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The critical behavior of metallic glasses from the system (Fel Cr„)„B»is studied by measure-

ments of the specific heat, the thermal derivative of the resistivity dp/dT, the ac susceptibility, and

the magnetization in magnetic fields up to 1 T. The absence of a resolvable specific-heat anomaly
and a smooth peak in dp/dT indicates that the metallic glasses exhibit nonuniversal, smeared phase
transitions. Nevertheless the magnetization data M(H, T) at high fields show scaling of good quali-

ty with effective critical exponents similar to those found in other metallic-glass systems. The Curie
temperature determined by the analysis of scaling, however, falls into the temperature range where

the low-field magnetic hysteresis measurements clearly show the existence of hysteresis and spon-

taneous magnetization. The anomalous behavior at the phase transition is attributed to the ex-

istence of Fe-Cr concentration fluctuations on a length scale much larger than the random atomic
short-range disorder.

INTRODUCTION

In this paper we study the magnetic phase transi-
tions of samples from the metallic-glass system
(Fe, „Cr„)»B» for concentrations down to the critical
concentration for ferromagnetic long-range order
x, =0.3. The weakly anisotropic ferromagnetic metallic
glasses belong to the three-dimensional (3D) Heisenberg
universality class with a specific-heat critical exponent
a= —0. 1. General scaling arguments show that in this
case random disorder does not change the asymptotic
critical exponents (Harris criterion ). High-temperature
series expansion calculations, renormalization-group cal-
culations, ' and a more recent field-theoretical calcula-
tion corroborate this argument.

A different renormalization-group calculation, howev-

er, predicted that the critical behavior should definitely
change in systems with random disorder. In the limit of
strong disorder at the percolation limit the authors found
a new fixed point with exponents identical to those of the
spherical model with the numerical values a = —1,
P=O. 5, y =2, and 5=5 for the exponents of the specific
heat, spontaneous magnetization, susceptibility, and iso-
thermal magnetization at T„respectively. The crossover
between this fixed point and the asymptotically stable 3D
Heisenberg fixed point determines the critical behavior
for the concentration range intermediate between the
homogeneous compound and the percolation threshold.
Recent crossover scaling calculations of the same group
demonstrated that the crossover range can be described
by effective exponents intermediate between those of the
homogeneous fixed point and the random fixed point.
Close to x, the effective exponents can be well defined

over a wide range in reduced temperatures. The cross-
over to the Heisenberg exponents is expected to occur at
rather low reduced temperatures of typically ~ ~ 10

The critical behavior of ferromagnetic metallic glasses,

which are ideal systems for the experimental study of
phase transitions in systems with random disorder, has
been studied by many authors in the past decade. ' In
the early investigations many authors derived effective
exponents different from the 3D Heisenberg values with
scaling of the magnetization over a large range in re-
duced temperatures. " More recently systematic inves-

tigations of ferromagnetic metallic glasses, including the
reduced temperature range ~ 10, indicated that the
crossover to the Heisenberg exponents occurs at reduced
temperatures of about ~=10 ." ' At higher tempera-
tures the effective exponent y exhibits a broad maximum.
To the opinion of some authors the effective exponents
derived from the scaling plots over a large temperature
range are the mean value of the temperature-dependent
effective exponents, and the scaling of the magnetization
data should improve when taking the Heisenberg ex-
ponents in temperature range ~ ~ 10

A serious problem one has to consider when studying
phase transitions in systems with structural disorder is
the question whether the topological or substitutional
short-range disorder is the only relevant parameter
describing the structure. Only in this case the experimen-
tal systems directly correspond to the theoretical models.
If besides the random short-range disorder there are con-
centration or density fluctuations on a larger length scale
the situation is more complex. Principally a thermo-
dynamic phase transition can still exist, but the asymp-
totic critical behavior, which can only be observed if the
correlation length is larger than the spatial correlations
of the density fluctuations, can shift to unmeasurably low
reduced temperatures. In recent years it became clear
that metallic glasses are not as homogeneous as has often
been assumed. Low-angle x-ray scattering experiments,
field-ion-emission spectroscopy, ' and neutron scattering
studies revealed that many metallic glasses possess den-

