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Pressure-induced s = d transfer and the equation of state of molybdenum
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The equations of state of crystalline (bcc} and liquid molybdenum are calculated to pressure-
temperature conditions of 600 GPa and 14000 K with use of the linear muffin-tin orbitals (LMTOj
model and corrected rigid-ion sphere (CRIS) model. Our results agree with those of previous work
in documenting a pressure-induced shift of electrons from 5s to 4d states, especially above 100 GPa.
An analysis of ultrasonic and shock-wave measurements, along with our theoretical findings, docu-
ments that the compressibility of bcc Mo becomes enhanced at pressures of 100—200 GPa. The
enhanced compression, and possibly an anomalous increase in rigidity, are caused by the pressure-
induced s d transfer. Our study reinforces the use of the Mo equation of state as a calibration
standard for ultrahigh-pressure static experiments and, in particular, for the ruby-fluorescence tech-
nique.

INTRODUCTION

The bonding character of molybdenum is expected to
change at high pressures. Indeed, the recent discovery
from Hugoniot sound-velocity measurements that Mo
undergoes a structural transformation at about 210 GPa
has been explained in terms of a transfer of conduction
electrons from the 5s to the 4d band: the result is to sta-
bilize the hcp relative to the bcc structure. ' Our aim is to
further examine this bonding change, concentrating on
the equation of state at elevated pressure. We are
motivated by the fact that the equation of state of bcc Mo
plays a central role in the present calibration of the ruby-
fluorescence technique used in ultrahigh-pressure static
experiments. Yet there is a well-established discrepancy
between the equations of state derived from existing
shock-wave data and high-precision ultrasonic measure-
ments of the elastic moduli of bcc molybdenum. Hence,
we consider whether these data sets can be reconciled in
terms of pressure-induced changes in elasticity reflecting
changes in the electronic-band populations.

THEORETICAL APPROACH

We calculate the equation of state of bcc molybdenum
by theoretically evaluating the internal energy E as a
function of volume V using the linear muffin-tin orbitals
(LMTO) method of Andersen. The approach has been
described previously, ' ' and so it is only briefly summa-
rized here. With neglect of electron-phonon interactions,
the pressure is given by

P = —BE, /B V+ ~E„yV +~,E, y V,

where E, is the static-lattice (cold compression) energy,
E«and E, are the lattice vibrational (or thermal) and
electronic contributions to the energy, and y and y, are
the vibrational and electronic Gruneisen parameters.
The static-lattice energy is evaluated for the 4d Ss '

configuration of valence electrons using the LMTO

method in the atomic-sphere approximation. The von
Barth —Hedin exchange and correlation potential is em-
ployed, and we retain angular-momentum components
up to l =3 in the calculation. Following Glotzel and
McMahan, the intercellular Coulomb interaction beyond
the atomic-sphere approximation is accounted for
through a mu5n-tin correction to E, . This correction in-

creases with pressure, contributing between 1.5 and 3.0
GPa at V/Vo=1. 0—0. 5 (subscript zero indicates zero
pressure, throughout). In contrast, we do not correct for
changes in core states during compression: the Kr
configuration is kept frozen. We find from independent
calculations that the correction to the pressure due to
the 4s and 4p core states is less than 1% of the total pres-
sure throughout the range examined here, and so we ig-
nore this effect.

The thermal contribution to the equation of state is de-
rived from the last two terms in (1), with Et, being ap-
proximated by the Debye-Gruneisen model as in Ref. 5.
Specifically, we use the observed value of Poisson's ratio,
along with our calculated bulk modulus, to estimate the
Debye temperature; this use of laboratory data reflects
the fact that we obtain no information about shear modu-
li from our calculations. The vibrational Griineisen pa-
rameter is obtained from the derivatives of our calculated
equation of state by way of the Dugdale-MacDonald for-
mula, '" but our results would not be markedly changed
were we to use the Slater" or free-volume' formulas for
y. Finally, the calculated density of states at the Fermi
energy, and its volume derivative, yields the electronic
pressure via E,, and y„respectively.

