
PHYSICAL REVIEW B VOLUME 41, NUMBER 11 15 APRIL 1990-I

Phonon properties of a class of one-dimensional qnasiperiodic systems
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The Kohmoto-Kadanoff-Tang renormalization-group method is extended to study the phonon
properties of a class of one-dimensional quasiperiodic systems. Two models are employed, which

correspond to the equation of motion for phonon problems with spring constants equal and two

types of masses arranged successively in generalized Fibonacci sequences, and that for phonon
problems with masses equal and two types of spring constants in generalized Fibonacci sequences.
It is shown that the phonon spectra of the quasiperiodic systems are Cantor-like and do not have
uniform scalings. Particularly the low-lying phonon excitations tend to be extended in the low-

frequency limit.

I. INTRODUCTION

Since the experimental discovery by Shechtman et al. '

of the icosahedral quasicrystal in a rapidly quenched Al-
Mn alloy, quasiperiodic systems have received much
theoretical attention, mainly in their electronic and pho-
non properties. ' The studies showed interesting exot-
ic properties associated with the lack of translational in-
variance and with the existence of long-range orientation-
al order in the systems. Particularly, the extensively- and
well-investigated quasiperiodic system is the one-
dimensional (1D) Fibonacci lattice, of which the electron-
ic properties were studied' before the discovery of the
icosahedral quasicrystal, and for which a dynamical map
approach now known as the KKT renormalization-group
method was developed by Kohmoto, Kadanoff, and
Tang. ' Recently the interest has been shifting towards
other 1D quasiperiodic systems. ' For the electronic
problems of several 1D quasiperiodic systems, it was
shown ' that the numerically calculated wave functions
of the states with energy E =0 are clearly critical, i.e.,
self-similar and neither extended nor localized in a stan-
dard way, as in the case of the Fibonacci lattice.

The Fibonacci lattice is a canonical 1D version of
quasicrystals. A straightforward generalization of this
quasiperiodic system is a class of 1D two-tile quasiperiod-
ic lattices, namely the generalized Fibonacci lattices, in
which the separation of successive lattice points takes
value A or 8. The sequences of tiles A and B in the gen-
eralized Fibonacci lattices are the generalized Fibonacci
sequences S„, which are constructed recursively as
St+ &

=
I St"~St & I with So =

I B I and S& =
I A I, in which

I ~ 1, m and n are positive integers. An alternative way

of constructing them is to use the inAation symmetries
( A, B)~( A "B,A ). Due to the construction rule of St,
the total number FI of tiles A and 8 in SI satisfies the re-
cursion relation F,+, =mFt, +nF, for 1 & 1 with
I'0 =FI = 1. It can be easily checked that the ratio of the
total number of tiles corresponding
to the 1th iterate of A to the total number of tiles
corresponding to the 1th iterate of B is equal to
rt(m, n) =Ft /Ft, = m rt ', (m, n)+n, which tends to
r(m, n)= —,'[(n +4m)' +n] in the limit 1~co.

In present paper we study the phonon properties of a
class of two-tile quasiperiodic systems, namely the gen-
eralized Fibonacci lattices, in a unified way. Although
the KKT renormalization-group method is at first
developed to study the electronic problem of the Fibonac-
ci lattice, it can be also applied to deal with the phonon
problem. ' In Sec. II we extend the KKT renor-
malization-group method to study the phonon properties
of the generalized Fibonacci lattices. In Sec. III the
Cantor-like phonon spectra are discussed and some nu-
merical results are presented. Section IV is a summary.

II. EXTENDED KKT
RENORMALIZATION-GROUP METHOD

Consider a 1D chain of atoms of masses t m„ I connect-
ed by spring constants IK„I. The equation of motion for
low-lying phonon excitations is

m„~'q„=z„„q„—„+rc„tt„, (rc„+I +a„)q„—, (1)

where ttj„denotes the displacement of the nth atom from
its equilibrium position. For mathematical simplicity
and the applicability of the KKT scheme to phonon
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problems of the generalized Fibonacci lattices, the follow-

ing two models, corresponding to K„=1 and m„=1, re-
spectively, are employed:

Mm Mn

with initial conditions

m—.~'4. =4.+1+4. 1
-2—4.

co—2P„=K„+,Q„+,+K„g„, (K—„+,+K„)g„, (3)
and

Mll =M (B)=
2

marco

1

0 (12a)

where the masses {m„j take two values m„and mal ar-
ranged successively in a generalized Fibonacci sequence,
and {K„jis a generalized Fibonacci sequence with two
kinds of spring constants K„and K~.