sity or concentration fluctuations with a spatial correla-
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tion between several ten and several hundred A. Micro-
scopic methods like Mossbauer spectroscopy gave
strong indications of a nonrandorn distribution of metal
atoms. Unfortunately the conclusions about the critical
behavior of ferromagnetic metallic glasses rely mainly on
the analysis of the magnetization data M(H, T) either by
an analysis of modified Arrott plots or by an analysis of
the scaling. As will be shown, the inherent ambiguities of
these methods make them rather insensitive for detecting
the influence of metallurgical inhomogeneities.

The magnetic specific heat at the ferromagnetic phase
transition, on the other hand, is a very sensitive probe for
metallurgical inhomogeneities. The critical behavior of
the specific heat has rarely been analyzed in metallic
glasses, since the specific-heat peak at the magnetic tran-
sition is rather small and difBcult to analyze with the
necessary precision. There is one systematic study of the
specific-heat peak at the magnetic phase transition of me-
tallic glasses, however, which bears some important
consequences. The authors find that in FespP~3C7 a sharp
specific-heat peak exists. The substitution of up to 10
at. %%uoN i forFe leave s th e formo f th epea kessentiall yun-
changed. With the substitution of 2 at. % Cr or Mn for
Fe, however, the peak is strongly smeared and a well-
defined critical behavior no longer exists. The authors
fitted this smooth peak by assuming a Gaussian distribu-
tion of T, values. This smearing is probably due to non-
random concentration fluctuations of the Cr or Mn
atoms.

In this paper we study in detail the specific heat,
thermal derivative of the resistivity, low-field magnetic
hysteresis properties, ac susceptibility, and magnetization
isotherms of Fe-Cr-B metallic glasses. We will show that
the influence of the inhomogeneity of the system, which
is rather obvious in the specific heat, is not at all obvious
in the magnetic quantities. Only a detailed analysis re-
veals the anomalous behavior at the phase transition and
points towards the nonuniversal character of the phase
transition. This has some implications for the critical be-
havior of other metallic glass systems reported in the
literature, many of which probably belong to the class of
slightly inhomogeneous systems, where the influence of
the inhomogeneity is not as strong as in the Fe-Cr-B rne-
tallic glasses but nevertheless is important for the critical
behavior.

PREPARATION AND EXPERIMENTAL

The metallic glasses of this study were prepared by
standard melt spin technique in pure Ar atmosphere.
The amorphous structure was checked by x-ray analysis.
For the magnetic measurements a ribbon of about 20 cm
total length was selected. A possible concentration gra-
dient along the ribbon could be excluded by comparing
the ac susceptibility of two pieces cut from both ends of
the sample. For the ribbons selected for the experiments
the ac susceptibility was identical within the experimen-
tal precision and thus a macroscopic concentration gra-
dient could be neglected. About 10 cm of the ribbon was
wound into toroidal shape and used for the low-field rnag-
netic hysteresis measurements. The rest of the ribbon

was used for the other experiments. The measurements
we report on below were normally done in the as-
quenched and the annealed state of the sample. The an-
nealing of the samples was done at 680 K for 3 h. The
as-quenched and the annealed sample state is denoted by
series 1 (s 1) and series 2 (s2) samples in the figures.

For the measurements of the magnetic hysteresis loops
a primary and a secondary coil of Cu wire was wound
onto the toroids and used for field generation and signal
pickup. The hysteresis loops were measured quasistati-
cally at a frequency of about 10 ' s ' using a sensitive
electronic integrator (Walker fluxmeter type MF-3A).
The ac susceptibility was measured on the same toroids
by mutual inductance technique with an amplitude of the
generating field of 10 Aicm at a frequency of 33 s
The voltage induced in the secondary windings was mea-
sured by lock-in technique; the typical resolution we
could achieve was 10 of the signal at the Hopkinson
maximum.