Upon shock loading to high pressures and tempera-
tures, molybdenum undergoes phase transformations
first, to a new crystal structure thought to be hcp [re-
ferred to henceforth as hcp(?)] at 210 GPa, and then to
the melt at Hugoniot pressures above 400 GPa. As there
is no evidence of the crystal-structural transformation in
the shock-wave (Hugoniot) equation of state, ' we follow
Hixson et al. ' in assuming that the equations of state of
the bcc and hcp(?) phases are identical. The liquid equa-
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tion of state is obtained from the corrected rigid-ion
sphere (CRIS) model, ' which is based on effective intera-
tomic potentials that are derived from our calculated iso-
therm for bcc Mo. The principal assumptions involved
are that the interatomic potential in the dense Auid is tak-
en to be the same as in the solid, for a given nearest-
neighbor distance (corrected to the average coordination
number in the melt), and this potential is taken to be cen-
tral, pairwise additive, and extending only over nearest
neighbors. Although the equations of state of the crystal-
line and liquid states of Mo are indistinguishable from the
Hugoniot measurements, " we go through this exercise
in order to obtain the internal energy of the melt, which
differs greatly from that of the solid at the same volume
(as illustrated by Fig. 5, below).
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FIG. 1. Calculated electron populations in the 4d (nd) and
5sp (n„n~)bands of bcc Mo are shown as a function of volume.
The 5s and 5p bands are treated as hybridized in the LMTO
method. The calculated pressure of the static lattice is shown
on the upper scale.

The results of our calculations for the static lattice of
bcc Mo are summarized in Figs. 1 and 2. We clearly see
evidence for an increase upon compression in the d-like
(n =4) electron population at the expense of the sp-like
(n =5) electrons. This shift in the band popula-
tions begins at zero pressure, becoming significantly more
rapid as pressure is increased above 100—200 6 Pa
(V/Vo &0.8 —0.7). Thus, our calculations are in com-
plete accord with the experimental and theoretical results
of Hixson et al. ' in that the continuous increase of the
d-electron population stabilizes the hcp structure at high
pressures (we obtain an increase in the 4d occupation of
0.45 electrons per atom between 0 and 320 Gpa). The
change in electronic structure must also soften the equa-
tion of state; that is, increase the compressibility relative
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FIG. 2. Comparison of our calculated equation of state for
bcc Mo (bold curve) with the results of shock-wave (Ref. 15)
(thin curve) and static-compression (Ref. 2) (open circles) mea-
surements, all reduced to the static lattice (0-K isotherm).

to what one would obtain for constant-band populations.
This conclusion stems from the thermodynamic require-
ment that pressure stabilizes the state of reduced volume.

A comparison of the theoretical equation of state with
that observed by shock-wave" and static compression,
thermally corrected to the 0-K isotherm, shows that our
results are in good agreement with existing high-pressure
measurements on the bcc structure (Fig. 2). The static-
compression data are not entirely independent from the
shock-wave measurements because the latter were used as
part of the pressure calibration for the former. Neverthe-
less, as the ruby-Auorescence calibration of static pres-
sures is based on shock-wave equations of state for four
different metals, our comparison with the static mea-
surements on Mo remains meaningful. Also, the possible
inAuence of nonhydrostaticity in the static experiments is
expected to be small. ' Thus, the final deviation of the
calculated equation of state from either the shock-wave
or the static-compression data is found to be well within
the experimental uncertainties over the compressions
studied.

A more detailed comparison between theory and ex-
periment is possible at ambient conditions of zero pres-
sure and 300 K (Table I). We find that although the
agreement in volume Vo, isothermal bulk modulus B„T,
and its pressure derivative SOT is within 1.5, 5.5, and
11%, respectively, the deviations are about 4—10 times
greater than the experimental uncertainties. Still, this is
sufficiently good agreement for our purposes. Similarly,
the calculated thermal properties described by the Debye
temperature eo and lattice Gruneisen parameter yo are in
relatively good accord with the data.

It is only in the case of the electronic Gruneisen pa-
rameter y, o that we deviate significantly from the experi-
mental value, which is obtained from low-temperature
thermal expansion measurements. ' We predict a value
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TABLE I. Properties of molybdenum at 300 K, P =0.

Volume, V (cm'/mol)
s (a.u.)'
Bulk modulus, Boy' (GPa)
Box
Debye temperature, Op (K)
Gruneisen parameter

Lattice, yo
Electronic, pp,

Theory'

9.536
2.9438

275.3
4.0

480

1.78
0.45

Experiment

9.391 (+0.009)
2.929 (+0.001)
260.8 (+0.8)b

4.46 (+0.13)
450 (+5)

1.55 (+0.05)
1.5 (+0.3)'

'This study: LMTO calculations with lattice vibrational correc-
tion.
Reference 9.

'4ms /3= Vo.
Reference 29.

