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Thin narrow films with a cross section of about 107 '° cm? have been studied under nonequilibri-
um conditions. Working at liquid-helium temperature, with current densities up to 10’ A/cm? cor-
responding to electric fields up to 0.3X10° V/m, we raised the electron temperature T, consider-
ably above the phonon temperature T,,. We tried to use weak localization and the Coulomb anom-
aly of the resistance as thermometers. Weak localization worked very well, but in the case of the
Coulomb anomaly we found inconsistencies. We predict that the Coulomb anomaly shows non-
ohmic behavior. Our experimental data suggest an Eliashberg function a?F () which is linear in Q.
We can give upper limits for the escape time of the phonons from the film into the quartz. The eval-
uation with our weak-localization thermometer yields consistent results.

I. INTRODUCTION

If an electric current flows through a metal, the exter-
nal power supply transfers energy into the electron sys-
tem. One generally assumes that the momenta of the
electrons relax towards their equilibrium distribution
within the transport lifetime 7,,. Often it is implicitly as-
sumed that the Coulomb heating energy pj’ relaxes
within the same time. For a metal with a very short
mean free path this would mean that the electron system
is practically in perfect thermal equilibrium with the bath
temperature, i.e., the phonon system. Since the study of
weak localization we know, however, that the electrons in
a disordered metal maintain their phase coherence (and
therefore their energy) over a time 7; which can be longer
than 7. by 4 or 5 orders of magnitude.

The electron system needs the time 7,_,;, the electron-
phonon relaxation time, to transfer its excess energy into
the phonon system of the metal by electron-phonon pro-
cesses. During this time the electron system accumulates
the energy density pj Zre_ph, and the electron temperature
is raised above the phonon temperature.

Such a temperature difference between the electron and
phonon systems has been involuntarily observed in the
millikelvin temperature range, where the electron-
phonon processes have become so rare that electron heat-
ing can hardly be avoided. The first experimental obser-
vation was reported by Dolan and Osheroff' and has
been studied subsequently (see, for example, Ref. 2). It
remains the main obstacle to investigating resistance
anomalies at very low temperatures.

In the temperature range of liquid helium it is much
harder to observe such a nonequilibrium state. Because
the electron-phonon relaxation time is much shorter than
in the mK range one needs a considerable Joule heating
and this tends to heat the whole sample. To avoid the
heating of the sample, Gutfeld® started to perform pulse
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experiments more than two decades ago. In such experi-
ments a thin metal film is condensed onto an insulator
(for example, sapphire) and a short current or field pulse
is applied to the film. Such pulse experiments have the
advantage that one can perform time-of-flight experi-
ments with the phonons and obtain information about
the phonon emission of the system. However, one never
reaches a steady-state situation because, during the ex-
periment, the electron and the phonon temperature rise
continuously.

We describe in the present paper steady-state experi-
ments in which we expose the electron films to current
densities up to 10’ A/cm?. An earlier more qualitative
experiment was performed by one of the authors* a few
years ago, and recently Liu et al.’ published nonequilibri-
um measurements with a current density of about 10*
A/cm?. In this paper we report on recent experiments in
which we use thin narrow films with 3-nm thickness and
4-um width. These films are quench condensed onto a
quartz plate which is at helium temperature. We send
currents between 3 pA and 1 mA through the narrow
films. The higher current corresponds roughly to a
current density of 10’ A/cm? and raises the electron tem-
perature considerably above the phonon temperature.
Despite the high current density we can still keep the to-
tal amount of generated heat relatively small since the to-
tal volume of our film is so small.

In a steady-state experiment it is most desirable to be
able to measure the electron and phonon temperatures of
the system. Fortunately, disordered thin films provide
such thermometers in the temperature and field depen-
dence of the electric resistance. These thermometers are
the following.

(a) The Coulomb anomaly of the resistance. Its contri-
bution to the resistance depends only on the electron tem-
perature.

(b) Weak localization. The associated magnetoresis-
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tance yields the inelastic lifetime of the conduction elec-
trons which is a function of both the electron and phonon
temperatures.

The electric resistance in high-resistance films has the
following contributions at low temperatures:

R(T)=Ro+ARy (T)+AR(TD+AR, (T), (L1

where R, is the residual resistance of the film, ARy (T)
is the contribution of weak localization, AR-(T) is the
contribution of the Coulomb anomaly due to electron-
electron interaction, and AR, ,(7) is the (usual) thermal
part of the electric resistance due to electron-phonon pro-
cesses.

The Coulomb correction depends only on the electron
temperature (see, for example, Refs. 6 and 7)

2
AR.=R2—4.—(1—F')InT , (1.2)
¢ 02772ﬁ

where F' is a screening factor which is much less than
one.

The Coulomb anomaly is therefore a suitable electron
thermometer if we succeed in making it the dominant
temperature-dependent factor in the resistance. For this
purpose we use a film with a high resistance per square,
because AR is proportional to the square of the resis-
tance (per square).

On the other hand, weak localization makes it possible
to measure the inelastic scattering rate of the conduction
electrons 1/7; (for reference see, for example, Refs. 8-10).
Weak localization is an interference experiment with con-
duction electrons which are scattered by the impurities or
lattice defects.!! As a consequence, the resistance shows
a pronounced dependence on the magnetic field, yielding
bell-shaped magnetoresistance curves. The width of the
magnetoresistance curves gives the inelastic scattering
rate 1/7;. This rate is closely related to the electron-
phonon relaxation time, as we will discuss below, and de-
pends on both the electron and phonon temperatures.
Therefore, weak localization is a second (although more
indirect) thermometer in our thin films.