The specific heat of the samples was measured by an ac
technique with optical heating of the sample. The basis
for this technique is the fact that the temperature oscil-
lation generated when heating the sample with chopped
light of the frequency co is proportional to the reciprocal
specific heat, if the frequency is small compared to the re-
ciprocal inner relaxation time and large compared to the
reciprocal outer relaxation time, and the thermal conduc-
tivity between the sample and the thermometer is large

compared to the thermal conductivity between sample
and bath. In our experiment the temperature was mea-
sured by a thermocouple spot welded to the sample sur-
face and the sample was coupled weakly to the sample
holder by thermally conducting grease. The preceding
conditions were fulfilled to a good approximation at a fre-
quency co=7 s '. The ac technique has the advantage of
a continuous output signal and a high resolution even
with a small sample mass. In our experiment the total
mass of the sample was about 1 mg and we achieved a
resolution of about 10 close to the maximum of the
specific heat.

With some modifications the same experimental set up
was used for a direct measurement of the thermal deriva-
tive of the resistivity dpldT. Four Cu wires are attached
to the sample by silver epoxy and a constant dc current
flows through the outer current contacts. The sample is
heated by chopped light and the ac signal generated at
the inner voltage contacts is directly proportional to the
ac amplitude of the temperature and to dp/dT. The ac
signal is decoupled capacitively and measured by lock-in
technique. This direct electronic differentiation allows a
very high resolution of the fine structure in dp/dT,
which would correspond to a resolution of about 10 in
a direct measurement of p followed by a numerical
differentiation in order to determine dp/dT.

The magnetization of the samples in high magnetic
fields was measured by a vibrating sample magnetometer
(PAR 160). Five pieces of the ribbon of 1 cm length were
placed in parallel on the sample holder and thermally
coupled to the GsAs thermometer by a bundle of thin Cu
wires. In this sample geometry the maximum demagnet-
izing field is below 10 Oe. The effective demagnetizing
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factor was determined from the slope of the M(H) curve
at low fields at a temperature of 4.2 K.

Since for the discussion in the following the compar-
ison of the magnetic ordering temperatures determined
by the different experiments is essential, the thermome-
ters were calibrated against one standard Pt thermome-
ter. The relative accuracy of the temperature measure-
ments in the different experiments thus is better than 0.2
K.

RESULTS AND DISCUSSION

200- T
(Fe, „Ct „)8z 8„5

In Fig. 1 we show the magnetic phase diagram we have
determined for the metallic glass system (Fe, „Cr„)»B».
In the as-quenched state the reentrance phase line and
the paramagnetic phase line intersect at a critical concen-
tration x, =0.33, in the annealed state the ordering tem-
peratures shift to lower values by about 30 K and the
critical concentration is at x, =0.31. The analysis of the
hyperfine field distribution in Fe-Cr metallic glasses
showed that the Fe atoms lose their magnetic moment
when they have more than four Cr nearest neighbors. Cr
is assumed to be nonmagnetic in the concentration range
of the phase diagram in Fig. 1. Thus x, can be interpret-
ed as a percolation threshold for Fe atoms having a mag-
netic moment.

The results of the measurements of the temperature
dependence of the magnetic hysteresis loops in the an-
nealed state of the samples are summarized in Figs. 2(a)
and 2(b). Both the remanent magnetization and the coer-
cive force vanish critically for T~T, . Empirically one
can fit power laws like M, (T) ~ (T, —T)~ but y is known
to be no pure critical exponent (see Ref. 26 for measure-
ments on Ni) and does not coincide with the critical ex-
ponent of the spontaneous magnetization P. We only use
the extrapolation shown in Fig. 2 for a first determination
of the ferromagnetic Curie temperature (Table I).

In Fig. 3 we show the results of the ac susceptibility on
the same samples. One observes a sharp Hopkinson max-
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imum with the ferromagnetic Curie temperatures as
determined from the onset of the spontaneous magnetiza-
tion at the high-temperature side of the peak. For a
well-defined ferromagnetic phase transition the analysis
of the ac susceptibility principally allows the determina-
tion of the critical susceptibility exponent y. From the
standard power law for the susceptibility one gets by
differentiation

—(d lnyldT) '=y '(T —T, ) .

