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We present results for the temperature dependence of electrical conductivity for amorphous
V,Si,_, alloys. The alloys investigated span the composition range from x =0.5 to 0.1. For the al-
loys with more than 20 at. % V, the temperature dependence could be successfully fitted with use of
the theories of quantum interference effects, and values for the spin-orbit and inelastic scattering
rates are extracted from the fits. As the concentration of V is decreased, there is evidence for a
metal-insulator transition seen at around 15 to 13 at. % V. The temperature dependence of the con-
ductivity is surprisingly similar for all the alloys on the metallic side of the transition, showing a
clear T'/2 dependence at the lowest temperatures while the insulating V,Si, o alloy shows evidence
for variable-range-hopping conduction. The V 3Si, g7 alloy, which is right at the transition, exhib-
its an unusual temperature dependence. The sample is metallic and seems to follow a T'/? depen-

dence at low temperatures.

INTRODUCTION

A number of transition-metal-metalloid amorphous
alloys have been studied because they exhibit a metal-
insulator transtion at around 80-90 at.% metalloid.
Here we present results of a study on the V-Si system. It
is a system which has not been studied in detail in the
past and we have used it to investigate quantum-
interference effects across a wide range of conductivities
through the metal-insulator transition. There have been
many reports of quantum-interference effects in amor-
phous metal alloys with conductivities around 5000
Q 'm™!, the Cu-Ti system, for example.1 But there
have not been many studies on systems which have lower
conductivities where we may expect the theories of quan-
tum interference or “weak” localization—which are only
strictly valid in the weak-scattering limit—to break
down. These alloys may be said to be in a ‘‘strong”-
localization regime

Much of the work that has been done on lower-
conductivity systems has concentrated on the region very
close to the metal-insulator transition and on the low-
temperature V'T dependence of the conductivity.>? This
V'T dependence is due to electron-electron correlations
in the presence of the interference effects. Although it is
often considered as a separate contribution to the con-
ductivity from the quantum-interference effects, it is in
fact a quantum-interference effect itself.* Castellani et
al’® argue that for an_ “interaction”-driven metal-
insulator transition the V'T dependence will persist right
through the transition.

Here we see how the quantum-interference effects can
be applied to alloys which have conductivities ranging
from well above to well below the Ioffe-Regel limit,
Ep7,~1. However, close to the transition we see a
marked deviation from the usual V'T dependence, and
there is some evidence that a T'/? dependence is seen.
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We have also tried to fit our data to a theory of *“2kp”
scattering, which includes both the ‘“weak”- and
“strong”’-localization regimes and also predicts an
Anderson-type transition at a critical value of Ep7.°
(Here we make distinction between 7, a transport life-
time determined from the resistivity, and 7, the one-
electron relaxation time.)

Some work on V-Si has already been done by Ousset et
al.” Their work was on thin films which were believed to
be two-dimensional (2D) as far as_the interference effects
were concerned (thickness <500 A), and so a direct com-
parison with our results is not possible, except that we
would expect the inelastic and spin-orbit scattering rates
extracted from the theoretical fits to the data to be simi-
lar. They see some phase separation for samples with less
than 20at. % V and suggest this is why they do not see a
metal-insulator transition around the expected 15 at. % V
concentration. However, they do note a large increase in
the magnetoresistance as the Si concentration approaches
85%, and they argue that this is evidence for the appear-
ance of “‘strong”-localization effects. We do not see any
evidence for phase separation in transmission electron
microscopy (TEM) studies, and we do see a metal-
insulator transition around 13 at.% V. Howevero, we
have three-dimensional samples (thickness ~3000 A); it
is possible that Ousset et al. do not see a metal-insulator
transition because their samples are 2D in character.

EXPERIMENTAL DETAIL

The alloys were sputtered onto a room-temperature sil-
ica substrate from an alloy target made from 99.9999%
pure Si and 99.999% pure V. The thicknesses of the films
were in the range 0.2-0.8 um, and the compositions
were determined using energy-disperse x-ray analysis
(EDAX). Measurements of the electrical conductivity
were made over the temperature range 1-80 K by a
four-probe dc method.
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RESULTS AND DISCUSSION

