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Anharmonic lattice vibrations in noble metals
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Both macroscopic and microscopic eft'ects of anharmonicity in noble metals have been calculated
in low-order perturbation theory. A strain-dependent Helmholtz free energy is used to evaluate the
thermoelastic properties. The interactions are modeled according to a force-constant scheme which
includes angular forces in the harmonic part of the potential. The cubic and quartic anharmonic
force constants are related to third- and fourth-order elastic constants. It is shown that the cubic
pairwise interactions have to be extended up to the third-neighbor shell, in order to fit experiments
in Ag and Au. A slightly negative anharmonic contribution to the constant-volume specific heat is
found, in good agreement with recent experimental inquiries. Phonon line shifts are computed
along the high-symmetry directions of the Brillouin zone. Our results reproduce well neutron-
scattering measurements which are available for copper at high temperatures. An enhanced line
shift in longitudinal phonons of noble metals, along the [(00]direction, is pointed out.

I. INTRODUCTION

The microscopic effects of anharmonicity in solids are
displayed in the temperature dependence of the phonon
normal modes of vibration. At the lowest order, the
anharmonic contributions can be represented by shifts

in the harmonic frequencies. The term b' ' is proportion-
al to the thermal expansion of the crystal, ' while b' ' and
6' ' can be determined, at a fixed volume, in the frame-
work of perturbation theory: 5' ' is the first-order term
and b' ' is the lowest second-order term, in the real part
of the phonon self-energy. Higher-order corrections are
relevant for rare-gas solids ' even at temperatures
T= ,

' T (where T —is the melting temperature) and a
variational procedure employing the Bogoliubov s in-
equality' (self-consistent phonon method) has to be adopt-
ed to determine the effective T dependence of the pho-
non frequencies. It has also been argued that such
higher-order corrections should be small in metals. The
interatomic potentials have, in metals, much less steep
repulsive cores than potentials in rare-gas crystals. As a
consequence, the nth order (n ~ 3) derivatives of the po-
tential, which determine anharmonicity, are in metals
much smaller than in rare-gas crystals. Besides, the
structure-independent electron gas gives rise, in metals,
to large cohesive forces. On the other hand, some au-
thors ' have suggested that higher-order effects are
relevant, for alkali metals, at T = T, so that the lowest-
order perturbation theory does not hold near the melting
point. In any case, being the melting temperature of met-
als between about 20L, and 80D (OD is the Debye tern-
perature), one notes that metals still present wide ranges
of temperatures in which microscopic anharmonic effects
can be handled within the lowest-order perturbation
theory. '

Once the shifts b T are known, the macroscopic mani-
festations of anharmonicity can also be predicted: Bar-
ron" has shown that the anharmonic effects in thermo-
dynamics are, to lowest order, correctly accounted for if
the harmonic frequencies are shifted by AT in the har-
monic entropy formula. Furthermore, Hui and Allen'
have conjectured that once the temperature-dependent
experimental phonon frequencies are inserted in the har-
monic entropy formula, then the anharmonic effects are
included to a higher order of approximation. This simple
replacement is not valid for other thermodynamic func-
tions such as free energy and internal energy.

In our previous paper, ' the thermodynamic of Cu and
Al was extensively investigated. We adopted a general
approach' which allows for an explicit volume depen-
dence of the Helmholtz free energy. The interatomic po-
tential was modeled according to a force-constant scheme
which includes nearest-neighbor central interactions in
the anharmonic tail. It was shown that the quasiharmon-
ic approximation is successful in the evaluation of the
thermoelastic properties. Anharmonic lattice vibration
contributions to constant-volume specific heat were ex-
actly calculated, to the lowest order, and found to be
slightly negative, at room temperature, for both metals.
This result lends support to recent accurate experimental
inquiries. '

In this paper, the anharmonic properties of the other
two noble metals, Ag and Au, will be addressed. In Sec.
II, the linear coeScient of thermal expansion and the
thermodynamic Gruneisen parameter are evaluated
within the theoretical framework described in Ref. 13.
The calculations are based on a force-constant-model po-
tential. The harmonic part of the potential takes into ac-
count central forces up to the fourth-neighbor shell, plus
first-neighbor three-body forces which avoid the
fulfillment of the second-order Cauchy relations. It is
shown that a simple first-neighbor anharmonic potential
does not suftice for these metals, so that the cubic central
interactions have to be extended up to third neighbors in
order to fit experimental data. In Sec. III, the shifts hT
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in the harmonic frequencies of Cu, Ag, and Au are exact-
ly computed; for copper, comparisons are made with
available neutron-scattering measurements' along the
high-symmetry directions of the Brillouin zone. In Sec.
IV, the renormalized phonon frequencies (at constant
volume) are inserted in the harmonic entropy formula,
and the anharrnonic contributions to constant-volume
specific heat are evaluated. In Sec. V, the conclusions are
drawn.