Thus by numerical differentiation of the susceptibility
one can determine the critical exponent y and the Curie
temperature T, ~ The result of this analysis for some of
our measurements is shown in Fig. 4. One finds a
straight line behavior at higher reduced temperatures as
expected from Eq. (1) with a strong deviation at about
1—4 K above the extrapolated T, . The effective ex-

0.1 0 2 0.3 04 05

I

100
T(K)

200

FIG. 1 ~ Magnetic ordering temperature as a function of the
Cr concentration for samples (Fel Cr )»B»,f: ferromagnetic;
p: paramagnetic; sg: spin glass; full line: as-quenched state of
the sample (s1); dashed line: annealed state of the sample (s2).

FIG. 2. Remanent polarization (a) and coercive force (b) for
samples (Fel Cr„)858» as a function of temperature. The ex-
trapolation towards J, =0 (dashed line) gives the ferromagnetic
Curie temperature of the second row Table I.
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FIG. 3. Ac susceptibility for samples (Fe& „Cr„)8&B»as a function of temperature. The crosses mark the ferromagnetic Curie
temperatures from Fig. 2.

ponents turn out to be strongly preparation dependent
and do not vary systematically with the concentration.
Moreover the extrapolated value for T, is inconsistent
with T, determined from the onset of spontaneous mag-
netization (indicated by the vertical arrow in Fig. 4).
Thus we conclude that the temperature dependence of
the ac susceptibility does not follow a pure critical power
law and the e8'ective exponents given in the figure have
essentially no meaning. Since even in metallic glasses
with better defined phase transitions' ' the magnetiza-
tion data at low fields deviate from scaling and universal
behavior, the ac susceptibility measured at very low fields
is not well suited for an analysis of critical behavior in
metallic glasses.

In Fig. 5 we show the results of our analysis of the
specific heat close to the ordering temperature. For none
of the samples a peak in the specific heat can be resolved.
This is consistent with the results of the specific-heat
measurements of Ref. 24 for Fe-Cr metallic glasses with
lower Cr content. These authors observed a strongly in- dpldT = A (T —T, ) +8 (2)

creasing smearing of the specific-heat peak with increas-
ing Cr concentration. For their maximum Cr concentra-
tion of about 10 at. % only a very small peak with an es-
timated width of 10 K for the distribution of T, values
was left. Extrapolating their results towards our Cr con-
centrations above 20 at. % the absence of a resolvable
specific-heat peak in our measurements is not unexpect-
ed.

In this situation the measurement of the thermal
derivative of the resistivity, which can be done with a
much higher resolution than the specific heat, can be
helpful. From the theoretical work ' it is expected that
the scattering of conduction electrons by the critical fluc-
tuations at the phase transition leads to a peak in the
thermal derivative of the resistivity. Close to the order-
ing temperature dpldT is expected to be proportional to
the magnetic specific heat. Thus close to T, one expects

TABLE I. Ferromagnetic ordering temperatures determined from the low-field hysteresis measure-
rnents (second row) and the scaling analysis (third row) and the e8'ective exponents determined from the
scaling analysis. The first row gives the Cr concentration in the formula (Fel „Cr )~58».

Cr concentration

0.20 as quenched
0.20 annealed
0.22 as quenched
0.22 annealed
0.25 as quenched
0.25 annealed
0.30 as quenched
0.30 annealed

T.
(hysteresis)

187.3+0.7
157.5+0.7
132.8+0.4
98.4+0.6
97.0+0.7
72.2+0.4

27.0+0.3

T.
(scaling)

180.6+0.4

98.5+0.3

68.0+0.2
42.2+0.2

4.8+0.2

4.9+0.2

5.1+0.15
5.2+0. 1

0.42+0.02

0.44+0.02

0.44+0.03
0.46+0.03

1.60+0. 1

1.70+0. 1

1.80+0. 15
1.90+0.20
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FIG. 4. Kouvel-Fisher plots for samples (Fe, „Cr„)858». The slope of the straight line gives the effective susceptibility exponent

ff the vertical arrows mark the Curie temperatures from Fig. 2.

and

dp/dT= 2'(T, —T) +B'

for T~ T, and T~ T„respectively.
For many metallic ferromagnets including Fe and Ni

and different metallic glasses, a cusp of the form given by
Eq. (2) has been observed. It turned out, however, that
reliable values for the critical exponent e are difficult to
obtain from a fit of the d p/dT curves.

