-
neighbor central cubic anharmonic model (2CM) ob-
tained by equating U3(a), U3(b) to U3 (a), U3 (b), respec-
tively, with y3=y4=y5=y6=0. In Table V are given
the parameters for the 3CM, obtained by using Eqs.
(8a)—(8c) together with Eqs. (12a)—(12c). As expected for

TABLE III. Third-order force constant in the 1CM (see
text); a is the lattice constant. Units: 10' dyn cm

Ag Au Al

TABLE IV. First- and second-neighbor cubic force constants
in 2 CM (see text). Units: see Table II.

y)/a

CU

—12.59

Ag

—6.82 —15.41

Al

—6.81
yi/a —13.69

1.09

—5.58
—1.24

—17.11
1.69

—5.30
—1.51
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Cu Ag Al

TABLE V. First-, second-, and third-neighbor cubic force
constants in 3CM (see text). Units: see Table II.

TABLE VI. First-, and second-neighbor central and first-
neighbor angular force constants in the 2C1AM (see text}.
Units: see Table II.

y l /a
y~/a
y3/a

—11.62
0.75

—0.29

—15.00
—0.77

1.49

—6.14
0.80

—1.68

—6.29
—1.34

0.14
r I /a

v l /a

Cu

—13.20
0.61
0.1 1

Ag

—6.05
—.077
0.52

Au

—15.52
0.11

—0.63

—5.02
—1.79

0.14

those metals that practically fulfill the TOCR there is a
substantial convergence to the value of y& by increasing
the range of the central interaction forces ~hereas for Ag
and Au there are substantial discrepancies. By introduc-
ing the angular forces that are very important for Ag and
Au, and using the second-neighbor, central, single angu-
lar model (2C 1AM), equating Eqs. (8a) —(8c) to the sum of
the corresponding Eqs. (12a)—(12c) and Eqs. (16a)—(16c),
we get the results presented in Table VI for the relative
force constants. The introduction of the angular forces

I

has the effect of stabilizing the leading force constant y&.
For this reason in the evaluation of the phonon linewidth
we will use the 2C1AM model.

V. NUMERICAL CALCULATIONS
OF THE LINEWIDTH

The linewidth that enters in the one-phonon anhar-
monic cross section is given by

«q, j;~)=
2 g g l&"'( —q, j;q),J),q2, j2)l'[(n)+n2+1)[5(~ ~1 ~2) 5(~+~1+~2)l

fi
qi ~i q2'j2

+(n, n2)[—5(co+co, —co2) —5(co —co, +co2)]I, (23)

where (q, j) labels the harmonic mode of momentum ))'iq corresponding to branch j, co=co(q, j), co; =co(q;,j,. ) (i =1,2),
and n; = n(co; ) are the Bose factors. The V' coefficient is the Fourier transform of the third-order term P'~) in the po-
tential energy which is given by (with the replacements q j,~q'j', q2j2~q" j")

' 3/2

y(&) (i.Ii)(~~ )
—)/2e (q j )(elq R(l) elq R(l'))e (q j )

X(e'" "'" e'q ""))e —(q~&j«)(e'q "("—e' "')g(q+q'+q~I) (24)

5(x —x„)5(f(x))=g '(x„) (25)

where f (x) is any of the arguments of the 5 function of
Eq. (23) and x is one Cartesian component of q', say
x =q,'. The sum in Eq. (25) runs over the zeros of the
function f (x).

where e(q, j) are the harmonic eigenvectors of the mode
(q, j), N is the number of atoms, and M is the atomic
mass. The P'&r are the sum of the anharmonic term of
Eq. (9) plus the anharmonic contribution of Eq. (15). The
function b, (q) is unity if q is a reciprocal-lattice vector
and zero otherwise. Its presence is a consequence of
periodicity.

By taking into account the b, function, the sums over
the Brillouin zone (BZ) are reduced to a simple sum over
q' with q"= —q —q'. If q" lies in the first BZ, the pro-
cess is called normal; otherwise, if a reciprocal-lattice
vector G is required to return q" to the first BZ, the pro-
cess is classified as umklapp. As a consequence of the
form of q", the sum over q' in Eq. (23) cannot be carried
out over any irreducible part of the BZ, but should be
performed over the whole BZ. In this surnrnation we
found that the best convergence was obtained by taking,
for the 5 function, the representation

To use the property of the one-dimensional 6 function,
Eq. (25), the q' sum is transformed as follows:

L, dq,
'

N, N„N N, J2m
p q„,q

(26)

where N; (i =1,2, 3) is the number of atoms along the
Cartesian component i, N N is the number of atoms
over which the summation is carried out, and
L, /N, =a/3&4 is the cubic root of the volume of the

primitive unit cell of the fcc structure.
For a fixed pair (q„',q') the argument of the 5 function

depends on the one-dimensional variable q,'=x and the
integration of Eq. (26) is easily done. We find that the
derivatives of f(x) never vanish at the zeros f(x„) so
that we have no bulk focusing effects. In the actual cal-
culation we use the harmonic phonon frequencies co(q, j)
and eigenvectors e(q, j) of Sec. II and the anharmonic
force constants of the 2C1AM model. In the evaluation
of the linewidth 2I we find a convergence in the second
decimal figure by taking N„N =3109. The sum over n in
Eq. (25) ranges from 1 to 4 for a given q„'q' so that we are
sampling roughly 10000 points of the BZ. The number
of umklapp processes, which depends on the value of
(q„', q» ) is generally comparable to the number of normal
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FIG. 3. Phonon linewidths for Cu at 300 K with q in the

[100] direction. Solid circles: longitudinal modes. Open cir-
cles: transverse modes. The triangles refer to the transverse ex-
perimental points of Ref. 11 without the error bars.