Since weak localization also causes a temperature-
dependent correction to the resistance, one might suspect
that the two thermometers disturb each other. However,
since weak localization is very sensitive to a magnetic
field, we suppress its contribution to the temperature
dependence of the resistance with a magnetic field of 7 T.
Therefore, we can decouple the two thermometers. By
measuring the temperature dependence and the
magnetic-field dependence of the resistance in thermal
equilibrium these two thermometers can be calibrated.

The conventional thermal part of the resistance is
much smaller than the Coulomb and weak-localization
corrections at low temperatures. In addition, we can esti-
mate its contribution: we found in former experiments
that AR, ,,/R,=~T7,/7;, where 7, is the elastic scattering
time and 7; is the inelastic scattering time as determined
by magnetoresistance measurements using the theory of
weak localization.
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II. EXPERIMENT

Prior to the experiment we prepare the quartz plate at
room temperature. First, gold electrodes are evaporated.
Then the quartz plate is covered with photoresist. A
mask with an undercut is prepared by photolithography
to permit us to condense a film with 4-um width and 80-
pm length. At the bottom of the quartz plate, on the op-
posite side of the film, we glue a heater and an Allen-
Bradley resistor to measure the temperature of the quartz
plate. The quartz plate is mounted onto a copper block
in the vacuum system of the cryostat. We perform the
experiment in the following steps.

(a) Cryostat and quartz plate are cooled to helium tem-
perature. An Au film is quenched condensed. This film
is annealed to 50 K using a maximum current of about 1
mA. Afterwards the resistance per square is about 1000
Q. The film itself is always in vacuum. This allows us to
vary the equilibrium temperature of the film.

(b) We measure the resistance of the film as a function
of temperature in thermal equilibrium. This is achieved
by sending a small current (3 uA at 4 K and 30 uA above
20 K) through the film and heating the quartz plate with
the heater on its back. (In the following, this is called
“equilibrium heating.””) This is done for about ten tem-
peratures between 4.3 and 40 K.

(c) Then we vary the current at each equilbrium tem-
perature between 3 and about 1000 uA in 10-20 steps.
For each heating and current we measure the tempera-
ture of the quartz plate and the resistance of the film.
Such a plot is shown in Fig. 1, which we discuss below.

(d) For most combinations of equilibrium heating and
current we measure the magnetoresistance in the field
range between -7 and +7 T.

In Fig. 1 the dependence of the resistance per square of
an Au film is plotted versus the temperature of the quartz
plate. The dashed curve gives the resistance in thermal
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FIG. 1. The resistance per square of a Au film in zero mag-
netic field is plotted vs the temperature of the quartz plate. The
dashed curve gives the resistance in thermal equilibrium (for
sufficiently small current). From each equilibrium point a solid
curve branches off which is obtained by increasing the current.
The values of the current are 3, 10, 30, 50, 100, 200, 300, 400,
500, 700, and 900 pA.
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equilibrium (for sufficiently small current). From each
equilibrium point a solid curve, which is obtained by in-
creasing the current, branches off. The values of the
current are 3, 10, 30, 50, 100, 200, 300, 400, 500, 700, and
900 LA.

The equilibrium curve has a resistance minimum of
about 956.8 (1 at 24 K. The nonequilibrium curves with
higher currents yield considerably lower minima in the
resistance. If the electron and phonon systems were in
equilibrium, then the minimum of the resistance would be
independent of the current. We conclude that the
current density is high enough to heat the electron tem-
perature considerably above that of the phonon system.
(A large current increases the electron temperature far
above the phonon temperature and reduces the resistance
contribution of AR.. Because of the strong spin-orbit
scattering in Au, weak localization reduces the resistance
at low temperature, i.e., increases it at high temperature.
If, however, the phonon temperature remains low, then
the contribution of weak localization increases more
slowly with increasing current, and we obtain a lower-
resistance minimum.)

To use the resistance as an electron thermometer we
suppress the temperature dependence of weak localiza-
tion with a magnetic field of 7 T. In Fig. 2 we have plot-
ted the resistance for another film versus the temperature
of the quartz plate for different equilibrium heatings and
different currents. The plot is quite analogous to Fig. 1.
The main difference is that we apply a magnetic field of 7
T perpendicular to the film and suppress weak localiza-
tion. For each current through the film we determine the
electron temperature by means of the resistance. As the
dotted line demonstrates for a current of 100 uA and an
equilibrium temperature of 4.4 K, we move horizontally
to the equilibrium curve and then vertically down to the
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FIG. 2. The resistance per square of a Au film in a magnetic
field of 7 T perpendicular to the film is plotted vs the tempera-
ture of the quartz plate. The dashed curve gives the resistance
in thermal equilibrium (for sufficiently small current). From
each equilibrium point a solid curve branches off which is ob-
tained by increasing the current. The values of the current are
5, 10, 20, 40, 60, 80, 100, 200, 300, 400, 600, and 700 uA.
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corresponding temperature (which yields, in this case,
10.9 K). In the present evaluation we apply this method
only to temperatures up to about 15 K and leave the
higher temperatures for a later, more sophisticated, eval-
uation.

In Fig. 3 we have plotted the equilibrium conductance
L /Ly [Lo=e2/(2m*#)] of the film in the external field
B=7T as a function of In(7"). The slope of the straight
line is 1.05. The logarithmic behavior is fulfilled up to
about 15 K.