'Reference 16.

smaller than the free electron y, =—', , and this is, in turn,
much less than the observed value. It may be that our
calculated values of the electronic Gruneisen parameter
are reasonable for compressed Mo: a small value would
not be surprising for a d-electron metal, but this explana-
tion implies that the observed y,, is anomalously large at
zero pressure. Alternatively, the discrepancy between the
calculated and observed y, o may simply reAect the true
reliability of the LMTO method, as applied here (e.g. , in
the neglect of electron-photon interactions"). In any
case, the electronic contribution to the pressure is
suSciently small at the temperatures considered in this
study that a threefold error in the electronic Gruneisen
parameter does not affect our conclusions.

In order to compare theory with the highest-pressure
data available, we calculate the shock-wave equation of
state by combining the Hugoniot equations' with our
Debye-Gruneisen model for crystalline Mo. The indivi-
dual contributions to the calculated Hugoniot pressure,
the electronic, lattice thermal, and (by difference) cold
compression terms in (I), are shown in Fig. 3. Our con-

elusion that the electronic pressure is negligible, even if
poorly determined by the theory, is substantiated here;
we estimate that it amounts to no more than l%%uo of the
total pressure in the solid state. In contrast, the lattice
thermal contribution to the pressure is on the order of
10% at shock pressures above 200 GPa. We have simi-
larly combined the Hugoniot equations with our liquid-
state model to derive the shock-compression curve for
the melt, and the combined results for solid and liquid
h$o are summarized in Fig. 4.

Expressing the Hugoniot equation of state in terms of
the primary variables of shock experiments, the shock-
wave velocity U, and the particle velocity u, it is clear
from Fig. 4 that the theory matches well with the avail-
able data for molybdenum. As expected, we find that the
Hugoniots of the liquid and solid phases are nearly indis-
tinguishable at high pressures. In addition, these de-
scribe a linear U, -u trend, as is commonly found for
shock-wave measurements on elements. ' ' What is less
evident, however, is that the intercept and slope of the
U, -u equation of state are systematically larger and
smaller, respectively, than would be expected from the ul-
trasonic measurements of the compressional moduli. ' '
This discrepancy applies to both the theoretical and ex-
perimental results in Fig. 4. We return to the disagree-
ment between the results of infinitesimal-compression (ul-
trasonic) and finite-compression (shock-wave and static-
compression) measurements of the compressional moduli
in the next section.

As a final application of our theoretical model for crys-
talline and liquid Mo, we calculate the Hugoniot temper-
atures for both phases. ' Also, following Ref. 1, we esti-
mate the melting temperature of molybdenum by way of
the Lindemann relation. The results, plotted in Fig. 5,
show that the pressure at which melting is observed un-
der shock compression is in rough agreement with what
we calculate. Specifically, given the approximations in
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FIG. 3. Calculated contributions to the Hugoniot pressure of
crystalline Mo: the lattice-thermal (or lattice-vibrational) con-
tribution and the electronic contribution are shown as functions
of the total Hugoniot pressure (lower scale) and the volume
(upper scale).

FIG. 4. Comparison of calculated shock-wave (Hugoniot)
equation of state of molybdenum (bold solid and dashed curves
refer to solid and liquid phases, respectively) with two fits to ex-
isting data (thin curves) (Refs. 13 and 21).
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FIG. 5. Calculated melting temperature (bold curve), and
Hugoniot temperatures for solid and liquid Mo (thin curves)
shown as functions of pressure. The experimentally observed
pressures (Ref. 1) at which Mo undergoes a solid-solid phase
transition and melting along the Hugoniot are shown by arrows
(along with uncertainties) near the bottom.

our analysis (e.g. , no energy of transformation at 210
GPa, neglect of anharmonicity beyond the quasiharmonic
approximation, and use of the Lindemann expression), as
well as the possible uncertainties in the data (e.g. , meta-
stable superheating during shock melting), the —50-GPa
agreement between theory and experiment is acceptable.
As more data become available for Mo at ultrahigh pres-
sures and temperatures, notably measurements of
Hugoniot and melting temperatures as functions of pres-
sure, Fig. 5 will offer an especially stringent test of our
calculations.

DISCUSSION

F =Bp[1+a,f +azf + . ],
with

(2)

The adiabatic compression curves derived from ul-
trasonic and shock-wave measurements on molybdenum
clearly illustrate the discrepancy between the results ob-
tained from these two different types of experiments (Fig.
6). By 50—60 GPa, the best-fit isentrope to the Hugoniot
begins to deviate to smaller volumes that are well outside
the uncertainties of the ultrasonically based adiabat.
This is shown with greater clarity in Fig. 7, which gives
Birch's normalized pressure

F =P/[3f (1+2f) ]

as a function of the Eulerian finite-strain variable

f =[(V/Vp) ~ —1]/2 .