In Figs. 1(a) and 1(b) the resistance of V,Si,_, normal-
ized to the value at 80 K is shown versus temperature.
There is a clear difference in behavior between alloys with
x <0.15 and those with x =0.15. The alloys with
x >0.15 are metallic with a finite resistivity extrapolated
to absolute zero, while the resistivity of the x =0. 10 alloy
diverges at low temperatures and the alloy is clearly insu-
lating. The temperature dependence for the x =0.13 al-
loy is much stronger than that of the other metallic al-
loys, but from Fig. 1(b) we see that it appears to extrapo-
late to a nonzero conductivity at absolute zero and is
therefore metallic. This suggests that for x =0.15 the al-
loys are in the “weak”-localization regime, for x <0.13
the alloys are insulators, while for x around 0.13 the al-
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FIG. 1. (a) The resistance of V,Si,_, normalized to the resis-
tance at 80 K vs temperature. x =0.50 (<>), 0.25 (O), 0.20 (A),
and 0.15 (V). (b) The resistance of V,Si, _, normalized to the
resistance at 80 K vs temperature. x =0.13 (A) and 0.10 (V).
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loys are in the ‘“‘strong”-localization regime. The metal-
insulator transition is clearly in the vicinity of x ~0.13.
In the following we will first consider the insulating, then
the *“weak”-localization, and finally the <strong”-
localization regimes.

In Fig. 2 we have plotted the logarithm of the resis-
tance for the x =0.1 alloy normalized to its value at 80 K
against T~ !/%, A linear dependence is seen for tempera-
tures below about 20 K, which is a strong indication of
the presence of variable-range hopping, where

1/4

0=Ae_[T°/T] s (1)

as we would expect on the insulating side of the transition
at low temperatures.®

In Fig. 3 we show the conductivity for the alloys
x =0.5, 0.25, 0.15, and 0.10. We have fitted the data to
the theories of “weak’ localization and electron-electron
interaction effects. This sort of analysis has been success-
fully applied to a number of amorphous metal alloys in
the past."">!® The form of the temperature dependence of
the conductivity due to quantum-interference effects is’
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where 7, 7;, and D are the spin-orbit and inelastic re-
laxation times and the diffusion constant, respectively.
Only 7, is temperature dependent, and it assumed for this
analysis that it is dominated by electron-phonon scatter-
ing, the temperature dependence of which is 7,=8T ~2.°
The contribution to the conductivity in the weak-
localization regime due to interaction effects is’
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Here T, is a characteristic temperature of the order of
the Fermi temperature. F*=F —A, where F and A are
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FIG. 2. The logarithm of the resistance normalized at 80 K
vs T /% showing a linear region at low temperatures for
x =0.10. x =0.10(V) and 0.13 (A).
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the electron-electron and electron-phonon coupling con-
stants, respectively. F* should vary little and be close to
zero in the weak-localization regime, and so in this
analysis we have set it equal to 0.

Equations (2) and (3) can be combined to take the form
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This expression is fitted to the data for all samples, and
from the values of A4, B, and C we can extract values for
7,=BT %, 7., and D, having assumed F* to be zero. In
Fig. 3 the chained and solid lines are the contributions to
the theoretical fit from localization and interaction
effects, respectively. For clarity, the combined fit is not
shown; however, within the size of the points, the fit fol-
lows the data. The values of the scattering times and the
diffusion constants are shown in Table I. Also shown in
Table I are the values of D, 7;, and 7,, obtained by
Ousset et al.” from their magnetoresistance studies on
V,Si;_,. We can see that the values are very similar to
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FIG. 3. The change in conductivity for x =0.5 (a), 0.25 (b), 0.15 (c), and 0.10 (d) at low temperatures. The chain line is the locali-
zation contribution to the fit, and the solid line is the V' T interaction contribution.
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TABLE 1. Values of spin-orbit scattering relative rate 7,, and inelastic scattering relaxation rate
(r,=BT%). Values are also given for diffusion coefficient D and resistivity p at 4.2 K for the range of
composition of V,Si; , that has been investigated. An asterisk indicates our data. A dagger indicates

data taken from Ref. 7.

