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A study of the conductance in a disordered linear chain of finite length L including inelastic
scattering processes is presented. Inelastic scatterers are introduced as defined by Buttiker and are
assumed to be uniformly distributed along the system. This defines an inelastic scattering time ~,„
plus a condition of charge conservation which in turn introduces incoherent electrons. The four-

probe conductance of the system is then reduced to a Landauer-like behavior G =2(e Ih )T,ff/
(1 —T,ff), where the effective transmission through the sample, T,ff, is the sum of two terms, one of
which accounts for the phase-coherent electrons which have not suffered any inelastic collision and
another for electrons which have suffered at least one inelastic collision in their journey. To show

explicitly this point, the conductance of an ordered system is analyzed. Analytical and numerical
results are presented for disordered chains, where resonances in the transmission present a width

which is associated with the minimum between the escape time and the relaxation time. Because of
the denominator in the Landauer formula, strong fluctuations on the conductance are present even

in the weak-disordered situation in which the localization length A, & L, but we observed that they
become of order e /h when the inelastic scattering length L,„=L. Further decrease of the inelastic
length causes the fluctuations to reduce following similar laws to that of the metallic regime.

I. INTRODUCTION

Transport phenomena in small systems have shown a
rich variety of effects when some external parameter is
varied. Some examples are resonant tunneling, the
Aharonov-Bohm effect, and conductance fluctuations in
metals. In all these effects, the quantum-mechanical
coherence plays a crucial role. Unlike macroscopic sys-
tems, where the ensemble average provides the right
answer, the transport properties in mesoscopic systems
are strongly dependent on the specific sample under con-
sideration. In order to study the conductance of these
systems, the Landauer approach' has been extensively
used. In its most simple version, this gives the conduc-
tance in terms of the transmission coeScient between two
one-dimensional perfect current leads attached to the
sample. The formulation assumes very low temperatures
and that the phase coherence length is larger than the di-
mensions of the sample. Finite temperature effects have
been introduced only by taking into account the thermal
population of the reservoirs connected to the perfect con-
ductors, and extension to multiple channel perfect
leads has also been given. However, all these formula-
tions maintain the assumption that, within the sample,
carriers only suffer elastic collisions. Recently, a general-
ization of the Landauer formalism has been proposed by
Biittiker to include voltage probes explicitly. Then he
realized that any additional lead coupled to the sample
and connected to an electron reservoir can be thought of
as either a voltage probe or as an inelastic scatterer. The
method has the advantage that the quantum-mechanical

coherence of the sample is not completely lost because
averaging procedures are not used. In Ref. 8, a systemat-
ic study of the resistance of a sequence of elastic scatter-
ers as a function of the number of inelastic scatterers be-
tween them was given, showing the transition from the
coherent case to the completely incoherent one. In that
work, the inelastic scatterers were modeled in terms of a
scattering matrix with a coupling parameter that mea-
sures the strength of the incoherence introduced.

The aim of this paper is to present an alternative way
to model the strength of the inelastic scatterers in order
to examine, in particular, the conductance of a one-
dimensional disordered chain. Unlike Ref. 8, we define
each inelastic scatterer in terms of an electron reservoir
coupled to the sample by only one perfect wire. Nearest-
neighbor tight-binding Hamiltonians are employed to
simulate both the sample and the perfect conductors at-
tached to it. The basic idea is to use the tight-binding pa-
rameters of these lateral perfect leads to represent the
coupling of the inelastic scatterers to the sample. It will
be shown that an adequate choice of the site energies
makes it possible for the hopping parameter to play this
role. In this way the effect of the inelastic scatterers is to
introduce an imaginary part to the energy levels at the
sample sites to which they are connected. Besides, we
adopt the Biittiker proposal of self-consistent calculation
of the chemical potential in such a way that no net loss or
gain of particles is produced. This condition introduces
incoherent electrons to allow a steady-state current to
flow along the sample.

To study the conductance of a disordered chain we in-
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troduce as many inelastic scatterers as the number of
sites in the sample. Thus phase randomization processes
are uniformly distributed along the system. We present
both analytical and numerical results for different degrees
of disorder and as a function of the inelastic scattering
time.