In Fig. 4 we present the measurement of Fig. 2 in a
different plot. The resistance (in 7 T) is plotted versus the
logarithm of the current for different equilibrium heat-
ings. Since the resistance is proportional to InT and the
Joule-heating power P =I*R is proportional to the square
of the current, this corresponds to a log-log plot of power
versus electron temperature. One recognizes that for
small currents the resistance is essentially constant and
equal to the equilibrium value. With increasing Joule
heating the curve bends to lower resistance. If we start
with a low equilibrium temperature then we find a linear
relation between InP and InT,.

For most experimental points in Fig. 2 we have mea-
sured the magnetoresistance. In Fig. 5 we have plotted
several magnetoresistance curves in thermal equilibrium
(dashed curves). The temperature on the left-hand side
gives the equilibrium temperature. In the same figure we
have plotted several nonequilibrium curves. These solid
curves were obtained with zero heating of the quartz
plate but increasing current through the film. The
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FIG. 3. The conductance correction in units of

Lo, =e?/2m# for the same Au film as in Fig. 2 is plotted vs the
logarithm of the temperature. The current for the measurement
is S uA and the electrons and phonons are in thermal equilibri-
um. The corresponding scales for the square resistance are
shown on the left-hand side, and the temperatures are shown on
the top.
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FIG. 4. The square resistance (in 7 T) is plotted vs the loga-
rithm of the current for different equilibrium heatings. The
temperatures for the equilibrium heating with small currents
are labeled to the left of the data.

currents are given on the right-hand side of the curves in
mA. Both sets of curves can be described by essentially
one parameter, the inelastic scattering rate of the conduc-
tion electrons. It does not matter whether the curves are
obtained for equilibrium or nonequilibrium.

The magnetoresistance curves have been analyzed with
the theory of Hikami et al.!? and each curve yields a
characteristic inelastic field H;. From H; we obtain the

inelastic rate 1/7; by the relation
1/7;=H;4/(#fiep2N,) , 2.1

where p is the resistivity of the film and N, is the density
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FIG. 5. Magnetoresistance for a Au film measured at
different heatings. The dashed curves are obtained in thermal
equilibrium, measured with only 5 pA. The temperatures on
the left-hand side give the equilibrium temperatures. The solid
curves are measured with zero heating of the substrate, but with
increasing current through the film. The currents are given on
the right-hand side of the curves in mA. The scale on the left-
hand side is the correction of resistance with respect to the
resistance at zero field. The scale on the right is the correction
of conductance in units of Lo =e?/2m*#, with respect to the
conductance at zero field. The scale for the magnetic field is
given at the bottom.
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FIG. 6. The inelastic rate divided by the temperature
1/(r,T) is plotted vs the temperature. The solid circles
represent the equilibrium magnetoresistance measurement.
They fulfill a straight line with an intersection at the vertical
axis A¢=0.0133(psK) ' and a slope B,_,;,=0.00142(psK?)"".
All the other data connected by dashed lines are from the
nonequilibrium magnetoresistance measurement with higher
currents. The temperatures for the nonequilibrium data are
determined by means of the Coulomb anomaly of the resistance.
The scale on the right-hand side is related to the scale on the
left-hand side with Eq. (2.1).

of states per spin (i.e., 2N is the total density of states).

In Fig. 6 we have plotted the inelastic rate divided by
the temperature 1/(7;T) versus the temperature. The
solid curve gives the equilibrium measurement. We
recognize that the inelastic rate follows a temperature
dependence given by

1/r,=AcT+B, T2 . 2.2)

The experimental results for the coefficients are
Ac=0.0133/psK and B, ,=0.00142/ps K2 The
linear temperature dependence is caused by the electron-
electron interaction. Its coefficient is given by Eq. (3.17).
In films with high resistance this contribution is much
larger than in low-resistance films. Our experimental
value of 4. agrees very well with the theoretical value of
0.012/psK given by Altshuler and Aronov.!’ The quad-
ratic contribution is due to the electron-phonon interac-
tion.

For each nonequilibrium point we obtain an inelastic
scattering rate 1/7,. By means of Fig. 6 we determine
the temperature with the same equilibrium inelastic life-
time. We denote this temperature as the weak localiza-
tion temperature Ty . Although this is only a formal
temperature, its definition is helpful because Ty, lies be-
tween the electron and the phonon temperature:
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Tp, < Twy <T,. In Fig. 8, which will be discussed below,
Ty is plotted versus the current through the film for the
lowest equilibrium heating.

III. THEORY

In this section we assume that the phonon system can
be described by a phonon temperature T;,. This permits
us to perform analytic calculations. The calculation for
distorted phonon occupation has to be left to future in-
vestigation.

A. Phenomenological overview

An electric current heats the electron system. The en-
ergy input per volume is 0 E2=pj2. By electron-phonon
relaxation processes the Joule heating is transferred into
the phonon system while the electron system tries to re-
lax towards the phonon temperature. Let the electron-
phonon relaxation time be 7,.;. During this time the
electron system accumulates the energy density 0 E ZTe_ph
from the Joule heating. Its own internal energy (above
the zero-point energy) is (72/6)(2N,) (kg Ty )2. There-
fore, the total internal energy density corresponds to an
effective electron temperature of

(kgT,P=(kpT,,)*+(6/7°)(eE )’ D, 3.1)

e-ph

where D is the diffusion constant.