The results of the thermal derivative of the resistivity
measured by direct electronic differentiation are given in
Fig. 6(b). For comparison and in order to demonstrate
the high experimental resolution we show the measure-
ment of a Fe-Ni metallic glass in Fig. 6(a). In the Fe-Ni
metallic glass one observes a sharp peak at the ordering
temperature indicating the existence of a wel)-defined

(Fe, „Ct'„)gs B15

1.0 x = 017(s1)

0,9

1. 0
x =020Is1 j

x=022(s2j
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0.9

x=025ts? j

I l

-20 -1 0 0 10 20
T-T, (K)

FIG. 5. Relative specific heat as a function of temperature
for samples (Fel „Cr„)»B». c(T, ) denotes the specific heat at
the ordering temperature.

phase transition. But unlike the specific-heat peak in me-
tallic glasses, which is approximately symmetric for
T ~ T„, and T ~ T„ the peak in dp/dT is unsymmetric,
being very Hat for T ~ T, . This indicates that the temper-
ature range where the proportionality of c and dp/dT
holds is very narrow in metallic glasses and confined to a
temperature range ~ ~ 10

For Fe-Cr-B metallic glasses in Fig. 6(b) one observes a
broad, smooth peak in dp/1 T with the ferromagnetic
Curie temperature determined from the low-field hys-
teresis measurements at the low-temperature side of the
peak (indicated by vertical arrows in the figure). The
peak compares well with the specific-heat measurements
of Ref. 24 for Fe-Cr metallic glasses with lower Cr con-
tent. We thus conclude that the broad peak in dp/dT is
due to the critical scattering at a strongly smeared phase
transition. Interestingly the sharp kink in dp/dT, which
is observed at the low-temperature side of the peak, coin-
cides with the Hopkinson maximum in the ac susceptibil-
ity and thus seems to be caused by the magnetic anisotro-
py.

We next turn the results of the analysis of the magneti-
zation measurements in the field range from 5 mT to 1 T.
The critical behavior is analyzed as follows: The iso-
therms are first plotted on a double logarithmic scale in
order to find the critical isotherm m(H)=BH' for
T=T, . The example in Fig. 7 for the sample with
x =0.20 in the as-quenched state thus gives T, =180.6 K
and 5=4.8. Next we apply the empirical equation of
state proposed by Arrott and Naokes. We plot the
magnetization isotherms following the equation:

(M/M )' = A(H) +c(T—T, ) .

The critical exponent f3 and y are chosen in order to get a
linear representation of the isotherms, as a constraint the
critical isotherm must intersect the axes at the origin. As
shown in Fig. 8, the magnetization isotherms with the
effective exponents properly chosen are well represented
by straight lines for higher magnetic fields but show a
curvature for lower fields. The magnetic field where the
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first deviation is observed is 150 Oe typically. The criti-
cal exponents for the spontaneous magnetization p, Ir and

the susceptibility y,z are then determined by extrapolat-
ing the isotherms lineraly and plotting the spontaneous
magnetization and the zero-field susceptibility on a dou-
ble logarithmic scale.

An important test for the validity of the exponents is
the scaling of the magnetization data. From general

0

p o ~

~ b.
C'

. d'
.e ~

o~ fJ ~

og
h

Ic

~ ~
~ ~

~ ~
~ oo

~ ~ ~
~ ~ ~o

~ ~
~ ~

~ ~
~ ~

~ ~

~ ~

~ ~ ~ ~
~ ~

~ ~

~ ~ ~ ~
~ o ~O

~ ~ o

~ o ~ ~
'

g ~ ~ ~ ~ ~
~ ~ o

~ ~ ~
~ ~

~ ~
~ ~ ~ ~ ~o ~ ~ ~ oo

~ ~ ~ ~o
~ oo ~

~ o ~
~ ~ ~ ~

~ ~ ~
~ ~

~ ~
~ ~

~ ~
~ ~

~ ~P O

\ ~

~ ~

1'
m'' .n

I I [ I I I I
(

I I I I

x = 0.20(s1)