II. OUR MODEL AND ITS SOLUTION

The model used to study the conductance of the disor-
dered chain with inelastic scattering corresponds to the
situation depicted in Fig. 1. The disordered chain and
the perfect conductors which couple it to the reservoirs
are both simulated by a nearest-neighbor tight-binding
Hamiltonian H. The chain representing the sample ex-
tends from site 1 to X and a is the lattice parameter. The
hopping parameter is V and the site energies take on ran-
dom values within the interval ( —W/2, W/2) (Anderson
disorder). At both left and right sides, the chain is con-
nected by perfect leads (channels 0 and N +1) to electron
reservoirs. The hopping parameter in both leads is also V
and their site energies are all equal to zero. Therefore we
have a perfect matching between these channels and the
sample if no disorder is present in the latter. This is the
most usual configuration in the Landauer formalism.
Phase randomization processes are included by connect-
ing inelastic scatterers to the sample. We represent an in-
elastic scatterer as an electron reservoir coupled to the
chain through a perfect lead. Each site of the chain is
connected to a different inelastic scatterer. We have used
the same index for sites, channels, and reservoirs to avoid
confusion. Unlike the other perfect leads, channels
i =1,2, . . . , N have hopping parameter g and their site
energies are all equal and different from zero. We call
them E„ for the moment.

Let us briefly derive the conductance of the system for
completeness. A very clear and detailed presentation of

the approach is given in Ref. 8. Here we summarize the
principal facts. It is assumed that the temperature is
small enough and the effects of thermal population in the
reservoirs are neglected. Then the net current in each
channel is determined by the chemical potentials pL, JM~,

and p, ', i =1,2, . . . , X if the transmission and reflection
probabilities T, and R;,- are given. T, is the transrnis-

sion probability from channel j to channel i and R,-, is

the reflection probability at channel i. Taking pL )p&,
the condition of no net current flow at each lateral reser-
voir i implies the following relations:

N

(1—R, ; )(p, —pz )
— g T;,(p, pg )—

j=1 (Jwr)

—T, o(pL p„)=—0, Vi =1,2, . . . , N . (2.1)

Here all contributions to current in the ith channel are
summed: the first term on the left-hand side is the outgo-
ing current, the second term involves the currents flowing
from different lateral reservoirs to the ith channel, and
the last term gives the contribution to the current of the
left reservoir. Notice that this is completely equivalent to
requiring current conservation along the sample, since
the net current at each link between two consecutive sites
in the sample becomes a constant. Chemical potentials

p, , i =1,2, . . . , N, are determined by imposing that Eq.
(2. 1) could be satisfied simultaneously. Therefore, they
are given by

N

pi pR g ~ iJ j,0 (pL pR) &

j=1

Vi =1,2, . . . , N, (2.2a)

where 8' is the inverse matrix of the symmetrical rna-
trix 8'given by
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L~ n

7

DISORDERf 0 CHAIN
f CHANNEL(N+1)

0
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FIG. 1. Representation of the model. The chain extends from site 1 to site X and is connected by perfects leads (channels 0 and

N + 1) to electron reservoirs. To each site of the sample an inelastic scatterer is coupled.
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1 —R11
—T2, 1

—T1,2

1 —R22
(2.2b)

—TN, 1 TN, 2 RN, N

Using Eq. (2.1b), the current through the sample is only

given in terms of the difference between the chemical po-
tentials pL and p~:

28I= Telf(OL OR ) ~ (2.3a)

where

N —1
eH' iV+1 0 X iV+1 i ij j0 '

ij =1
(2.3b)

This effective transmission has a clear physical interpre-
tation. The first term is the probability of a coherent tun-

neling through the system, while the second term ac-
counts for the electrons which have already suffered

phase randomizing scatterings at the lateral reservoirs.
Different perturbative orders in this process could be ob-
tained in a series expansion of 8' . Therefore, Eq.
(2.3a) defines the two probe conductance of the system in

the presence of inelastic scattering:

2e
GTP=

~
Teff. (2.4)

Pa Pz
eff

(PL PR ) (2.5a)

eff
PB PR 2 PL O' R (2.5b)

Therefore, the final result for the four-probe conductance
is

In order to obtain the four-probe conductance, the
voltage across the sample should be obtained as the
difference between the chemical potentials in two voltage
probes: eV=p„—pz. %e will follow Engquist and An-

derson ' defining two infinitesimally coupled voltage
probes, A and 8, attached at sites 0 and N +1, respec-
tively. Therefore, the zero current condition, characteris-
tic of voltmeter probes, can be obtained applying Eq. (2.1)
to both channels. The corresponding transmission proba-
bilities can be evaluated considering only the lowest order
in e, the transmission probability toward a lateral lead:
1 —Rq q =1—R~~ =2@; Tao ET ff and Tg O=E'