II. THERMOELASTIC PROPERTIES

The volume dependence of the Helmholtz free energy
F( V, T) is the key ingredient in the analyses of the ther-

I

moelastic properties of metals. ' If a homogeneous defor-
mation is applied to the crystal, the phonon-displacement
field can be written' as a superposition of microscopic
atomic vibrations inside the unitary cell and macroscopic
deforrnations of the cell itself. In this way, the effects of
strain on the atomic-mean positions are automatically in-
troduced in the crystal Hamiltonian. The full set of equa-
tions which relates the strain Hamiltonian Hz to the
atomic force-constant tensors are reported in Ref. 13.
Here, we only remember that, by applying the linked-
cluster theorem, ' the perturbative term F, (V, T) in the
Helrnholtz free energy is given by

F, =P S,-f dr, H, (r, ) ,'f——dr,f dr, H, (r, )H, (r, ) S(P)
P 13

0 0 0 O, conn

with

S(P)= 1 —f dr' H,„ (iv'),
P

(2)

Vcr p(T)=
'Pap 0

(3)

Vis the crystal volume in the undeformed state, g &
is the

strain tensor which vanishes for pure rotations.
(b) Isothermal second-order elastic constants C p &

P is the inverse temperature, H, „i, is the pure anharmonic
Hamiltonian made of the cubic and quartic terms in the
phonon normal coordinates, ( }O„„„denotes that
quantum averages are made on the unperturbed eigen-
states of the crystal Hamiltonian and only connected dia-
grams must be retained. Thermal averages are implied
by the formalism. From Eq. (1), the temperature depen-
dence of the following properties can be easily derived.

(a) Stress tensor a p
r

the diagrams D1 and D2 are scarcely relevant in compar-
ison with the values of the diagram D3. As a conse-
quence, the effects of the quartic force-constant tensor
can be dropped.

The cubic anharmonic potential is built up according
to a force-constant model. By equating the vibrational
energy density and the elastic energy density of a strained
crystal, general relations between the cubic force con-
stants and the third-order elastic constants are derived.
The anharmonic central interactions have been extended
up to the third-neighbor shell. The full set of equations is
reported in Appendix A. Since the third-order elastic
constants are experimentally known, ' the cubic force
constants are easily derived through Eqs. (A6). In Ap-
pendix 8, the analytic expressions of the thermal pressure

(a)

8 F1
VC p Ir(T)=

9a 9a'p' 0

(c) Linear coefficient of thermal expansion a

1 ~+11a(T)=-
BT(T) dT

(4)

(5)

where B (T) is the isothermal bulk modulus computed
on the base of Eq. (4).

The lowest-order diagrams which contribute to the
stress tensor and elastic constants are shown in Fig. 1.
Their analytic expressions are reported in Ref. 13 and are
not given here. Higher-order diagrams, involving H, „h in
Eq. (2), have also been evaluated, but their contribution
to the thermoelastic properties of noble metals is found to
be negligible (3 orders of magnitude sinaller than D3 in
Fig. 1), even near the melting temperature. Therefore,
the quasiharmonic approximation [which corresponds to
retain only the diagrams in Fig. 1 (Ref. 14)] works satis-
factorily insofar as thermoelastic properties are con-
cerned. As already seen in the case of copper, ' the in-
vestigation of Ag and Au also reveals that the values of

(c)

FIG. 1. (a) First-order diagram (D1) contributing to the
stress tensor. (b) First-order diagram (D2) contributing to the
second-order elastic constants. (c) Second-order diagram (D3)
contributing to the second-order elastic constants. The dashed
lines are associated with the strain Hamiltonian H&', the solid
lines denote the phonon propagators.
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FIG. 2. Linear coefficient of thermal expansion vs tempera-
ture in copper. 0, our calculation according to the 1CM-model
potential. 0, experimental data from Ref. 21.