In the Eulerian finite-strain formulation, the normalized
pressure is a polynomial in the strain

FIG. 6. Experimentally based adiabatic equation of state for
bcc Mo, showing pressure as a function of volume upon isentro-
pic compression from ambient conditions. The adiabat ob-
tained from a reduction of Hugoniot data (Ref. 15) (thin curve)
is compared with that obtained from the ultrasonically mea-
sured adiabatic moduli (Ref. 9) (bold curve; shading indicates
the estimated uncertainty). The latter is derived from the ul-

trasonic moduli by way of the third-order Eulerian finite-strain
expression [i.e., a, =0 in (2)].

a, =3(Bp —4)/2,

a2 =3[BpBp +Bp(Bp 7)+—]/2

(3)

(4)

being the third-order and fourth-order terms, respective-
ly. ' ' For comparison, we have used the third-order
form of (2) to derive the equation of state of bcc Mo from
the ultrasonically determined moduli. Thus, the observed
adiabatic compression, as deduced from the shock-wave
data, defines a much softer equation of state than would
be expected from the ultrasonic measurements. Above
about 130 GPa, the ultrasonic and shock-derived adia-
bats differ by more than their combined uncertainties
(Fig. 7). The result is that the adiabatic values Bps and
BOg inferred from the Hugoniot data, " ' corresponding
to the slope and intercept at f =0 in Fig. 7, are, respec-
tively, larger and smaller than the exact values obtained
ultrasonically.

Because the ultrasonic measurements were carried out
only to 0.5 GPa, they cannot reAect the changes in
electronic-band populations that occur primarily above
100 GPa (Fig. 1). Thus, the simplest reconciliation of the
ultrasonic results with the shock-wave (and static-
compression) data is to invoke a softening of the equation
of state of bcc Mo due to the 5s ~4d electron transfer at
finite compressions. This softening can be accommodat-
ed in the Eulerian finite-strain equation of state by adding
the fourth-order term (4) in the expansion (2). Simultane-
ously fitting the Hugoniot data ' and the ultrasonic
measurements (with parameters Bpz =262.5+0.6 GPa
and a, =0.7+0.2), we obtain the adiabatic value of
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a2 = —6.8+1.2 and thus BUBO~ = —9.1+0.8 from a
weighted least-squares analysis.

As shown in Fig. 7, the fourth-order equation of state
derived from these parameters satisfies all of the available
data. We note that our value for the fourth-order term
implies a shift in B' of only 0.02 between pressures of 0
and 0.5 GPa. This shift is much smaller than the uncer-
tainty of 0.1 estimated for the ultrasonic measurement of
B', so the a2 contribution would not have been noticeable
in the experiment of Ref. 9. Furthermore, our refinement
of the equation of state for bcc molybdenum does not
affect the calibration of the ruby-fluorescence scale be-
cause the pressure shift of the ruby fluorescence is con-
strained directly by the reduced Hugoniot data. Instead,
the incorporation of a fourth-order term, reflecting the
softening of the equation of state at elevated pressures,
brings the ruby-fluorescence calibration and the ultrason-
ic measurements on Mo into mutual agreement.

We recognize that the softening, or enhanced compres-
sion, of the equation of state associated with the bonding
change affects the vibrational Gruneisen parameter be-
cause of the dependence of y on the first and second
derivatives of the P-V curve. In the present case the
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FIG. 7. Experimentally based adiabatic equation of state for
bcc Mo, showing Birch's (Ref. 20) normalized pressure F as a
function of the Eulerian finite-strain measure f upon isentropic
compression from ambient conditions (the corresponding pres-
sure is given on the upper scale). The shock-wave adiabat (thin
curve) and ultrasonic adiabat (bold curve; shading indicates the
estimated uncertainty) are identical to those in Fig. 6. The
Hugoniot data of Ref. 21 are shown reduced to the adiabat ac-
cording to the Mie-Gruneisen approach described in Refs. 30
and 31 (circles with error bars), with the end of the diagonal tie
line on each point showing the I' fvalue for the raw H-ugoniot
measurement. The open point at f=0.145 represents a datum
that may be at sufficiently high pressures to be in the high-
pressure (hcp?) crystalline phase (Ref. 1). The dotted curve is
the fourth-order Eulerian finite-strain adiabat that is fitted to
the (reduced) Hugoniot measurements (Ref. 21) and the low-
pressure ultrasonic data (Ref. 9).
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the reliability of the values shown (thin curve, dashed where in-

terpolated). The shaded curve gives the expected change in
Poisson's ratio with isothermal compression of the bcc phase of
Mo, as obtained from the ultrasonically measured elastic moduli
(Ref. 9) and third-order Eulerian finite-strain theory (Ref. 20).
The inferred ranges of Hugoniot pressures for two crystalline
phases (bcc and hcp7) and melt are also indicated (Ref. 1).