+e(1—T,~). These give

they also depend on the perfect leads that introduce
current to the system. ' This is just used to simulate the
inelastic scattering in the sample. A further remark is
convenient. The definition of Tg p used above assumes a
random phase between the incident and reflected waves,
which is not exact when evaluating the A contact. This
is also the assumption of the evaluation of the chemical-
potential difference through the piled-up charge ' at in-
coming and outcoming channels. However, Buttiker'
has recently pointed out that in the absence of phase-
breaking processes this could be not quite accurate, be-
cause interference effects may increase slightly the con-
ductance.

Now, let us return to the parameters of channels
i =1,2, , ¹ To compute Landauer's type formulas, the
transmission and reflection probabilities are always calcu-
lated between plane-waves solutions in the channels at
the Fermi energy E=EF. This means that channels are
assumed infinitely long. Under these conditions it be-
comes convenient to evaluate the transmission probabili-
ties in terms of the matrix elements of the exact Green's
function of the whole system, G(E)=(E 0) ', a—s given
by Fisher and Lee:

T, = u, u, iG, (E)ia' '' (2.7)

2

r
(2.8)

Analogous expressions give X, in terms of X2 and so on.
Since the lateral leads are infinite and ordered, it is clear
that a site on the sample sees attached from below (see
Fig. 1) the same semi-infinite portion as any other site in
the lead itself, therefore'

X~ =X„, Vn =1,2, . . . .

Hence, Eq. (2.8) has a solution:

(2.9)

where subscript i (j) indicates a site in the sample chain,
and u, (u, ) is the Fermi velocity at the corresponding la-
teral chain. A further simplification is possible because
an exact decimation scheme allows us to include the
effect of the leads through the self-energy corrections in
the sample Green's function (see Ref. 11 and references
therein). In this scheme the correction to the self-energy
XB(E) of any site in the sample due to the presence of the
lateral chain attached to it can be written in terms of
correction X1 at the first site of the lead due to the semi-
infinite portion further away:

2e eff
2 T

h 1 —T,ff

(2.6)
E —E

X

2 1/2
r

(2.10)

The analogy of Eq. (2.6) with the Landauer formula is ap-
parent from the discussion of Eq. (2.3b). Note that the
spin degeneracy of the electrons has been included. Al-
though the form of Eq. (2.6) is independent of the param-
eters that describe the current leads, this is not true for
the transmission and reflection probabilities T; and R;; ~

Therefore the chemical potentials and the conductance
are determined not only by the sample properties, but

where the sign in front of the square bracket corresponds
to a retarded Green's function. This is the basic pertur-
bation introduced by the inelastic scatterers to each site
in the sample. The Fermi energy E is assumed to be in-

side the band, otherwise no current can flow through the
channel. Site energies are corrected by the real part of
the self-energy which only affects the energy levels of the
system. Due to the damping introduced by the imaginary
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part of the self-energy, a portion of the current which
flows through the sample goes away through that chan-
nel. The key point of the approach is that by including
the reservoirs and imposing no net current flow into them
the current is conserved along the sample. Phase coher-
ence is lost because the reservoirs introduce a carrier with
a random phase for each one "lost" in the reservoir. It is
clear that phase randomization is more effective when
more current ffows into the leads toward the reservoirs,
which happens when the damping is stronger. Our inten-
tion was to simulate all the inelastic scattering processes
by a uniform damping in all the sites of the sample.
Looking at Eq. (2.11), one immediately sees that adopting
E„equal to the Fermi energy E under study of the self-

energy is purely imaginary: X~ = —i q; g & 0. This is
equivalent to requiring that the band center of the leads
should coincide with the Fermi energy of the system. In
this way the leads only introduce damping at the sites of
the chain. With this criterion, the inelastic scattering
strength is governed by the hopping parameter g, which
is proportional to the bandwidth of the leads. However,
observe the generality of the model in the sense that it
can represent any interaction provided that it gives a
finite lifetime to the electron state at each site.