FIG. 3. Linear coefficient of thermal expansion vs tempera-
ture in silver. ~ our calculation according to the 1CM-model
potential. C3, our calculation according to the 3CM-model po-
tential. c), experimental data from Ref. 22.

a B and the mode Gruneisen parameter y(q, j), as func-
tions of the cubic force constants, are given in detail. In
Figs. 2—4, the linear thermal expansion coefficients a are
reported for Cu, Ag, and Au, respectively. Both a first-
neighbor cubic potential (1CM ) and a third-neighbor cu-
bic potential (3CM), have been assumed in the calcula-
tions.

Figure 2 points out that a short-ranged cubic potential
(1CM ) accurately fits the experimental data in the case of
Cu. In Figs. 3 and 4, it is shown that the 1CM potential
does not suffice, for Ag and Au, and long-range cubic
forces (3CM ) have to be taken into account.

In Table I, the thermodynamic Gruneisen parameters

f fd of noble metals are given both in the 1 CM and 3CM,
together with experimental data at room temperature. It
is confirmed that the long-range cubic forces give rise to
significant improvements in Ag and Au, although the ex-
perimental values of Ag are slightly underestimated also
by the 3CM-model potential.

In the next section, the calculated values of thermo-
elastic properties, namely a and y(q, j), are used to estab-
lish the thermal dilation erects on the phonon frequen-
cies.

III. ANHARMONIC FREQUENCY SHIFTS

& (q, j)=&"(q, j)+b, "(qj )+b "(q,j) . (7)

The shift 5 '(q, j), which accounts for the dilation
e6'ects, can be written as

b (q, j)=—3a(T)Ty(qj ) o c(qo,j) . (8)

y(q, j) is given in Eq. (B3) and a( T) is computed accord-
ing to the 3CM-model potential. The terms b ' '(q, j ) and
b' '(q, j) are the lowest-order contribution in the real
part of the phonon self-energy. They correspond to the
diagrams in Figs. 5(a) and 5(b), respectively. Their ana-
lytic expressions are

Due to anharmonicity the frequencies co(q,j) of pho-
nons, with wave vector q and mode index j, are volume
and temperature dependent. To lowest order in perturba-
tion theory the harmonic frequencies coo shift to

~(q i)=~0(q i)+~T(q i)
with

(q J)= g I (q J'q J q J '
q J)(2" +1)

ql ji

~"'(q,j)=—,g g I

I""(—q i;qi ji;q2, j2)I'P18

q q j j
n&+n2+1 n&+n2+1

coo(q j)+coo(1)+coo(2) coo(q j) coo(1) coo(2)

1 2

coo( q J ) coo( 1 ) +coo( 2 )

n) n2

coo(q,j )+coo(1)—coo(2)
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FIG. 4. Linear coefficient of thermal expansion vs tempera-
ture in gold. , our calculation according to the 1CM-model
potential. 0, our calculation according to the 3CM-model po-
tential. C), experimental data from Ref. 22.

where P denotes the principal value and coo(i ) =coo(q;, j; ),

n, = n(co—o(i )) are the Bose-Einstein statistical factors, V' '

and V' ' are the Fourier transforms of the third- and
fourth-order force-constant tensors, respectively. The
harmonic eigenstates and eigenvalues are computed
within our usual force-constant-model potential which in-
cludes first-neighbor angular forces.

In calculations of phonon line shift, the quartic anhar-
monic term, arising from the first-order perturbation
theory, has to be considered. We have related the
fourth-order force constants to the fourth-order elastic
constants. A set of equations which allows one to deter-
mine up to three fourth-order parameters, is listed in Ap-
pendix A. The evaluation of the fourth-order force con-
stants is complicated by the incomplete availability of ex-
perimental values for fourth-order elastic constants.
Nonetheless, the leading quartic force constants (Q, ) of
noble metals, computed by Eqs. (A7), reasonably agree
with the values obtained by fitting the experimental strain
derivative of Griineisen parameter [Eq. (A8)]. There-
fore, our force-constants approach should yield a reliable
evaluation of quartic anharmonic effects.