(Fe„„Ni„)soB2o I I I I I I I I I I I I

-3 -2
In(II, H/ T )

I I I I I I I

-1

C)

4

x=0.87(

FIG. 7. Isothermal magnetic polarization vs magnetic field

on a double logarithmic scale for the sample (Fep 8pCrp 2p)»B».
The dashed line marks the critical isotherm. The letters denote
the temperature of the sample: (a:169.8 K, b:172.8 K, c:175.0
K, d:178.8 K, e:180.3 K, f:181.0, g:182.2 K, h:183.9 K, k:185.7
K, I:187.3 K, m:189.0 K, n:190.6 K, 0:192.2 K, p:193.7 K).

scaling arguments the magnetization data should collapse
on two branches when plotted in the scaled form

M/H=f+ (I/8 ) (4)

3
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I I I I I I I I I I I I with the plus sign for T ~ T, and the minus sign for
T ~ T, . We have tested the scaling of the magnetization
data beginning with the set of exponents and the Curie
temperature by the modified Arrott plots. Scaling only
holds for values in a narrow range close to the values
determined by the modified Arrott plots (Fig. 9). The
range of validity of the parameters thus determined is
given by the error bars in Table I.

The same analysis was done for the samples with
different concentrations. A scaling of similar quality as
in Fig. 9 is found for all samples independent of the sam-
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Fig. 6(b) mark the magnetic ordering temperature from Fig. 2.

FIG. 8. Modified Arrott plots for magnetization isotherms

close to T, for the sample (Fep SpClp 2p)85B». The dashed line

indicates schematically the continuation of the isothems for
very low magnetic fields (see the main text). The temperatures
for the isotherms are the same as given in Fig. 7.
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pie state whether annealed or as quenched, Figs. 10 and
11 show some examples. The only exception is the sam-
ple with x =0.30 with a Curie temperature of 27 K and a
concentration very close to x, . For this sample a scaling
representation of the magnetization could not be found.
The effective critical exponents thus determined are given
in Table I, the numerica1 values for these exponents are
similar to those derived from the scaling analysis in a
wide temperature range for other metallic glasses. '

The effective exponents are concentration dependent and
the deviation from the Heisenberg exponents increases
for x ~x, . Contrary to the example given in Ref. 18 the
scaling cannot be improved with the Heisenberg ex-
ponents for the range of reduced temperature ~ 10

When comparing the Curie temperature from the low-
field and the high-field measurements in Table I, one finds
a severe contradiction. In every case the the Curie tem-
perature derived from the Arrott plots and the scaling
analysis of the high-field data is lower than the value
determined from the low-field magnetization rneasure-
ments. One observes that the difference of the two Curie
temperatures is larger for the samples in the as quenched
and thus more inhornogeneous state and reaches values

up to 6 K here.
The comparison of the high-field and the low-field data

of the magnetization reveals that the continuation of the
magnetization isotherms towards very low fields will fol-
lows the dashed lines drawn in Fig. 8 schematically.
Even for temperatures of several K above the extrapolat-
ed T, the isotherms intersect the magnetization axis at
finite values for the spontaneous magnetization. The
magnetization values from this strongly curved part of
the magnetization isotherms would strongly deviate from
the universal plot in Fig. 9.