In these conditions the transmission probabilities in-
volved in (2.3a) become

III. THEORETICAL RESULTS

A. Ordered chain

which has a general solution'
2 ' 2 1/2

1K= —arccosh
a

E —2V
4V 4V

+

2
E+2V

4V
'

4V

'2 1/2 '

It is interesting to begin with the study of an ordered
chain to show explicitly that the strength of the inelastic
scatterers is well described in terms of an inelastic
scattering time ~;„. As a first step, one needs to evaluate
the transmission coefficients T,- . Due to the good
matching between the channels 0 and %+1 with the
sample, it is easy to evaluate (2.11) up to corrections of
order a/L;„, where L;„=ur;„ is the inelastic scattering
length. The Green's functions present an exponential de-
cay because of the damping introduced by the complex
self-energies. In an infinite system, the general behavior
of this damping is given by the dispersion relation in
terms of the wave vector k and its complex K:

& —i' =2 V cos(k +is )a,

DN+i=~Gi, z~ "'

TD, = (G, , ('2riu', T, „+,= ~ G, ~ ~'2gu',

T;~=~G;/~ 4g, Vi j =1,2, . . . , N,

(2.1 1)
K

7l

2Va

2V

but it reduces to

7l

Au (E) 2L;„
(3.1)

where U'=2V sinka is proportional to the Fermi velocity
v =v'a/A' at the channels 0 and N +1, and 2g is propor-
tional to the Fermi velocity u, =2ria/fi at the inelastic
scatterers channels. The reflection coefficients 8, , verify

R;; =1—g ~~;~ T; by current conservation.
Observe again that we have shown for our model that,

in the evaluation of the Green's function, the presence of
the lateral chains is taken into account by introducing an
imaginary shift in the site energy. The identification of
this parameter with the imaginary part added externally
to the energy levels in the Kubo formulation' is straight-
forward. Therefore we could define an inelastic scatter-
ing time as r;„=A/(2g). In other words, the inelastic
scattering in the sample is described in terms of an imagi-
nary potential —iq plus the condition of current conser-
vation which fixes the chemical potential at each sample
site. We have shown that this potential could also be in-
terpreted either as the perturbation of a lead with ap-
propriate parameters coupled to each site of the sample
or originated in any relaxation process which provides a
mean life to the electronic states. Therefore we are able
to compute transmission coefficients and to empoly the
Buttiker approach. For g=O, Eq. (2.6) reduces to the
Landauer formula. In this limit, each term in the sum-
mation in Eq. (2.4) is zero and Ta++& is the usual
transmission coefficient T.

provided that u/a »r, „.
Therefore, the approximate transmission coefficients

are

TN+, v-exp[ (N —1)a /L;„—], (3.2a)

T, 0- exp[ (i —1)—a /L;„],
in

a
T~+, ;

— exp[ (N i )a /L—;„],—
in

2

exp[ —
~i j~a /L, „] . —a

in

(3.2b)

(3.2c)

(3.2d)

It is useful to discuss the clear physical meaning of these
terms. This comes from the observation that the factor
a/L;„measures the probability of an inelastic collision a
given site for an electron traveling with the Fermi veloci-
ty. Hence (3.2a) is the probability that an electron travels
from the reservoir on the left to that on the right without
any inelastic collision. (3.2b) is the probability that an
electron emerging from the left reservoir travels without
collisions but it suffers a collision at site i so it is absorbed
by this reservoir. (3.2c) is the opposite of the latter; the
inelastic collision picks up an electron from the reservoir
at site i which travels towards the reservoir on the right
without further inelastic collisions. Obviously, in (3.2d) a
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collision introduces an electron at i which travels to site j
phase coherently, and there it suffers a new inelastic
event.

Now, we are required to obtain the chemical potentials
in a way such that the current is conserved along the
sample. If the length of the chain goes to infinity the
problem simplifies considerably. In this case, only the
transmission coefficients T, between the inelastic
scatterers channels appear in the problem and it is
straightforward to verify that a linear solution p, = Pi—a
satisfies the requirement of current conservation. We will
see that this solution is also valid for a finite chain. How-
ever, some care is needed with the chemicals potentials

pz and pR, for these do not follow the linear dependence
introduced above. A finite jump should be included be-
tween pr and p, (p~ and pR ) in order to account for the
contact resistance that appears between the reservoirs
and the channels 0 and N + 1.