We have made numerical calculations of the frequency
shift b, r(q, j). The sums over wave vectors [Eqs. (9)]
have been evaluated by using 8704 points in the entire
Brillouin zone. The adopted representation for the prin-

cipal value in the second of Eqs. (9) is

1 . x
P —= lim

x +e2 2
(10)

where, in practice, e must be small but finite. We have
found that 5 '(q, j) is sensibly independent of e over a
range of values of e. The value which lies in the center of
such a range, a=0.2 meV, has been accordingly used.
The terms in Eqs. (8) and (9) have been calculated at
room temperature, with the wave vector q lying along the
high-symmetry directions of the Brillouin zone. In
Tables II—IV, the computed line shifts of longitudinal
phonons are presented for Cu, Ag, and Au, respectively.
As for Cu, the frequency shifts b, T(q, j) have also been
computed at 673 K, to allow a comparison with available
high-temperature experimental data. ' The overall agree-
ment between theory and experiment is quite satisfactory,
although the large experimental errors preclude making
any definitive statements. The results indicate a general
softening of the anharmonic lattices mainly due to the
thermal expansion addendum 5' '. An examination of

TABLE I. Thermodynamic Gruneisen parameter of noble
metals at room temperature. (a) y« is evaluated according to a
first-neighbor ranged anharmonic potential (1CM). (b) y, d is
evaluated according to a third-neighbor ranged anharmonic po-
tential (3CM). (c) The experimental data are taken from Ref.
20.

CU

Ag
Au

2.019
1.675
3.372

y,d(b)

2.012
2.247
2.943

ytd(c)

2.0
2.4
3.0

FIG. 5. (a) First-order diagram which contributes to the
proper phonon self-energy. (b) Lower second-order diagram
which contributes to the proper phonon self-energy.
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TABLE II. Line shifts of longitudinal phonons in copper. The shifts are in units meV. The wave
vectors are in units 2m/a. 6' ' is evaluated from Eq. (8). 6' ' and 5"' are evaluated from Eqs. (9). AT,
defined in Eq. (7), is calculated at room temperature. 5b T=AT(673 K) —b, T(300 K). (a) The experi-
mental data are taken from Ref. 16.

Wave vector q

{0.2,0.0,0.0)
{0.4,0.0,0.0)
(0.6,0.0,0.0)
(0.8,0.0,0.0)
(1.0,0.0,0.0)
(0.1,0.1,0.1)

(0.2,0.2,0.2)
(0.3,0.3,0.3)
(0.4,0.4,0.4)
(0.5,0.5,0.5)
(0.15,0.15,0.0)
(0.30,0.30,0.0)
(0.45,0.45,0.0)
(0.60,0.60,0.0)
(0.75,0.75,0.0)

g(0)

—0.337
—0.640
—0.898
—1.085
—1.156
—0.339
—0.656
—0.933
—1.132
—1.206
—0.396
—0.732
—0.960
—1.029
—1.056

g(4)

0.194
0.370
0.618
0.626
0.667
0.243
0.470
0,667
0.809
0.862
0.272
0.497
0.634
0.844
0.786

g(3)

—0.237
—0.415
—0.730
—0.793
—0.464
—0.233
—0.382
—0.641
—0.634
—0.617
—0.263
—0.469
—0.743
—0.829
—1.061

—0.379
—0.686
—1.010
—1.251
—0.953
—0.329
—0.569
—0.907
—0.957
—0.960
—0.387
—0.704
—1.069
—1.015
—1.331

—0.443
—0.587
—0.712
—1.324
—1.008

—0.921
—1.112

gg(a )
T

—0.413
—0.342
—0.56
—1.12
—1.13

—0.732
—0.948

Tables II—IV reveals that the purely anharmonic terms
b, ' '(q, i ) and b "'(q,j) often tend to cancel out each oth-
er. We point out that a significant asymmetry in the pho-
non shift takes place along the [(,0,0] direction, at
(=0.8 in Cu and Ag, and at (=0.6 in Au. This interest-

ing feature of longitudinal phonons is produced by the
term 5'i'(q, j) which is rapidly varying with q. An
analogous result was found by Koehler et al. in alumi-
nurn. These authors suggested that a high density of final
states has to be expected for the decay process of the lon-
gitudinal mode (0.8,0,0). We would also emphasize that,
in our previous investigation of anharmonicities, an
enhanced phonon linewidth has been found for the longi-
tudinal mode (0.8,0,0) in aluminum and gold.