In a recent paper one of the authors demonstrated'*
that the presence of a large electric field yields an energy
distribution of the electrons which is different from the
equilibrium distribution with the same internal energy.
However, for practical purposes, the effect of this
difference is minor.

The Joule-heating power o E? which is pumped into
the electron system is transferred after the time 7,_, into
the phonon system of the film. From the phonon system
it passes into the heat bath, i.e., the quartz plate. Let 7,
be the time the phonons need to escape from the phonon
system of the thin film into the phonon system of the un-
derlying quartz plate. During this time they increase the
internal energy of the phonon system of the film in analo-
gy to the electron system. This increase is 0 E*r, per
volume. The internal energy of the phonon system at the
temperature T, is

U']:)h(’Tqu):C'DZTV‘‘\LI ’ (3.2)

where z is the dimension of the film. Cp, is given in three
dimensions for longitudinal and transverse phonons by

C —z”z L (3.3)
D3 430 (#ic, ) '

where A is the polarization of phonons and c; the corre-
sponding sound velocity. This expression for Cp; has to
be modified if we have to consider the film a quasi-two-
dimensional phonon system.

The effective temperature of the relevant phonons in
the film is given by

T =T + (eE)’r, . (3.4)

CDz
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As we will discuss below, the occupation factor n ., ({1)
of the phonon spectrum is far from the equilibrium occu-
pation n(Q,T,,). Therefore, T, has here only the
meaning of an averaged internal energy.

Next we consider the phonon escape time 7, from the
film. We discuss first a lower limit of 7, in the perfectly
matched quartz-film model. Here we assume that the
masses and elastic constants of the metal and the quartz
are identical so that the phonons can propagate from the
metal to the quartz and vice versa without distortion.
The phonons are generated in the metal film with wave
number g and they propagate afterwards in all directions.
Let U, be the energy density in the film. Then the film
radiates its energy through the interface with the quartz
by a process similar to the black-body radiation. The en-
ergy that escapes through the interface is given by

dt 4d 3.3)
This yields a phonon escape time which is temperature
independent and very short for thin films. In our films we
get about 7,=3X10" 25 if we take the longitudinal
sound velocity of Au which is ¢ =3200 m/s. But even
during such a short time the phonon system accumulates
an energy density which raises its temperature. Little'®
included an acoustical mismatch between the two media
and calculated the transparency of the interface. We re-
turn to this point in the discussion section.

B. Electron-phonon energy relaxation

Kaganov, Lifshitz, and Tanatarov'® calculated the en-
ergy transfer from the electron to the phonon system, and
recently Allen!” expressed the energy relaxation in terms
of a?F(Q), the Eliashberg function, which gives the prob-
ability for electron-phonon processes. The energy
transfer from the electron to the phonon system is, ac-
cording to Ref. 17,

dE, /dt=27N, [ dQ ?F(Q)#Q{n(Q, Ty, )—n(Q,T,)],
(3.6)

where n(Q, T) is the Bose distribution function and N is
the density of states per spin at the Fermi energy. For
low temperatures we approximate a*F({) by the lowest
power in (),

azF(Q):Cgﬂg . (3.7
Then we obtain for Eq. (3.6)
dE, £
dt 7
k§t3 LE+2
- 3_ 3
=27No oy Cel Ti* = TE* ) [ dx e
(3.8)

Together with Eq. (3.1) we obtain for the electron-
phonon relaxation time
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For small temperature differences one obtains for 7,_,,

1

7’e‘ph

7§}

2
d

T—n(Q,T) .

P n( )

dT

=2 [daa?F) (3.10)
™

For small temperatures this yields

1

Te-ph

x§+2

e*—

3
==(kgT /BN +3)C, [ d 3.11)

=k T/RFNE+3IC, [ d
From the temperature dependence of 7,_,, one can derive
the Q dependence of a*F(Q).

One obtains the same relation for 7, for small tem-
perature differences by using

dE,/dt=(dE,/dT,)\dT,/dt) ,
dE,/dT,=m*kj32N,T, /3,
and

dT, /dT=—(T,—Tp)/Tepp -

C. The inelastic lifetime

In addition, we determine the dephasing time 7; by
measuring the magnetoresistance. The dephasing is
caused by electron-phonon and electron-electron process-
es. According to our present understanding,'® the
electron-phonon part of 1/7; is essentially given by

1 af

o€

=21rfde

X [dQ?FQ{[1-fle+Q)]n(Q)
+[1—f(e—Q)]

X[n(Q)+11} . (3.12)

In thermal equilibrium between the electron and the pho-
non system this yields for the inelastic lifetime

(A /kpT)
e =27rfan2F(Q 2

) . (3.13)
7 [2sinh(#Q/2k, T)]

To our surprise this formula has not been derived pre-
viously. In the literature the appropriate averaging over
the energy range kyz T has been forgotten. This causes a
deviation which can easily cause a difference of several
tenths of a percent. For a linear energy dependence of

|
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a®F(Q) Eq. (3.13) yields values for 1/7¢P" which are by a
factor 0.33 larger than the values obtained from previous
formulas.

In nonequilibrium between the electron and phonon
systems we obtain

._] —Zﬂfdﬂazl (Q) ’1(971{:] )
J 1 n(ﬂ] )
e lT »Te .