Therefore we consider

Finally, the four-probe conductance becomes

2e& 2L,„
h L

(3.9)

(3.10)

Hence, the conductance of the sample corresponds to the
Drude formula in terms of an inelastic scattering time. "
Notice also that p „and pz, unlike pz and pz, follow the
same linear behavior as the chemical potentials p; of the
inelastic scatterers reservoirs. In fact, one can define the
four-probe conductance between two arbitrary sites
within the sample by employing these chemical poten-
tials. These values will be the same as those measured by
an infinitesimally coupled voltage probe to the same site
of the sample, which is the same assumption used to ob-
tain p„and p&. Therefore, the four-probe conductance
between site i and site j is

p, ,
= —Pia, Vi =1,2, . . . , N,

(3.3)

PR = P(N+1—)a —b, .

Current conservation requires

(3.4)

Inserting Eqs. (3.2) and (3.3) into Eq. (3.4), the equality is
valid for alii as long as

b =PL;„ (3.5)

28 N

X ~Jv+t, &(P& PR)+~w+t, o(Pc, PR) .
i=1

(3.6)

Inserting Eqs. (3.2) and (3.3) into Eq. (3.6) and using Eq.
(3.5) we obtain after some algebra

I= 2PL;„, (3.7)

where, as before, corrections of order a/L;„have been
neglected. The current can now be written in terms of
the difference p&

—pz obtaining in this way T,&.

eff
1

1+L /2L, „
with L = (N + 1)a. Since p „and pR are given by

(3.8)

PR= —(N+1)Pa .

up to corrections of order a/L;„, which are neglected.
Now the current fiowing along the sample can be ob-
tained either at any link between two consecutive sites
within the sample or at the channels 0 and N+1. Of
course, the result will not depend on which one. In par-
ticular, -it can be evaluated at the channel N + 1,

It should be remarked that these results are strongly
dependent on the assumption of weakly coupled voltage
probes which could be defined, for instance, as the inelas-
tic scat terers introduced with an g parameter
infinitesimally small. If a pair of strongly coupled voltage
probes to the sample is attached, these results will not be
valid in general. The importance of this feature has been
emphasized recently in several works dealing with con-
ductance fiuctuations in metals. ' '" ' They are valid
only when the voltage probes are separated a distance
L„»L;„. In order to show this point we introduced a
pair of voltage probes in which their perfect leads were
identical to channels 0 and N + 1 and the chemical poten-
tials p; were evaluated numerically. These are plotted in

Fig. 2 for a chain with N=200, where L„,=15a. The
chemical potentials at sites 30 and 100 correspond to the
voltage probes, whereas all others correspond to the in-
elastic scatterers. It is clearly observed that the chemical
potentials are perturbed due to the probes. At both sides
of the probes there appear oscillations, with a period m/k
as the Friedel oscillations, whose amplitude decays ex-
ponentia11y over length scales of order L;„. Therefore,
for regions apart some L,„ofthe probes the chemical po-
tentials will follow the linear dependence. Hence, Eq.
(3.10) will be corrected approximately by a factor
(1+bL,„/L, ), where b is a number of order unity. For
L„»L,„ this factor becomes negligible but it is very im-
portant when L;„»L, .

Another important point in the evaluation of the con-
ductance was the perfect matching between channels 0
and N + 1 and the sample. This feature makes possible
that the self-consistent p s follow a linear variation
through the whole sample. Of course, if arbitrary leads
were employed they should affect the result. As in Fig. 2,
oscillations appear at both sides of the chain whose am-
plitude also decays exponentially. Therefore, the linear
dependence is recovered after some lengths L;„ from the
contacts (sites 1 and N). This shows that the specific
leads used to introduce the current are unimportant as
long as the voltage is measured between points placed
some L;„apart from the sample ends.
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current lead. It is given by an expression similar to (2.10)
with g replaced by V. For the case considered here this is

X~ =EL =6/2 —i I /2=E/2 —iU'/2 .

The exact Green's function can be obtained in terms of
G by using the Dyson equation G=G +G X G. As
we are interested in the resonances associated with the
eigenstates of the isolated chain, instead of the exact G
we will take approximately

V V

Q& aI a~
G

E —E'+i g
(3.14)

which is valid for E near to the eigenvalue E' provided g
is small in comparison to the level separation. Otherwise,
the importance of the neighbors levels is not negligible.
By using the Dyson equation and Eq. (3.14) one finally ar-
rives at

PR
100

Site Index
200 a,'a '

G
(F. F. " b—')+i —(r)+ I )

(3.15)

FIG. 2. Chemical potentials p, along the sample for a chain
with %=200 and J,„=15a. Chemical potentials at sites 30 and
100 correspond to a pair of strongly coupled voltage probes.