IV. CONSTANT-VOLUME
ANHARMONIC SPECIFIC HEAT

Recent accurate experimental investigations on noble
metals' have suggested that a negative anharmonic con-
tribution to constant-volume specific heat (ACv"") is ex-
pected at (and below) room temperature. The calcula-

tions which we have carried out in Sec. III allow us to ad-
dress the matter, although quantitative comparisons with
experiments are difficult, since ACE"" is not directly ob-
served.

According to the harmonic theory, the entropy func-
tion is given by

5= kii g 1n t
—1 —exp[ —Pi)icoc(q, j )] ]

qi

Pg ——
exp[pficoo(q, j ) ]—1

where K~ is the Boltzrnann constant.
Cochran and Cowley have shown that, to leading or-

der in perturbation theory of anharmonicity, the entropy
is given correctly by the harmonic formula, with the har-
monic frequencies coo replaced by the measurable frequen-
cies. Once this replacement holds, the entropy formula
gives a good approximation to the constant-pressure ther-
modynamics. " Such a procedure has been applied to
aluminum, lead, ' and niobium. '

The general theory of the an harmonic crystal

TABLE III. Line shifts of longitudinal phonons in silver at
room temperature. See Table II for definitions.

TABLE IV. Line shifts of longitudinal phonons in gold, at
room temperature. See Table II for definitions.

Wave vector

(0.2,0.0,0.0)
(0.4,0.0,0.0)
(0.6,0.0,0.0)
(0.8,0.0,0.0)
(1.0,0.0,0.0)
{0.15,0.15,0.0)
(0.30,0.30,0.0)
(0.45,0.45,0.0)
(0.60,0.60,0.0)
(0.75,0.75,0.0)

g(0)

—0.292
—0.568
—0.803
—0.966
—1.025
—0.351
—0.650
—0.851
—0.915
—0.934

g(4)

0.242
0.376
0.490
0.569
0.598
0.301
0.470
0.572
0.583
0.538

g(3)

—0.180
—0.305
—0.529
—0.757
—0.460
—0.206
—0.338
—0.546
—0.744
—0.880

—0.231
—0.497
—0.842
—1.154
—0.887
—0.255
—0.518
—0.825
—1.076
—1.276

Wave vector q

{0.2,0.0,0.0)
(0.4,0.0,0.0)
(0.6,0.0,0.0)
(0.8,0.0,0.0)
{1.0,0.0,0.0)
(0.15,0.15,0.0)
(0.30,0.30,0.0)
(0.45,0.45,0.0)
(0.60,0.60,0.0)
(0.75,0.75,0.0)

g(0)

—0.194
—0.376
—0.531
—0.638
—0.677
—0.243
—0.445
—0.577
—0.625
—0.639

g(4)

0.142
0.181
0.214
0.237
0.246
0.282
0.347
0.379
0.370
0.323

g(3)

—0.184
—0.316
—0.469
—0.020
—0.015
—0.239
—0.296
—0.443
—0.536
—0.451

—0.236
—0.511
—0.786
—0.421
—0.446
—0.199
—0.395
—0.640
—0.791
—0.767
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TABLE V. Anharmonic contributions to constant-volume
specific heat, at room temperature. The units are
Joule. K ' mol '. (a) The calculation is carried out on the base
of Eqs. (11)and (12). (b) The calculation is based on Eq. (13);di-
agrams in Fig. 6 have been evaluated.

anh(a) AC'""(b)

CU

Ag
Au

—0.52
—0.61

—0.44
—0.85
—0.97

shows that, to first order at temperatures T & eD,

d Sana d Cans
V (12)

where AS'"" is the anharmonic contribution to entropy.
The experimental Debye temperature (at T=O) is higher
than room temperature in Cu and lower than room tem-
perature in Ag and Au. It follows that Eq. (12) can be
correctly used to evaluate the room-temperature value of
AC~"" only for Ag and Au. Then we have replaced the
harmonic frequencies coo(qj ) in Eq. (11)by

coo(q, j)+6' '(q,j )+6' '(q,j )

and, on the base of Eq. (12), b, CV"" as been evaluated at
room temperature. The results are given in Table V. A
negative anharmonic contribution to constant-volume
specific heat is found in both metals.