Now, it is wel1 known that the experimental rnagneti-
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FIG. 10. Modified Arrott plots (a) and scaled plots of the
magnetization (b) for the sample (FeQ78Crop, )„B„(a:91.2 K,
b:93.5 K, c:94.7 K, d:95.2 K, e:96.5 K, f:97.4 K, g:98.0 K, h:98.7
K, k:99.2 K, I:100.4 K, m:101.7 K, n:102.8 K, 0:105.0 K, p:107.0
K, q:109.0 K, r:111.0 K, s:112.9 K, t:114.5 K, u:116.7 K).

zation values at low fields must be excluded from the
scaling analysis for metallic glasses and other mixed com-
pounds. For temperatures T & T, the existence of mag-
netic domains is the obvious reason for this, for tempera-
tures T ) T, the situation is more di%cult. Two prob-
lems can make the magnetization values unreliable at low
fields even for temperatures in the paramagnetic range:
First, the correction of the demagnetizing field, which be-
comes very important for low applied fields, can only be
done approximately. Second, the low-field data are very
sensitive towards any type of heterogeneity as, e.g., fer-
romagnetic impurity phases. These two factors are elim-
inated by extrapolating the isotherms in the modified Ar-
rott plots linearly. However, one expects that the extra-
polation should give the correct value for T, which is
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consistent with T, from low-field measurements. Our re-
sults and the discrepancy in T, indicates a third and
more serious possibility for the strong curvature of the
Arrott plots at low fields, namely the absence of a well-
defined phase transition.

FIG. 11. Modified Arrott plots (a) and scaled plots of the
magnetization (b) for the sample (Feo 75C1022)85B)5 (a:61.6 K,
b:62 7K, c:64.0 .K, d:64.8 K, e:65.6 K, f:66.2 K, g:66.7 K,
h:67.3 K, k:68.0 K, m:68.5 K, n:69.0 K, o:69.6 K, p:70.3 K,
q:71.3 K, r:72.3 K, s:73.0 K, t:74.0 K, u:75.1 K, U:76.2 K, w:77.6
K, x:78.6 K).

The absence of a peak in the specific heat and the
broad anomaly in the thermal derivative of the electrical
resistivity clearly indicate that the Fe-Cr-8 metallic
glasses under study here exhibit a smeared ferromagnetic
phase transition with nonuniversal character. The reason
for this behavior, we suppose, are Fe-Cr concentration
fluctuations on a length scale above 100 A. Contrary to
random short-range structural disorder, these concentra-
tion fluctuations are relevant for the phase transition in
the whole experimentally accessible range of reduced
temperatures.

The smooth peak in dp/dT is contrasted by the results
of the magnetic measurements, where the existence of a
very sharp Hopkinson maximum and the sharp onset of
the spontaneous magnetization in the low-field magnetic
hysteresis measurements suggest the existence of a well-
defined phase transition.

Similarly the good scaling behavior of the rnagnetiza-
tion for magnetic fields above 100 Oe points towards the
existence of a well-defined phase transition. Actually the
scaling of the M (H, T) data is as good as in any other me-
tallic glasses published in the literature. For a smeared
phase transition a scaling of the magnetization is rather
unexpected but we mention that we have found similar
behavior in the magnetically heterogeneous system
Eu La& S. '

It could be assumed that this scaling is purely acciden-
tal, i.e., that the three parameters of the scaling plot are
sufficient for a reasonable data collapsing. However, the
quality of the scaling and the numerical values of the
effective exponents which fit well to those determined for
other diluted Heisenberg magnets with better defined
phase transitions ' suggest that the scaling indicates
the universal character of the phase transition in high
magnetic fields. Thus the metallurgical imhomogeneity
seems to be an irrelevant parameter in the renormal-
ization-group theoretical sense for high magnetic fields.
The concentration dependence of the effective exponents
for x ~x, in Table I (6~5 and P~O. 5 for x ~x, ) is in
qualitative agreement with the crossover scaling theory
of Ref. 7 and the concentration dependence observed ex-
perimentally in the diluted Eu chalcogenides. '

ACKNOWLEDGMENTS

The authors thank the Deutsche Forschungsgemein-
schaft for financial support of this work within the Son-
derforschungsbereich No. 166.

A. B. Harris, J. Phys. C 7, 1671 {1974).
2E. Brown, J. W. Essam, and C. M. Place, J. Phys. C I, 321

(1975).
G. Grinstein and A. Luther, Phys. Rev. B 13, 1329 {1976).