B. Disordered chain

It is well known that the coherent transmission
coefficient through a disordered region consists of a su-
perposition of resonances as a function of the Fermi ener-
gy.

' ' We are interested in how are they affected by the
presence of inelastic scattering. As in the preceding sec-
tion, the exact retarded Green's function in the sample
should be obtained in order to compute the transmission
coefficients, which requires us to include the perturbation
due to all the channels. If they were uncoupled, the
Green's function would be that of the isolated disordered
chain

with

2e
Tw+&, o(PiPz )+ g . Tz+&. i P( Pri

I =1

2e
h

T.e(PL PR)

which gives

(3.16)

b"=b(a', +a~ )/2,

I „=I (a )' +a~ )/2,

where fi/I „ is the time for a particle in the state v to es-

cape through the boundaries of the sample. The T, 's

can now be evaluated using Eqs. (2.11) and the condition
of current conservation is satisfied if (p, ;

—
pR ) =[a; /

(a~ +a; )](pL —
pR ). Finally, we can compute the

current

a,'a '
E ~v (3.11)

I,,(I,, +g)
Teff' TQ

(E E' b, ') +(I—,+ —
)

(3.17)

where a is the amplitude of the wave function with an
eigenvalue E' at site i. The inelastic scatterers only in-
troduce an imaginary potential —iq independent of the
site. Thus their effect is trivial and the corrected Green's
function is

GO'
a, a

(3.12)

where Xz (XL) is the self-energy correction of the first
(last) in the sample due to the presence of the semi-
infinite lateral chain at the left (right) representing the

Finally, we must include the self-energy corrections in-
troduced by channels 0 and %+1 at sites 1 and X, re-
spectively. This perturbation has the form

(3.13)

where

4a ~2a '-2
1 A

TQ—
(a v2 +a v2 )2

This extends a previous result in which inelastic scatter-
ing events in the sample were not included. ' By using
the Breit and Wigner formulas, a similar result was ob-
tained by Buttiker for the total transmission through a
double barrier. Let us point out that Eq. (3.7) is also val-
id if many-channel perfect leads are used to introduce the
current instead of strictly one-dimensional leads. The
evaluation is similar to that presented here. The only
difference is that I,, and 5 should be computed using the
self-energy contribution of these many-channel leads to
the sites 1 and X. This is a crucial point, because in this
case the use of the two-probes conductance remains valid.
To is the peak value at the resonance for g =0 and is re-
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lated to a generalized symmetry of the wave function at
both sides of the sample. If the magnitudes of a, and a~
are equal, To= l. 1, is the half-width of the resonance
for q=O and is entirely due to the coupling of the sample
to the channels 0 and N +1. This coupling also shifts the
center of the resonance in b, from the exact eigenvalue
E . In the presence of inelastic scattering events, both
the half-width and the peak amplitude are corrected:

I =I",, +x] .
(3.18)

Therefore, in the presence of inelastic events, the new
characteristic time associated with the resonance width is
the shorter of the escape time and the inelastic one. The
effective transmission T,ff decreases near to the resonance
center and increases for energies situated away from the
resonance center. Let us emphasize that Eq. (3.17) is in-
dependent of the specific nature of the disorder and is
valid as long as the shift b and g are small in cornpar-
ison to the level separation. The first condition is obeyed,
for example, in strongly disordered system as the ampli-
tudes of the wave function at both sides are exponentially
small. When q, which is a temperature-dependent pa-
rameter, becomes comparable or larger than the level
separation, Eq. (3.4) is no longer valid. In this case, all
the states situated in a range 2g around the Fermi energy
will contribute to the total effective transmission. In the
next section, a numerical study is presented for this re-
gime.

very sharp due to the fact that I, depends on the ampli-
tudes of the wave function at both sides of the sample and
these are exponentially small. We will consider the effect
of the inelastic scattering in both extreme cases. That is,
for E at a resonance peak and just at the bottom of the
valley between the resonance and another neighbor to it.
Typical numerical simulations are showed in Fig. 3 for 6
as a function of L;„/L. Note that L;„=Us.;„ is no longer,
in general, the mean length over which the carriers prop-
agate between successive inelastic collisions, because the
chain is disordered. The sample contains N=100 sites
and k-12a. This value has been obtained by using the
scaling law for a tight-binding chain. Let us consider
the numerical data. It can be seen that when q & I,, the
resonance peak [Fig. 3(a)] takes on its asymptotic value