For low temperatures where a?F(Q) can be approximat-
ed by C.Q¢ one finds

1

e-ph
i

¢
=2m(ky /BT ICAETE +TE! )fdx?:—l) :
o

(3.15)

T

Close to the equilibrium state the ratio between the in-
elastic rate and the electron-phonon rate is given by

X

/™ apkg+1) g v
e*—1

1/‘rchph 3(§+3) I§+2

, I,=[dx (3.16)
The same relation is valid for arbitrary electron and pho-
non temperatures if {=1. By numerical calculation we
find for I,=1.645, I,~=2.404, I,;=~6.494, I,~24.886,
and I5=122.08. Therefore, we obtain for {=1 the ratio
0.833.

In addition to the electron-phonon contribution, 1/7;
has also a contribution from the enhanced electron-
electron interaction in disordered two-dimensional elec-
tron systems. Altshuler and Aronov'? derived the follow-
ing implicit relation for 1/7¢:

# e?

= R,ln
kpTTe¢ 27h 0

#
kB TT?e

(3.17)

D. The phonon system

In a first evaluation we describe the phonon system by
a phonon temperature and therefore the phonon occupa-
tion number by the Bose-Einstein occupation number.
However, the phonons emitted by the electrons have a
finite escape time 7, from the film into the quartz plate.
This situation has been theoretically studied by Perrin
and Budd'®? who found strong deviations between the
actual phonon occupation and the equilibrium occupa-
tion for a temperature with the same total energy. We
use a slightly different description here which corre-
sponds to Allen’s calculation instead. The nonequilibri-
um phonon occupation number of the phonon system we
denote by n,;, (). The rate of phonons with the energy
#Q which are emitted and adsorbed from the electron
system is proportional

PF(Q) [de( (e[ 1= fle—A) )y, + 1) — F(E[1— fle+Fi)Iny, } =a?F(QAQn(Q, T, ) —npy ] -
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If one assumes a constant escape time for all phonon fre-
quencies then the rate for the occupation of the phonon
of frequency (2 is given by

dn_; (Q)
Q)%=2?W2Noa2F(Q)ﬁw[n(Q,Te)—nph(Q)]
1oy (Q)—n (T, Q)
— —oh WRQ) .

Tp

(3.18)

Here F(Q) is the phonon density of states. Its form de-
pends on the coupling of the film to the quartz plate, i.e.,
whether the phonon states lie continuously inside of the
Debye sphere or whether they occupy only planes within
the Debye sphere. We set

2 ., *F(Q)AQ
Q)=—2Ny———"— .
G(Q) P Ny Fl) (3.19)
For the steady state we obtain
n(T,,,0)+n(T,,Q)G(Q)r
Moy (Q)= —2 : g (3.20)

1+G(Q)r,

In the limit of small 7, this yields
non(M)=n(Q,T,)+[n(Q,T,)—n(Q,Ty,)]G(Q)T,

+0(1}) . (3.21)

Transitions between the phonon states, for example,
conversions of longitudinal phonons into transverse ones,
complicate the treatment further. Only if these transi-
tions are so frequent that they restore thermal equilibri-
um would the situation again become simple.

IV. EVALUATION

As we found in Sec. II the inelastic scattering rate 1/7,
is a sum of a linear and a quadratic term. The linear term
agrees very well with the theoretical prediction by
Altshuler and Aronov!® resulting from the electron-
electron interaction. We expect that the remaining quad-
ratic term is due to electron-phonon interaction. Accord-
ing to Eq. (3.15) in the theoretical part a quadratic tem-
perature dependence of 1/7; corresponds to an Eliash-
berg function linear in Q, i.e., @’F(Q)~Q. This frequen-
cy dependence is a puzzling problem on which we com-
ment later.

For a quadratic temperature dependence of 1/7;, i.e., a
linear dependence of a*F({) on the phonon frequency we
predict according to Egs. (3.9) and (3.15) that the
electron-phonon relaxation rate 1/7,_;, should show the
same temperature dependence and be identical to 1/7¢PP
except for a factor ;%;. This applies for both the equilib-
rium and nonequilibrium cases.

In our first approach to evaluate the electron-phonon
relaxation rate we approximate the phonon temperature
T, by the temperature of the quartz plate 7. For the
electron temperature we take T from the evaluation of
the Coulomb anomaly. With Eq. (3.1) we obtain the
electron-phonon relaxation rate. In Fig. 7 we have plot-
ted the inelastic rate due to electron-phonon interaction
1/7¢P" versus the electron-phonon relaxation rate
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FIG. 7. The inelastic rate due to electron-phonon interaction
1/7¢P" is plotted vs the electron-phonon relaxation rate 1/7,.,
for three different substrate heatings. The inelastic rate due to
electron-phonon interaction is the quadratic part of the temper-
ature dependence of the inelastic scattering rate. The electron-
phonon relaxation time is determined with Eq. (3.1), taking the
electron temperature from Coulomb anomaly and approximat-
ing the phonon temperature by the quartz temperature.

1/7, on- Theoretically we expect a linear relation between
the two parameters with the slope of 0.83. While the
points for the two lowest equilibrium heatings appear to
fulfill a linear relation, there are considerable deviations
for the higher equilibrium heating. In addition, the slope
for the lower curves is 1.2. The electron-phonon relaxa-
tion rate has the right order of magnitude but there are
clear deviations from a linear dependence between 1/7¢Ph
and 1/7, .