Composition B (sk?) ods™h D (m*s™) p (uQcm)
*V 5,Siso 2.4X107° 1.1X10" 0.8%x107° 170
*V,5Siss 1.2%x107° 2.57% 10" 1.4X107° 720
*V,sSigs 5.2x107% 1.85%x 10" 3.8X107° 1,440
*V,6Sis 2.3%x1078 3.85%10° 1.6X107° 1.23% 10°
"V 44Sis; ~2%107° 1.4% 10" 8% 1073 345
"V 4Sico ~2X107° 1.0x 10" 6X1073 433
"V ,sSiss ~1Xx107° 6.7Xx 10" 4x107° 646

our results. The inelastic-scattering times are fairly con-
stant across the composition range, and similar to values
obtained in many studies on many different systems.'
The spin-orbit scattering times are typical for an alloy
containing a relatively ‘“‘heavy” element, V, and increase
as the concentration of the V is decreased, as we might
expect, since the strength of the spin-orbit interaction is
related to the atomic number of the scatterer.

The V'T interaction contribution to the fits progres-
sively decrease as the critical concentration for the
metal-insulator transition is approached. In these fits,
this arises simply from a corresponding increase in the
magnitude of the diffusion constant.

For the x =0.10 alloy, also shown in Fig. 3, there is a
sudden increase in the magnitude of the V'T interaction
contribution and a corresponding drop in the localization
contribution. This sample is on the insulating side of the
transition and so we would expect the quantum-
interference fits to break down. We can, of course, obtain
a reasonable three-parameter fit, but the parameters are
not physical. In Table I we have still included the values
of the inelastic- and spin-orbit scattering times along with
the diffusion constant, but only to show that there is a
distinct discontinuity in the composition dependence of
these parameters.

The V1,351 57 alloy, which is close to the transition,
also cannot be fitted by the weak-localization theories.
We have considered a number of theories which might fit
the temperature dependence. First, Finkelstein'? has ar-
gued that T'/* dependence might be observed close to the
metal-insulator transition, although Castellani et al’ dis-
cuss a V'T dependence of the form

Ao=0y+m 172
in the weak-scattering limit, but changing to
o« Tl/l

close to the transition. Their arguments involve consid-
ering the interaction contribution to the conductivity to
all orders in the electron-electron coupling strength, but
quantum-interference effects to only first order in
(1/Ep7)*. The data for V, ;Sij g7 does not show a V'T
dependence at low temperatures. However, we have plot-
ted the data against 7'/ in Fig. 4 and this shows evi-
dence for a T'/? dependence of the conductivity up to
quite high temperatures.

Morgan et al.® have taken the other extreme and
neglected the interaction effects, but considered how so-
called “2kj scattering” can lead not only to “‘weak”-
localization effects but also to an Anderson transition at a
critical value of Ep7. This theory has been applied to a
number of different systems which show ‘‘strong”-
localization effects or an Anderson transition. For exam-
ple, it was shown to give the same quality of fit as the
weak-localization fits for the amorphous alloy
Ca Al,_,."> This alloy has a resistivity which peaks at
450 pQcm for x =0.4 and has very weak spin-orbit
scattering. The expression Morgan et al. obtain for the
resistivity has the form'*

7B y3 1/2
1+ —F (y)
7 x MHp 'Y

1= &xy F'2(p)F \iiip ()

P=P3

Here 7 is the total one-electron energy relaxation time
y=#/rpEp 77'=7 " '4+7 ', and x =#/7E; pp is the
uncorrected Boltzmann resistivity. The functions F and
Fyyp are given by
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FIG. 4. Resistivity vs the cube root of the temperature for
V,3Sig-.
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We have attempted to fit our data for the x =0.13 al-
loy, which is in the strong-localization regime, using this
theory and including the V'T contribution from the in-
teraction effects. However, it is impossible to fit this
model to the data for V;Sig;. The theory itself does not
include the effects of spin-orbit scattering, and since this
cannot be neglected in this alloy system it is, therefore, an
unfair test of the theory.

(14+y)' 24+ 1=V2(1+p ) 2+ 2p (A /1= ) [(1+yH) 2 =1]"2+2p (4 /1— A)

CONCLUSION

We have observed a metal-insulator transition in
V,Si;_, at x ~0.13. For samples with x <0.13 we have
been able to fit the normal weak-scattering quantum-
interference theory and extract values for 7, and 7.
The V;Siy; alloy is close to the metal-insulator transi-
tion. We have been unable to fit the theories of quantum
interference to this alloy. The alloy shows evidence of
Ap = T'3, and we believe this alloy to be in the “strong”
localization regime. The V ,Siy is clearly insulating, and
shows evidence of variable-range hopping.

*Present address: Cryogenic Consultants Ltd., The Metrostore
Building, 231 The Vale, London W3 7SQ, United Kingdom.
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