AC~"" can also be related to the perturbative term in
the Helmholtz free energy F&"" according to the
definition

g (anh y.
V

g2F anh
1

BT
(13)

V. CONCLUSIONS

Let us summarize the main results of this work.
Anharmonic lattice vibrations in noble metals have been
studied in detail. In these systems, the interatomic forces
are known to be very complicated and simple pseudopo-
tential theories are inadequate to deal with relevant
many-body effects. We have adopted a force-constant-
model potential which parametrizes the most important
harmonic and anharmonic interactions. General rela-
tions between the anharmonic force constants and the
higher-order elastic constants have been derived. Since
the force constants are fitted to experimental data (pho-
non frequencies and elastic constants), the electronic con-
tributions are also incorporated.

Direct evaluation of the low-order diagrams in F;"" [see
Figs. 6(a) and 6(b)], allows one to determine b CV"" by Eq.
(13). This exact procedure had already been applied in
the case of copper. ' We have carried out the calcula-
tions also for Ag and Au. The results are in good agree-
ment with those obtained by Eq. (12), as Table V shows.
Our theoretical estimates therefore support the con-
clusion of Martin. '

(b)

FIG. 6. (a) First-order diagram contributing to C&"". (b)
Second-order diagram contributing to Cz"".

A many-body approach which allows one to include
the volume dependence of the Helmholtz free energy has
been used to calculate the thermoelastic properties in a
wide range of temperatures. We have shown that the cu-
bic anharmonic interactions have to be extended up to
the third-neighbor shell, in order to fit the experimental
data in Ag and Au. In this context, copper exhibits a rel-
atively simpler behavior than silver and gold. Some
discrepancies still remain for silver, probably due to the
limited accuracy of the experimental elastic constants
data which have been used.

Microscopic anharmonic effects, markedly the line
shifts, have been computed within low-order perturbation
theory at room temperature. We have found that the ma-
jor contribution to phonon frequency shifts A~ is due to
the volume-dependent term b' '. Therefore, a correct
evaluation of the thermal expansion linear coeScient is
essential in order to estimate Az accurately. A good
agreement between theory and experiment is found in
copper for which high-temperature experimental data are
available. The lowest-order terms in the real part of pho-
non self-energy tend to cancel each other. However, this
cancellation does not take place for longitudinal phonons
along the [(,0,0] direction (at (=0.6 in Au and at
/=0. 8 in Cu and Ag) and an enhanced line shift appears.
To our knowledge, experimental evidence for this feature
has not been provided, but we would emphasize that a
similar behavior was found in aluminum by other investi-
gators.

Finally, we have computed the anharmonic contribu-
tion to constant-volume specific heat (b,CV"") at room
temperature. AC~"" has been evaluated by the harmonic
entropy formula, after replacing the harmonic frequen-
cies with the renormalized frequencies at constant
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volume. Alternatively, the lowest-order diagrams in the
anharmonic Helmholtz free energy, which contribute to
AC&"", have been calculated. Both of the approaches
yield a slightly negative sign for AC~"", in agreement with
the suggestions of recent experimental analyses. The sign
of bCV"" is critically determined by the values of cubic
and quartic anharmonic force cosntants. Therefore, our
results indicate that the whole treatment of anharmonic
lattice vibrations in noble metals has been carried out
with a good accuracy.
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APPENDIX A

The energy density u ' due to a homogeneous deforma-
tion is given by

'

Q =Q ) +Qp+Q3+Qg

u i
—g Capeap &

a,p

u 2 2 rf (CaP, yb+ Pb5ay}~aP yb &

a, p, y, 5

aP, yb, gp+ aP, bp5yg+CPp, yb5ag+CPb, bp5ay)eaP yb gp &

a, p, y, 5,(,p

u 4 z4 P (
Pa, yb, gp, rv+ Pb, rp, vr5ay+ Pp, yb, vr5a(+ CPr, yb, gp5av

a, p, y, 5,
gslg, Vr t

(Al)

+ aP, bp, vr5(y+ aP, gp, br5vy+ aP, yb, pr5(v Pb, pr5ya5vr+CPp, br5(a5vy+CPrpb5va, 5yg} aP yberIJevr &

where e pis the strain-rotation tensor, C p &, C p & &„, and C p & &„,are the second-, third-, and fourth-order elastic
constants, respectively.