In matrix form, (2) and (3) can be written as

lP„+,=M(n)%„

Ml =M(A)=
2 —mqco —1

(12b)

for model (2), and the following initial conditions for
model (3):

and

lP„+,=M(n + 1, n)%„, and

Ml =M(A, A) (13a}

where the displacement lp„ is a column vector ( p„,g„,)'

and the transfer matrices M(n) and M(n +1, n) are 2X2
unimodular matrices

M2=M( A, B)[M(B,B)] 'M(B, A)[M(A, A)]"

(13b)

aIld

M(n)=
2 —m co —1

2
n

(6)

in which the four types of transfer matrices are

(2K„—01 )/K„—1

M(A, A)= (14a)

M(n+I, n)=
(K„+,+K„—co )/K„+1 K„/IC„+—1 M(B,B}=

(2KII —co )/Kll

0 (14b)

The displacement at an arbitrary site N is given by

+N+1 M +1 ~

M(A, B)=

and

(K„+K2I co )/K„——K2I /K„
1 0 (14c)

where

M' '=M(N)M(N —1) . M(2)M(1)
(K21+K„cu )/Ks ——Kq /K~

M(B, A)= (14d)

or

M'+'=M(N+ I, N)M(N, N —1) . M(2, 1) (10)

is successive multiplications of the transfer matrices.
If N is a generalized Fibonacci number F„ it follows

from the recursion relation SI+1={SI"~SI,j that the
(Fl )

transfer matrix M I
—=M satisfies the recursion relation

Since detM0=detM, =1, it follows from (11) that M I is
unimodular, i.e., detM i=1. Thus the 2X2 real matrix
M i can be parametrized only by three real numbers, and
the matrix map (11) can be regarded as a 6D dynamical
system. By taking the trace of (11) and (M I '2)
=M I &M &

', respectively, we obtain a unified trace map
for the generalized Fibonacci lattices

x, +,=n„,(xl )n, (xl, )

X 2xIxt
Vl 2(xl, } 'M„2(xl 1)+ "

xiS,(xl, ) C„,(xl 1)

n„2(xl ) n 1(xl 2)
x, ,

— x, ~+Vl„,(xl ) Vl„,(xl, )

with initial conditions

xo=1 —
—,m&co, x& =1—

—,m co
2 ] 2

and

—2(XI —2} + —2(XI + —2 XI —1

n„—,(xl -, ) n„-,(xl )n —,(xl -, )
(15)

(16a)

X2 +n —l(X1 )+m —l(X0 )( X1X0 ) +n —l(X 1 )+m —2(X0 )X 1 +n —2(X1 )+m —l(XO }X0 +n —2(X1 )+m —2(XO } (16b)
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for model (2), and the following initial conditions for model (3):

(17a)

and

+3 + —1(X2)+ —1(+1 )l $ Tr(~1~2 ) i + —1(+2 )+nl —2(+1 )X2 +n —2(+2)+m —1(+1 )X1 +n —2(+2 )+m —2(+ 1 )

(17b)

0 '

2 3 4 5 6
0

(c} (cI)

0

FIG. 1. Band structures of the periodic systems of periods Fi=mFI 2+nFI 1 for I»2 with FO=F, =1. (a) m =1, n =1, I =2, 3,
4, 5, and 6; (b) m =1, n =2, 1=2, 3, and 4; (c) rn =2, n =1 1=2, 3, and 4; (d) m =3, n = 1, I =2, 3, and 4. The two types of masses
are chosen to be m „=1 and I& =2. The phonon spectra of the quasiperiodic systems are given by the limit I~~.



7494 J. Q. YOU, Q. B.YANG, AND J. R. YAN 41

where xI —= —,'TrM I, and Vlz(x& ) is the Nth Chebyshev po-
lynomial of the second kind,

sin[(N + 1)cos '(xI )]
'M~(x( ) =

sin[cos '(xI ) ]

n/(x/ ) —2xl eN, (xl )
—'y~ ~(xl ) .