4A. Weinrib and B. I. Halperin, Phys. Rev. B 27, 413 (1983).
5J. Jug, Phys. Rev. B 27, 609 (1983).
G. Sobotta and D. Wager, J. Phys. C 11, 1467 (1978).

7H.-O. Heuer and D. Wagner, J. Phys. (Paris) Colloq. 49, C8-

1265 (1988); Phys. Rev. B 40, 2502 (1989).
8K. Yamada, Y. Ishikawa, Y. Endoh, and T. Matsumoto,

Solid-State Commun. 16, 1335 (1975).
P-Gaunt, S. C. Ho, G. Williams, and R. W. Cochrane, Phys.

Rev. B 23, 251 (1981).
~OZ. Marohnic, D. Dobrac, E. Babic, and K. Zadro, J. Magn.

Magn. Mater. 38, 93 {1983).
Y. Yeshurun, M. B. Salamon, K. V. Rao, and H. S. Chen,



748 U. GUNTZEL AND K. WESTERHOLT

Phys. Rev. B 24 1536 (1981).
' S. N. Kaul, J. Magn. Magn. Mater. 53, 5 {1985).
' W. U. Kellner, T. Albrecht, M. Fahnle, and H. Kronmuller, J.

Magn. Magn. Mater. 62, 169 {1986).
' M. Fahnle, J. Magn. Magn. Mater. 45, 279 (1984).
' H. Haug, M. Fahnle, H. Kronmuller, and F. Haberey, Phys.

Status Solidi 8 144, 411 {1987).
W. U. Kellner, M. Fahnle, H. Kronmuller, and S. N. Kaul,

Phys. Status Solidi B 144, 397 (1987).
' M. Fahnle, J. Magn. Magn. Mater. 65, 1 (1987).
' M, Fahnle, W. U. Kellner, and H. Kronmuller, Phys. Rev. B

35, 3640 (1987).
S. N. Kaul, Phys. Rev. B 38, 9178 {1988).

"J. Schneider, A. Handstein, I ~ Henke, K. Zavata, and T.
Mydlarz, J. Phys. (Paris) Colloq. 41, C8-682 (1980).
P. Haasen, J. Non-Cryst. Solids 56, 191 (1983).
S. Steeb and P. Lamparter, J. Phys. {Paris) Colloq. 46, C8-247

(1985).
G. G. Whittle, A. M. Steward, and A. B. Kaiser, Phys. Status

Solidi A 97, 199 (1986).
~4S. Ikeda and Y. Ishikawa, J. Phys. Soc. Jpn. 49, 950 (1980).

~~P. F. Sullivan and G. Seidel, Phys. Rev. 173, 679 (1968).
~6G. Pepperl, D. Kraus, and K. Stierstadt, Phys. Lett. 31A, 75

(1970).
7M. E. Fisher and J. S. Langer, Phys. Rev. Lett. 20, 665 (1968).
T. G. Richard and D. J. W. Geldard, Phys. Rev. Lett. 30, 290
(1973);Phys. Rev. B 12, 5175 (1975).

-' M. Ausloos, in Magnetic Phase Transitions, edited by M.
Ausloos and R. J. Elliot {Springer-Verlag, Berlin, 1983).

A. Arrott and J ~ E. Noakes, Phys. Rev. Lett. 19, 786 (1967).
'K. Westerholt, J. Magn. Magn. Mater. 66, 253 (1987).

~~K. Westerholt and G. Sobotta, J. Phys. F 13, 2371 (1983).
K. Westerholt, H. Bach, and R. Romer, J. Magn. Magn.
Mater. 45, 252 (1984).

~4K. Westerholt, Physica 130B, 533 (1985).
35K. Siratori, K. Kohn, H. Suwa, E. Kita, S. Tamura, and A.

Tasaki, J. Phys. Soc. Jpn. 51, 2746 (1982).
36- T. Hasiwa, E. Kita, K. Siratori, K. Kohn, and A. Tasaki, J.

Phys. Soc. Jpn. 57, 3381 {1988).
J. Wosnitza and H. V. Lohneysen, J. Phys. (Paris) Colloq. 49,
C8-1203 (1988).