If we restrict ourselves to consider pairwise anharmonic interactions, the cubic and quartic terms in the potential en-

ergy of a fcc crystal can be written in the following form:

P'any(L L )ua(L L )up(L L )uy(L L )
i L, L' a, P, y

(A2)

pyb(L L )u (L L )up(L L )uy(L L )ub(L L )
i L, L' aPy, 5

with u (L,L') —:u (L ) —u (L'), u (L ) is the Cartesian component of the phonon displacement field. Once a homo-
geneous deformation is applied to the crystal, n(L ) is related to the atomic mean position R(L ) by

u (L)= g (5 p+@ p)R p(L) . (A3}
p

In Eqs. (A2), the index i specifies the interaction between ith neighbors. It should be emphasized that the sums over the
atomic sites L,L' must be consistent with the index i p'& (L. ,L') and p'& b(L, L') are the third- and fourth-order
force-constant tensors whose explicit expressions are

P'py(L, L') =—r, P"'(r, )
—3P"(r; }+—P'(r, ) R (L,L')R p(L, L ')R y(L, L ')1 „, „3

r,

+—P"(r; )
— P'(r, ) [R (L,L—')5p +Rp(L, L')5 +R (L,L'}5 pj,

r, r,

P"& b(L, L')= —r, P""(r, ) 6r, P'"(r, ) +15 &t&(—r, )
—. P' R (L,L')Rp(L, L')R (L,L')Rb(L, L')

r;

+—r, P'"(r, ) 3P"(r, )+ P'(r, )— — (A4)

X[5 pRy(L L )Rb(L L )+5 yRp(L L )Rb(L L )+5 bRy(L L )Rp(L L )

+5ypR (L L )Rb(L L )+5bpRy(L L )R (L L )+5 bR (L L )Rp(L L )]

+—
2

$"(r, ) — $'(r;) (5 P5yb+5 y—5Pb+5 b5yP) .1 „1
ri ri
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r, is the ith-neighbor distance and p(r) is the two-body

interatomic potential. We define

C, ])+3C„z+C)23+—;C],+3C,2

=—(2 Y
1
+2 Y2 + 12Y3 ),1

p, =p"(r, ),
(A5)

Y, = r, P"'(r, ),

Q; =r, P""(r, ) .

The harmonic force constants a; and p, are fitted to the
measured phonon frequencies and to the second-
order elastic constants. Three-body forces have also been
included in the harmonic-model potential in order to
avoid the fulfillment of second-order Cauchy relations.
The e6'ects of strain on the anharmonic potential energy
are accounted for once Eq. (A3) is inserted in Eqs. (A2).
By equating the cubic potential energy density p3/V ( V

is the crystal volume) and the cubic elastic energy density
Q 3 the following relations between the force constants Y;
and the third-order elastic constants are established:

1
—,
' C„,+C„2+C„+C, 2

——[ —,
' Y, + —,

' Y2+ —' Y3

+ —,'(pl —al )+ —", (p3 —a3)],
A6( )

SC4,6+6C44= —[—",- Y3+6(p, —a, )+4(p3 —a3)],
where a is the lattice constant and the Voigt notation is
used for the elastic constants. We emphasize that the
third-order Cauchy relations are not violated since the
very central forces have been retained in the anharmonic
potential. It follows that three out of six third-order elas-
tic constants are independent, Therefore, central cubic
interactions have to be extended up to third-neighbor
shell and three force constants Y, (i =1,2, 3) can be fitted

to the experimentally known third-order elastic con-
stants. '

At the fourth order, 4 out of 11 elastic constants are in-

dependent, if the Cauchy relations hold. However, to be
consistent with the foregoing description of the cubic
term, central quartic interactions are also extended up to
the third-neighbor shell. By equating the quartic
potential-energy density P4/ V and the quartic elastic den-

sity u4, the following relations between the force con-
stants Q, (i =1,2, 3) and the fourth-order elastic con-

stants are derived:

1

g 1111+ 1112+4C1122+ 2 1123+ 4Clll +
2 112+ P 123+ 4Cll+ 4C12 ( ~Q1+ 2Q2+ Q3)