When m = n = 1, in particular, the tnap (15) is reduced to
the well-known KKT trace map for the Fibonacci lat-
tice'

which obeys the recursion relation xI+ &
=2xIxI, —xi z (2O)

0
2 3 4 S 6

0

(c)- (d)-

FIG. 2. Band structures of the periodic systems of periods F& =mFI &+nF~
&

for l ~ 2 with FO=F& =1. {a) m =1, n =1, l =2, 3,
4, 5, and 6; {b) m =1, n =2, 1=2, 3, and 4; {c)m =2, n =1, l =2, 3, and 4; {d) m =3, n =1, 1=2, 3, and 4. The two types of spring
constants are chosen to be K„=1and K& =2. The phonon spectra of the quasiperiodic systems are obtained in the limit I~ Do.
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The trace map (15) is a reduced dynamical system, which
corresponds to a projection of the full 6D dynamical map
(11) onto a 3D orbit. By merely studying it one can
determine the phonon spectra of the generalized Fibonac-
ci lattices.

III. CANTOR-LIKE PHONON SPECTRA

Assuming the eigenvalue of the unimodular transfer
matrix M

~
is ~, i.e., %++&=M 1%'&=A,4', one has

A, = —,
' ITrM &k[(TrM ~)

—4]' (21)

When the periodic (+) or antiperiodic ( —) condition
%'~ +,=+ tI', is applied, then k= +1, and it follows from

(21) that the allowed frequencies are determined by

x( =+1 (22)

Commonly, it is required that the displacements (4„ l of
atoms in a periodic system with a period of F( should not
diverge, thus the conditions for bands and gaps in the
phonon spectrum are, respectively,

bands: IX'I ~1,
gaps: lx, l

& 1 .

(23a)

(23b)

The quasiperiodic system is obtained by the limit I~ (x),

so the phonon spectrum is obtained from the conditions
in (23) in the limit1~ oo.

As typical examples, band structures are presented in
Figs. 1 (a)—(d) and Figs. 2(a)—2(d) for the phonon prob-
lems of periodic systems with periods F( =mF( 2+ nF(
for 1~2 with Fo=F& = 1, in which (m, n) =(1,1), (1,2),
(2,1), and (3.1), respectively. The two types of masses in

model (2) are chosen to be m„= 1 and ms =2, and the
two types of spring constants in model (3) are chosen to
be K„=1 and Ks =2. Comparing Figs. 1(a)—1(d) one by
one with Figs. 2(a)—2(d), one sees that they look similar
with each other, especially in the lower parts of the pho-
non spectra. These figures already show the exotic
features of the phonon spectra for the generalized Fi-
bonacci lattices. One can see that each phonon spectrum
consists of F( bands and F( —1 gaps at the 1th iteration.
As the index I gets larger, more gaps appear. In the limit
1~ (x}, it can be concluded that the gaps are densely pop-
ulated in the phonon spectra of the generalized Fibonacci
lattices. Another feature concerning the phonon spectra
is that they are self-similar. The self-similarities and the
dense distributions of the gaps mean that the phonon

spectra of the generalized Fibonacci lattices are Cantor-
like. However, the phonon spectra do not have uniform
scalings, analogous to what occurs in the phonon spec-
trum of the Fibonacci lattice. At low values of m, there
are large bands and small gaps, while the bands are very
narrow for higher values of ~. The characteristic of
larger bands and smaller gaps at lower values of cu indi-
cates that as co~0, the low-lying phonon excitations tend
to be extended, as in the case of phonon problem of the
Fibonacci lattice. The dispersion relation then asym-
pototically becomes e=Ck, and the low-frequency in-
tegrated density of states of phonon is linear in co for a
given generalized Fibonacci lattice.

IV. SUMMARY

We extend the KKT renormalization-group method to
deal with the phonon properties of a class of 1D quasi-
periodic systems (the generalized Fibonacci lattices).
Two models are employed, which correspond to the equa-
tion of motion for phonon problems with spring con-
stants equal and two types of masses arranged successive-
ly in generalized Fibonacci sequences, and that for pho-
non problems with masses equal and two types of spring
constants in generalized Fibonacci sequences. A unified
trace map with only different initial conditions is ob-
tained, which is a reduced dynamical system correspond-
ing to a projection of the full 6D dynamical map onto a
3D orbit. By merely studying it one can determine the
phonon spectra for the phonon problems of the general-
ized Fibonacci lattices. For a given generalized Fibonac-
ci lattice, the phonon spectra obtained using different
models are similar to each other, especially in the lower
parts of the spectra. It is showed that the phonon spectra
of the generalized Fibonacci lattices are Cantor-like, i.e.,
the spectra are self-similar and the gaps are densely popu-
lated in the spectra. In addition, the phonon spectra do
not have uniform scalings; at low values of co, there are
large bands and small gaps, while the bands are very nar-
row for high values of co. In particular, the low-lying
phonon excitations tend to be extended as ~~0, as in the
case of crystalline structures.
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