To. The same happens for the valley (Fig. 3) where G is

exponentially small. Only when g becomes comparable
to F',, do both curves begin to be affected. The resonance
peak decreases, as was shown in the preceding section,
whereas at the valley the conductance increases. This
point can be understood because the width of the two
neighbor resonances is larger than before, increasing the
e6'ective transmission. The theoretical result Eq. (3.18)
for the resonance peak was plotted with a dashed line by
using the values of I,, and To measured from the reso-
nance shape for g=O. Note that the fitting is extremely
good for the range of validity of the approximation.
When g becomes comparable to the level separation
(which means L;„-L if the density of states of an or-

IV. NUMERICAL RESULTS

The computation of Eq. (2.6) involves two basic steps.
One of them is to evaluate the retarded Green's function.
This can be done by employing a recursive technique'
which also has been extended for many-channel sys-
tems. -"' The other step is to evaluate T,ff. We have used
a decimation scheme which does not require the compu-
tation of the inverse matrix of O'. The procedure consists
of eliminating one by one all chemical potentials by using
the equation of current conservation. This renormalizes
the transmission coefficients between all the remaining
channels and, by iteration, all the chemical potentials of
the inelastic reservoirs are finally eliminated and T,f is
obtained. In addition, the same method provides the
chemical potentials by using T,& and the renormalized
transmission coefficients. The associated problems are
the large storage area needed and the number of arith-
rnetic operations involved. Hence we have used chains
no longer than 500 sites.

A. Strongly disordered chain

10
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)0 2 &0o

1

101
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1 I
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L, A
/L
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We first consider a chain with Anderson disorder when
k(L. Here, A, is the localization length of the square of
the wave function. In this case, the coherent transmis-
sion coefficient is exponentially small for almost every en-
ergy. Only for energies near to a resonance center will its
value be appreciable, ' ' because the resonances are

FIG. 3. Conductance in a strongly disordered chain ()i &L)
as a function of L,„/L: curve a is just at the peak of a resonance
and curve b is at the bottom of a valley near to the resonance.
The dashed line at the right corresponds to the theoretical re-
sult for the conductance in a resonant situation. The dashed
line at the left corresponds to the Drude formula, Eq. (4.1).
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nances become wider and this also reduces the fIuctua-
tions. For L;„-Lboth facts make the conductance fluc-

tuations 56 be of order e /h, as it is seen in Fig. 4(b).
It would be interesting to see how the observed behav-

ior compares with that of metallic systems. In these, it
has been shown that the fluctuations 6G are of order
e /h as long as L;„ is of order of the sample length L and
the disorder is weak (A, &L). The inelastic or phase-
breaking length is given by L;„=(D r;„)' because the
electron motion in these systems is diffusive (D is the
diffusion constant). When L;„(L,5G decreases propor-
tionally to (L,„/L) for quasi-one-dimensional strip
geometries. This result has been interpreted in terms of
the classical addition of L/L;„series resistors, each one
with an uncorrelated fluctuation of order e /h which has
been confirmed experimentally. We have found that
strictly one-dimensional systems also show this behavior,
but in terms of L;„=U~;„. This is because in one dimen-
sion the electron motion is either ballistic or local-
ized' ' ' and k & L corresponds to the ballistic regime.

To obtain a qualitative estimation of 5G we employ the
ergodic hypothesis of Lee et aI. and compute the mean

(g ) [g =6/(e /h )] and the root-mean-square deviation
5g =((g ) —(g ) )' over an ensemble of 500 systems.
These values are

(gp) -2.81, 5gt, -0.74; L;„=L=A/4

just at the center of the band. We have also computed 5g
for L;„&L for the same energy and with an ensemble as
before. These values are plotted in Fig. 5, where 6g has
been normalized to the value 5g& (open circles). In the
same figure the theoretical dependence 5g =5g&(L;„/
L )

~ has been plotted for comparison with a dashed line.
The agreement is quite good. Based on these results, one
could be tempted to study 5g for L,„)L, taking into ac-
count that recent experiments show that this increases as
(L;„/L) approximately for diffusive transport. ' '' It is

clear that 5g will increase in the model because the reso-
nances are less influenced by the inelastic scattering. Fi-
nally, we also have compared our results with the pertur-
bative theory of Ref. 18. They showed that the fluctua-
tions follow 5G=(e /h)((G)/ 6&) t( ), where (6) is

the average conductance of the sample, G& is the average
conductance of a sample of length L,„, and t( ) is a di-
mensionless function of order unity. Adopting t( )=5g&,
this relation was also plotted using the numerical results
for (6) in Fig. 5 (solid circles). Good agreement be-
tween the perturbative prediction and the numerical data
(open circles) is obtained.