One might conclude that the approximation of the
phonon temperature by T,,, the temperature of the
quartz substrate is the origin of the observed deviation
between 1/7,, and 1/7¢P". However, the reason is
more complicated. This is demonstrated in Fig. 6 where
we also plot for the nonequilibrium data 1/(7;T) versus
T. Here we use T for the electron temperature. For a
linear a?F(Q) the nonequilibrium curves should always
lie above the value for the equilibrium point, i.e., the
dashed curves should start with a horizontal tangent and
bend upwards. Experimentally this is not observed.
There can be several reasons for these deviations. The
following ones come to mind.

(a) The conclusion that a?F(Q) is linear in Q is not
correct.

(b) The Coulomb anomaly is not a reliable thermome-
ter.

Our conclusion at the present time is that the resis-
tance in 7 T is not a trustworthy thermometer. For the
argumentation we use the evaluation of the inelastic rate
1/7,.

The inelastic rate is more than a thermometer in our
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investigation. The electron-phonon part of the inelastic
rate is (besides a factor of the order of 1) identical with
the electron-phonon relaxation rate. The latter deter-
mines the temperature difference between the electron
and the phonon system and therefore the inelastic rate
contains essentially all the relevant information which we
need in our investigation. If one knows the frequency
dependence of a?F({)) then one obtains a full analysis of
the experimental data just from 1/7;. For a linear depen-
dence of the Eliashberg function a’*F({) on the frequen-
cy () one obtains for 1/7;

V/mP=1/r,— AcT, =B, /AT}+T), (4.1a)
1/7, on=(6/7")D(eE /ky ? /(T —T4,) , (4.1b)
1/7¢Ph=0.83/1 (4.1c)

e-ph *

Combining these equations yields an equation for the
electron temperature 7,

1 B o E? Iy 1
T, 2Nok} I, 1/1,—ACT,

—B, T2~ AcT,=0,

4.2)

where I, are the integrals in Eq. (3.16) and A and B,
are the linear and quadratic coefficients of the tempera-
ture T in Eq. (2.2).

Before we evaluate Eq. (4.2) we have to recall that the
inelastic rate 1/7; is obtained from the inelastic field H,
of the magnetoresistance curves. The determination of
1/7; is performed with the help of Eq. (2.1) which re-
quires the knowledge of the resistivity p and the density
of states 2NV, of the film. The resistivity requires the
thickness of the film which has an accuracy of about
15%. The density of states is approximated by the free-
electron value. Furthermore, nobody has yet considered
a possible influence of mass enhancement, i.e., a factor of
(1+A)in Eq. (2.1). Therefore, we have to permit an un-
certainty in the absolute value of 1/7, which is of the or-
der of a few 10%.

Keeping this uncertainty in mind we have plotted in
Fig. 8 a detailed evaluation of the lowest nonequilibrium
curve (i.e., for no equilibrium heating). Figure 8 shows
essentially the different measured and evaluated tempera-
tures as a function of the current through the film for the
lowest curve in Fig. 2, i.e., the lowest equilibrium heat-
ing. The scale on the top of the figure gives the corre-
sponding electric fields. T, is the measured temperature
of the quartz plate. T is the electron temperature which
we obtained from the Coulomb anomaly, i.e., the (loga-
rithmic) temperature dependence of the resistance in 7 T.
The evaluation of Ty, the weak-localization tempera-
ture, has been described in Sec. II and corresponds to the
equilibrium temperature which shows the same inelastic
scattering rate as in the considered nonequilibrium state.

Using the inelastic rate for each nonequilibrium point
(which is represented by T; ) we can calculate by means
of Eq. (4.2) the expected electron and phonon tempera-
tures 7, and T,;,. The corresponding data are represent-
ed by dashed curves. T, lies considerably below T, but
the main objection is that T, lies partially below the
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quartz temperature T,. Although this is impossible, it
does not disqualify this evaluation. As we pointed out
above, the absolute value of 1/7; is only determined
within some 10% accuracy. Our evaluation shows that
7; (and therefore 7, ;) must be shorter to reduce the tem-
perature difference between the electron and the phonon
system. For the dashed-dotted curves we reduced 7; by
30%. (The curves are denoted by T, and T.) Ty lies
reasonably above the quartz temperature.

The new values of the electron temperature T, lie still
further below T, the value obtained with the Coulomb
anomaly. This difference between T and T, represents
the third discrepancy when using T for the electron
temperature.

We put the difference between T, and T aside for a
moment. Then we conclude: After the reasonable ad-
justment of 30% of the time scale of 7, the evaluation
with weak localization yields a satisfying and consistent
description of the experimental data.
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FIG. 8. The electron and phonon temperatures determined
with different methods are plotted vs the current. Ty, is a for-
mal temperature from the inelastic lifetime determined with
weak localization. T (circles) is determined from the Coulomb
anomaly of the resistance. T, is the temperature of the quartz
substrate (measured by a carbon resistor on the back of the
quartz). T, and T, are calculated with Egs. (4.1) and (4.2), tak-
ing the inelastic lifetime 7, as the input, where 7, is obtained
from weak localization which yields the inelastic field H, using
the relation H,7,=e#ip2N,/4. T, and T,, are obtained by re-
ducing H, 7, by a factor of 0.7.
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V. DISCUSSION

During the evaluation of our experiments we realized
that we know amazingly little about the interplay of elec-
trons and phonons in thin metal films. What is the di-
mension of the phonon system? Which phonons are
created by the electron-phonon interaction? How do the
phonons escape the film? What is the character of the
electron-phonon transition? Obviously our evaluation
could only be a first step in understanding and evaluating
the experimental data. In this section we discuss briefly
some of the problems we have to address in the future.
For some questions such as the phonon spectrum or the
phonon escape time we already have a qualitative picture.
Others like the nonequilibrium phonon distribution func-
tion require additional knowledge about the electron-
phonon interaction.