FIG. 1. Phonon linewidths 2I for Al at 300 K. Solid circles:
calculated values for longitudinal modes with q along the [100]
direction.

processes, This proves that umklapp processes play a
very important role in the determination of 2I .

We begin by discussing Al for which there are avail-
able extensive experimental measurements by Stedman
and Nilsson. ' In Figs. 1 and 2 are depicted our calcula-
tions of the phonon widths at T=300 K for selected q
values, for longitudinal phonons in the [100] and [ill]
directions, respectively. The margins of error in the ex-
perimental values prevent any accurate comparison, even
if our results seem to be too low. However, some general
conclusions can be drawn. Around the zone boundary in
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FIG. 5. Same as Fig. 3, but for q along the [111]direction.
Only the transverse ( T, ) branch is drawn.
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FIG. 6. Calculated linewidths for Ag at 300 K with q along
the [100] direction. Solid circles: longitudinal modes. Open
circles: transverse modes.

both directions, the calculated widths are very large in
agreement with the corresponding experimental widths.
In the [100] direction we find the maximum at q=0. 8

(2~/a ) (1,0,0), in agreement with the experimental
values. We want to point out that in the phonon width,
in addition to the evaluated anharmonic contribution,
there is a contribution arising from the electron-phonon
interaction. This contribution around the zone boundary
is rather small compared to the anharmonic contribution,
so that from our calculations one can deduce that the ob-
served maximum in the [100] direction is related to
phonon-phonon interactions more than to the electron-
phonon interaction as was argued in the past. ' We have
also evaluated the width of the transverse phonons. In all
the symmetry directions the experimental transverse
widths are 2-4 times smaller than the longitudinal one.
Our results underestimate, by roughly an order of magni-
tude, the experimental ones. For instance, at the X point
we obtain 0.02 meV while the experimental value is
0.6+0.5 meV. In the case of transverse phonons the
linewidths both theoretically and experimentally are

FIG. 8. Same as Fig. 6, but for Au.

monotonically increasing functions of q. We want to
point out that for the simple metal Al the pseudopoten-
tial approach has been used to determine the third-order
force constants. The linewidths evaluated by Koehler
et al. and by Hogberg and Sandstrom ' that are based
on di8'erent potentials are in overall agreement with our
results.

We now turn to discuss our results for Cu. For this
element there are a limited number of experimental data
obtained at 300 K by Larose and Brockhouse. " Again,
the experimental errors are about 25%%uo due to the experi-
mental difficulties of such measurements. We display in
Figs. 3 —5 our results for the [100], [110],and [111]direc-
tions. In Figs. 3 and 4 we present the calculated
linewidths for transverse phonons together with the ex-
perimental results. The comparison shows that we
strongly underestimate the experimental values for trans-
verse phonons, as for Al, but in this case we reproduce
the experimentally observed maximum at q=0. 45 (2n. /a )

(1,0,0). A maximum inside the BZ is also found for the
transverse phonons in the other two directions. Concern-
ing the longitudinal phonons, Figs. 3 and 5 show that the
maximum linewidth is strongly peaked around the zone
boundary, especially in the [100]direction. In Figs. 6 and
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FIG. 7. Same as Fig. 6, but for q along the [111]direction. FIG. 9. Same as Fig. 7, but for Au.
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7 we show the linewidths of Ag in the two directions
[100] and [111],and in Figs. 8 and 9 those of Au. These
results show the same trends obtained for Cu and Al.
The only exception is Au. In this case the longitudinal
mode widths are not peaked at the zone boundary, but at
q =0.8 (2n/a .). Unfortunately, for these metals (Ag and
Au) there are no experimental data available with which
to compare our results.

VI. CONCLUSIONS

In this paper we have shown that the major contribu-
tion to the evaluation of the phonon linewidth arises from
the nearest-neighbor cubic central force constant entering
V' ' [Eq. (24)]. This proves the necessity of a reliable esti-
mate of the anharmonic force constants. The method
that we have presented of determining the time of Bight
from the third-order elastic moduli fulfill this require-
ment. By increasing the range of the anharmonic poten-
tiaI we have determined a convergent value of p &

~ In par-
ticular, we have shown that for those metals for which
the experimental TOE do violate the third-order Cauchy
relations, Eqs. (13) and (14), it is necessary to introduce
three-body forces in order to obtain an appropriate value
of y]. Furthermore, an accurate evaluation of the pho-
non frequencies and eigenvectors is required to evaluate
V' '. This is provided by our new central harmonic po-
tential. For Al, which has been studied in the past, our
evaluated linewidths compare rather well with pseudopo-

tential calculations ' ' and reproduce the experimental
behavior as a function of the momentum transfer, indi-
cating the presence of a maximum in the proximity of the
BZ boundary. Our calculations, however, do underesti-
mate the experimental values especially in the small-q re-
gion. %e think that this discrepancy is mainly due to the
role played by the higher-order anharmonic interactions
which are very important in the region of small momen-
ta. For large momentum transfers, where the one-
phonon theory is more adequate, our results present an
overall agreement with the available experiments. In
view of the present capability to perform accurate calcu-
lations of the phonon linewidths for metals we hope that
the present work will stimulate new experimental
research in this field in order to obtain a microscopic
description of the phonon-phonon interactions.
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