We should remark once again that strong values of the
conductance fluctuations observed in our weak disor-
dered systems are a consequence of the smallness of the
denominator in the generalized Landauer's formula (2.6).
The expression (2.4) would present much weaker fluctua-
tions instead. Therefore, the manifestation of this behav-
ior in real experiments would depend on which descrip-
tion is more appropriate. Even for a four-probe measure-
ment, notice that the conductance given by Eq. (2.6), al-

though it corresponds to a four-probe measurement, as-

sumes that the voltage probes are infinitesimally coupled
to the ideal perfect leads. As we mention before,
numerous recent papers ' ' remarked the importance
of the voltage probes, which in a real experiment are not
only strongly coupled to the sample, but also are disor-
dered and should include inelastic scattering processes.
These features turn out to be very important when the
separation between the voltage probes verifies L, &L;„.
Therefore a complete description of the conductance fluc-

tuations in this regime would require a correct modeling
of these probes. In order to study adequately this situa-

tion, a system like that described in the perturbative
theory of Ref. 18 should be used. Four disordered leads
of length L should be coupled to a disordered chain of
length L (two at each side). Two of them are used as
current leads and the other two as voltage probes. In-
cluding an inelastic scattering length as we have pro-
posed, these leads can be coupled to ideal ones after some
L;„ from the point of contacts. ' In this way the problem
to be solved is a finite one. This can be extended to
many-channel systems, but we believe that it is numeri-
cally tractable in one dimension, at least as was solved by
us. The fact is that L should include some L;„,while for
the most favorable situation, which is at the center of the
band, the condition L;„&&awould require even in one di-
mension a higher computational eA'ort than that done
here.

V. DISCUSSION

)0 '

10'

FIG. 5. Conductance Auctuations 6g/5g& (open circles) eval-
uated over an ensemble of 500 systems (E=O, X=4L), as a
function of L,„/L. The dashed line corresponds to the equation
6g/5g& =(L,„/L )' . The solid circles represent the values

((G) /G, )'.

We have proposed a new way to consider the strength
of the inelastic scatterers which are described in terms of
an imaginary potential plus the Biittiker condition of
current conservation. We have shown that this potential
at a given site could be interpreted as the self-energy con-
tribution of an adequate perfect lead coupled to it or any
interaction producing a complex self-energy. Very re-
cently, this scheme has obtained fundamental support
since it has been deduced as a steady-state condition for
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the time evolution of the Wigner distribution function
within the Keldish formalism. In this treatment a com-
plex self-energy appears as the electron mean life in a lo-
cal phonon model for the electron-phonon interaction.

Therefore, for a homogeneous distribution of inelastic
processes, the transmission coefficients can be evaluated
in terms of the analytic continuation to the complex
plane of the corresponding Green's functions in the ab-
sence of inelastic scattering. This allows us to evaluate
the transport properties by using a generalized Landauer
equation in which the effective transmission probability
(which now has a contribution from the incoherent elec-
trons) accounts for the locally self-consistent chemical
potential according to the current conservation prescrip-
tions. Besides, we have also shown explicitly the effect of
the voltage probes when their coupling with the sample is
not weak.

The consequences of our approach have been shown by
considering a linear chain, at both ordered and disor-
dered situations. In the strong disorder regime the con-
ductance presents a resonant behavior at the "sym-
metric" eigenstates of the system. However, the charac-

teristic time associated with the resonance width is short-
er between the escape time and the relaxation time. In
the weak disorder regime, we have found that the oscilla-
tions of the conductance in a strictly one-dimensional

sample follow a similar behavior to that of a metallic sys-
tem as long as L;„&L & k.

A remarkable success of our method is a description of
the temperature- (T-r1 I') dependent conductance at
resonances or valleys, which is in qualitative agreement
with experimental results. When L;„-L almost any
eigenstate manifests itself as a peak in the conductance.
Therefore, a treatment of the inelastic processes in a simi-
lar way to that presented here should be an important in-
gredient in the understanding of these experiments.
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