A. The phonon spectrum in the thin film

The sound velocities of longitudinal and transverse
phonons are considerably larger in quartz than in Au. In
addition, the density of Au is almost larger by a factor of
10 than in quartz. As a consequence the Au-quartz inter-
face has a critical angle of total reflection for longitudinal
phonons of 3=233° (from the Au side). This means that
only phonons with g, > g,, /tan(?) can cross the interface
from Au to quartz. In the following we call this part of
the g space the g cone of transparency. If the z com-
ponent g, is less than g,, /tan() then the phonon is to-
tally reflected. The form of the pressure p as a function
of the distance from the interface is

p=[explik,z)+exp(—ik,z+iP)],

where @ is the phase shift at the interface. & varies be-
tween O and 7 if the incident angle varies between the
critical angle of total reflection and grazing incidence.
Therefore, one obtains a quantization of k, in the range
of total reflection and the boundary conditions vary as a
function of the incident angle. For the angle of total
reflection the quantization yields g, =vw/d and for graz-
ing incidence we have ¢,=(2v+1)7/2d. As a conse-
quence, the phonon spectrum of the film on top of the
quartz plate consists of two very different contributions.

(a) For g, >gq,, /tan(3) the phonons extend from the
film into the quartz plate, are not restricted in their g,
values, and behave three dimensionally. However, the
phase space of the three-dimensional phonons is reduced,
i.e., we have a reduced density of phonon modes.

(b) For g, <g,, /tan(3) the phonons are confined to the
thin Au film (decaying exponentially in the quartz) and
their g, values are quantized.

The total reflection at interface for g, <g,, /tan(4}) is
the reason why the escape chance of phonons from the
film is strongly reduced. The formula by Little' yields
only an escape chance of 20% (corresponding to a
I’'=0.1 in Little’s formula). The density of the three-
dimensional phonon modes in Au is reduced by roughly
the same factor.

The above considerations apply when one has an ideal
interface between the Au film and the quartz plate. One
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cannot exclude that the interface between a quartz plate
and a disordered Au film behaves different. One way to
check this question is to reduce the Au thickness to a few
atomic layers. Then the two-dimensional part of the
spectrum should be sufficiently high in frequency so that
it is not occupied at helium temperature. We plan to ex-
tend our investigation to such thin films so that the two-
dimensional modes are completely frozen out.

Finally we want to mention the Rayleigh waves at the
interface between Au and quartz. They might as well be
activated by the electron-phonon transitions. We plan to
study their influence in the future as well.

B. The phonon escape time 7,

By means of electron-phonon processes the Joule heat-
ing is transferred from the electron system to the phonon
system. Finally the phonons escape from the thin film
into the quartz. The longer this escape time is, the more
energy is accumulated in the phonon modes, i.e., the
higher the phonon occupation number will be for a given
g and Q. From the above discussion we easily realize
that the escape time is a strong function of the direction
of g.

It is quite suggestive to assume that the quantized pho-
nons, i.e., those which experience total reflection, do not
escape the film and therefore are in thermal equilibrium
with the electron system, i.e., have a thermal occupation
n(Q,T,). On the other hand, the three-dimensional pho-
nons within the g cone of transmission escape roughly
during the time 7, =d /c,. In this case, the small frac-
tion of escaping phonons contributes the heat transfer
from the electron system into the phonon system, i.e., to
the electron-phonon relaxation time. The quantized pho-
nons, since they are trapped, would assume the electron
temperature and therefore do not contribute to the
electron-phonon relaxation rate. But they would fully
contribute to the inelastic rate (as long as their energy is
not too high and they are thermally activated).

If, however, the quantized phonons scatter from the
quasi-two-dimensional states into the cone of three-
dimensional phonons then they can escape into the
quartz. As a consequence their occupation number is no
longer given by the electron temperature and then they
contribute to the energy transfer from the electron sys-
tem to the phonon system and therefore to the electron-
phonon relaxation rate. It does not make sense to evalu-
ate our experimental data in all possible scenarios. First
we need a better understanding of the underlying process-
es. This question can be experimentally investigated by
using, instead of the heavy Au, the light metal Mg where
the g cone of transparence is much larger.

C. Non-Ohmic behavior of the Coulomb anomaly

In the last section we found that the values of the elec-
tron temperature T, (evaluated with weak localization)
lie clearly below T, (the value obtained with the
Coulomb anomaly). This difference between T and T,,
as well as the negative slope in the 1/(7;T) plot, raised
suspicion that the Coulomb anomaly is not a reliable
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thermometer. Therefore, we considered the field depen-
dence of the electric resistance carefully. One of the au-
thors?! translated and explained the Hartree part of the
Kubo diagram for the Coulomb anomaly in physical
terms. It was concluded that one electron diffusing along
a closed (impurity) loop generates, by self-interference, a
charge hologram. The second electron which diffuses
along the same loop is scattered by this charge hologram,
thereby readjusting its phase. Finally it performs a self-
interference at its starting point, modifying its effective
mean free path. The essential point for our present inves-
tigation is that the resulting mean free path and the
correction to the resistance should be electric-field depen-
dent. The reason is that the two electrons start from
different positions r, and r, in real space. This means
that their chemical potential is shifted with respect to
each other by Au=eE(r;—r,). As a consequence, the
electric field introduces an additional phase shift in the
corresponding Kubo diagram and therefore reduces its
contribution. The same applies for the Fock term.
Therefore, we conclude that the quantum correction to
the resistance due to the Coulomb interaction violates
Ohm’s law. From this qualitative interpretation we ex-
pect an electric field dependence which is of the order of

e 2
4mt#

where a is a factor of the order of 1. We are in the pro-
gress of calculating this correction quantitatively.