=1 3
—,', C, 1 » + —,

' C», 2 + —,
' C1,22 + —,

' C„,+ —,
' C„2+ —,

' C„+—,
'
C12 ——[ —,', Q 1

+—', Q 2 + —,",,' Q 3 + —,
' Y

1
+$ Y3 (A7)

1
1111+4 111+ g Cll [4g Ql +

4 Q2+ —,",,Q3+ g Yl +
~g Y3 lg(Pl 1) 72(P3 3)]

alnytd g g
Q = 3

(3lnV T f 12
+ — —2Y +4(P —a ) (AS)

with

The complete set of fourth-order elastic constants has
been measured only for copper. As for silver and gold,
some estimates of the leading fourth-order elastic con-
stants have been provided ' by assuming the validity of
the Cauchy relations. The force constants Q, (i = 1,2, 3 )

have been fitted to these available data. In our previous
paper, ' an equation which relates the leading force con-
stant Q 1 to the strain derivative of the Griineisen param-
eter has been obtained. We report it here

f= g X;(P;+2a, ),

g=12[Y, +2(P, —a, )] .

(A9)

X, is the number of atoms in the ith-neighbor shell.
If the long-range force constants (i ~ 2) are dropped in

Eqs. (A7), each of Eqs. (A7) should yield a value of Q,
consistent with that obtained from Eq. (AS). We have
checked that this consistency holds for all the noble met-
als. In calculations of Sec. III, the anharrnonic interac-
tions are extended up to third neighbor and, therefore,
the Q; (i =1,2, 3) as given from the system of Eqs. (A7)
have been used.
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APPENDIX 8

In quasiharmonic approximation the stress tensor 0.
&

can be written as follows:

&o tt(T)= —g y ts(q, j)A'to(q, j)(n + —,'), (Bl)

where y &
is the Griineisen tensor. By evaluating the diagram D 1 in Fig. 1, an explicit expression for the stress tensor

can be obtained [see Eqs. (7) and (&2.1) in Ref. 13]. In cubic crystals, the mode Griineisen parameter y(q, j ) is given by

a=1

By using Eqs. (Bl) and (B2), the mode Griineisen parameter can be linked to the cubic anharmonic force constants.
Once the cubic anharmonic forces are extended up to the third-neighbor shell, the following relation holds:

2M~„'(q, j )

Yi Yq Y3 Pi —ai
A(q, j)+—C(q, j)+ F(qj )+ [2B(q,j)—3A(q, j)]

a
'

a
'

a a

)r},—a, p, —a,
+ D(qj )+

where M is the atomic mass and

A(q, j)=(1—c„c~)(e„+e„)+(I—c„c,)(e, +e, )+2s„s e e +2s„s. e„e, ,

B(q,j)=(2—c c~
—c,c, )(3e„+e„+e,)+2s, s .e„e +2s„s, e„e, ,

C(q, j)=2e„(1—c,„),
D(qj ) =2(e +e, )(1—c~, ),
F(qj ) = —,

' [e„[8(1—c2„c„c,)+—,'(2 —c„c& c, —c„c&c&,)]

+e~ [2(2 c2,c—c, c„c2—c, )+ —,,'(1 —c,c c~, )]+e, [2(2 . c&„c—c, —c„c cz, )+ —,(1 c„c2—c, )]

+2e e~ (4sz„s~c, +s„szrc, + —,'c„s~s2, }+2e„e,(4sz, s,c~+s„s2,c„+—,'c„s,s2~ )

+2e, e~ (2s2„s,c~+c,s~rs, + c„s~s2, }),
F(q j)=—', I(3e„+e +e, )[4(1—cz c,c, )+(2—c„c& c, —c c&c2, )]

+2e„e~ (s2,s~c„+2s„sz~c,+2sz„s~c, )+2e„e, (s2~s, c„+2s„s2,c~+2s2, s, cr }I,

(B4)

with c, =cos(nq ), s =sin(nq ), cz, =cos(2mq ), sz =sin(2nq ), e, —:e (q, j) is the Cartesian component of the po-
larization vector (a=x,y, z ).

From Eqs. (5), (B1), and (B2), the thermal pressure a.B can be easily written as

T 'peartaB = g y(qj )coo(q, j)n, (n, +1),
V

(B5}

where the temperature derivative of the Bose-Einstein factor has been used.
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