effect is subtle, amounting to a decrease in the logarith-
mic volume derivative of y from a high value (q —1.9) at
low compressions (1.0) V/Vo) 0.8) to a more typical
value of q -0.9 at high compressions ( V/Vo (0.8). This
change in q is accounted for in our calculation of the
high-pressure vibrational Gruneisen parameter, but it
does not have any quantitatively noticeable influence on
our calculations or analyses of Hugoniot data. Still, it is
noteworthy that the large initial value of q is in good
agreement with a recent investigation of the high-
temperature bulk modulus of molybdenum at zero pres-
suf e.

The Hugoniot sound-velocity measurements of Hixson
et al. ' offer independent support for the proposal that
the elastic moduli of bcc Mo are affected by the s~d
transfer of electrons at high compressions. Displaying
their data as Poisson's ratio v versus pressure, three
anomalies are evident (Fig. 8). First, the observed values
of v decrease with increasing pressure below 210 GPa;
then, there is an abrupt change in slope at about 210
GPa; and finally, Poisson's ratio is seen to increase sud-
denly to v-0. 5 near 400 GPa. The second and third of
these anomalies are well explained by solid-solid and
solid-liquid transitions, as discussed by Hixson et al.

The decrease in Poisson's ratio observed between 150
and 200 GPa is not so easily explained, however, because
the effect of pressure is normally to increase rather than
decrease v. That is, the shear modulus should increase
less rapidly than the bulk modulus on compression, con-
trary to what is shown for bcc Mo above 150 GPa (Fig.
8). For example, if the effects of phase transitions and
strength are discounted, Poisson's ratio has been ob-
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served to increase in previous measurements of Hugoniot
sound velocities (e.g. , Refs. 24 and 25). Moreover, our
expectation that v increases with pressure is illustrated by
the ultrasonic measurements, as shown in Fig. 8. Note
that it is the average value of Poisson's ratio, correspond-
ing to the isotropic aggregate value of the shear modulus,
that is pertinent here; thus, v depends on a combination
of all of the single-crystal rnoduli. The additional effect
of temperature increasing along the Hugoniot (Fig. 5) can
only serve to increase Poisson's ratio further.

One possible explanation is that the bcc phase trans-
forms continuously to the hcp(r) phase between 150 and

200 GPa. The decrease in v would then simply reflect an
increase with pressure in the amount of the new phase
that is present relative to the bcc structure. We consider
this hypothesis implausible, however, because pressure-
induced bcc~hcp transitions are known to occur with

little hindrance in elements. This conclusion holds
especially for shock compression, in which local shearing
can induce the transformation, as is nicely illustrated by
the e~c transition in Fe.

Two additional effects that we ignore are the influence
of textures (preferred crystallographic orientation) and
the possible existence of a second high-pressure phase,
other than the hcp(?) or the original bcc phases, between
150 and 200 GPa. Primarily, we ignore these possibilities
because there is no independent evidence for either (e.g. ,

from the observed Hugoniot equation of state). ' In addi-
tion, it is unlikely that the average Poisson s ratio that is
derived from the Hugoniot sound-velocity measurements

can be sufficiently influenced by texturing of bcc Mo to
yield the observed magnitude of the decrease in v at high
pressures. Similarly, the enhanced compressibility of
molybdenum at high pressures is too subtle to influence
the vibrational Gruneisen parameter enough to affect the
results shown in Fig. 8 (see also, Ref. 1).

The shock-wave data suggest, therefore, that Poisson's
ratio of bcc Mo decreases anomalously at approximately
the same pressures that the s ~d transfer becomes
significant. The increase in d character with compression
apparently contributes to increasing the shear modulus
and, relatively speaking, to softening the equation of
state. As noted by Katahara et al. , a large increase in
shear modulus with pressure is typically associated with a
small value of the electronic Gruneisen parameter; this is
consistent with our calculated results. Moreover, a
softening of the equation of state caused by a bonding
change reconciles the existing elasticity and high-pressure
equation of state data for molybdenum.
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