Stimulated by this idea we also considered the field
dependence of the residual resistance. The elastic scatter-
ing centers in a disordered metal are generally impurities
or lattice defects. The potential of these scattering
centers is screened. Therefore, we have to check whether
this screening might be affected by a current density as in
our experiments or by the temperature of the electron
gas. We plan to look into this question in more detail.
Such new effects might be discovered since our experi-
ment represents the first one in which a high electric field
is combined with a very accurate measurements of the
resistance. This is not possible in pulse experiments.

It should be emphasized, however, that weak localiza-
tion does not suffer from an electric-field dependence.
Such a (destructive) effect of the electric field was origi-
nally controversial and predicted by some authors.?22
One of the authors®® confirmed the prediction by
Altshuler and Aronov?® who claimed that weak localiza-
tion is not affected by an electric field. Therefore, we can
trust weak localization as a thermometer.

AR-/R*=

In[(kyT)+a(eE)*D#/kyT] , (5.1)

D. The electron-phonon interaction

In our evaluation of the inelastic scattering rate we ob-
tained an Eliashberg function a?F () which was linear in
Q. In the final evaluation in Fig. 8 we used this linear
frequency dependence. Such a linear dependence is
theoretically rather surprising. It was experimentally ob-
served 20 years ago in tunneling experiments?®?’ but the
low-energy results were not taken that seriously.
Schmid?® and Keck and Schmid?® concluded that such a
linear dependence does not occur for g/ <1 if one in-
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cludes vertex corrections. Belitz and Sarma'® interpreted
the experimental temperature dependence of 1/7; as a su-
perposition of a linear term from the electron-electron in-
teraction and a nonquadratic contribution from the
electron-phonon interaction. We do not believe that this
interpretation applies to our experiments since we can
clearly separate the linear contribution from the
electron-electron interaction. Therefore, the quadratic
temperature dependence of 1/7; remains a theoretical
challenge.

During the last 10 years we have improved our skill to
treat disordered electron systems if small g vectors and
energies are involved. We know that the matrix elements
of e'¥ between eigenfunctions of the disordered system
are peaked for energy differences of the order #Dg?, since
this is the width of the ‘“diffusion pole.” Such electron
transitions generate (in an average) charge-density waves
in the film which couple to the phonons but which are
purely diffusive. (We expect that the z component is
quantized as g, =vr/d.)

The above model presents a well-defined problem
which is treatable. It should particularly address the
question of electron-phonon processes with transverse
phonons. Perrin et al. recently suggested* that only lon-
gitudinal phonons are generated in the film which might
decay into transverse phonons.

VI. CONCLUSIONS

We investigated thin, narrow Au films, quench con-
densed onto a quartz plate, in the presence of high
current densities, i.e., high electric fields. By means of
weak localization we determined the inelastic scattering
rate of the conduction electrons in equilibrium and
nonequilibrium. We found a very good agreement be-
tween the linear experimental contribution to the inelas-
tic scattering rate and the theoretical prediction due to
the electron-electron interaction. The second contribu-
tion was quadratic in the temperature and caused by
electron-phonon interaction, corresponding to a linear
frequency dependence of the Eliashberg function a?F(Q).
For the interpretation of our experimental data we de-
rived the expression for the inelastic rate in nonequilibri-
um (and equilibrium which was not properly averaged
over the thermal energy distribution in the literature).
By a slight adjustment of the conversion factor between
the characteristic field H; and the rate (which we calcu-
lated so far only in the free-electron approximation,
neglecting possible mass enhancement effects), we suc-
ceeded in interpreting the experimental data consistently.

Originally we intended to use two ‘“‘thermometers,”
weak localization and the Coulomb anomaly. It turned
out that the Coulomb anomaly does not work properly as
a thermometer. We believe that this is in itself an in-
teresting effect. We suggest that the Coulomb anomaly
shows non-Ohmic behavior of the resistance. Other
non-Ohmic contributions due to a change of screening
might be possible.

Our experiments raise a number of interesting ques-
tions.

(a) What kind of phonons are present in a very thin
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(quasi-two-dimensional) film on top of an insulator like
quartz?

(b) What is the electron-phonon interaction in such a
thin film? In particular, do the transverse phonons parti-
cipate in the interaction?

(c) What is the electron distribution function in the
presence of a large electric field? We answered this ques-
tion during the present investigation for thermal phonons
with the temperature T,;,. For a nonthermal distribution
of the phonons this question still must be solved.

(d) Is there a non-Ohmic behavior of the resistance?
We suggest that the Coulomb anomaly is non-Ohmic for
large electric fields. This is not the trivial effect of the
electric field to alter the distribution function of the elec-
trons but on top of that. In addition, we find it
worthwhile to check the screening of impurities in the
presence of a large electric current. Such a current might
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alter the scattering potential of the impurity and as a
consequence the residual resistance.

The steady-state investigation of electrons in a high
current density is a new and very promising area which
will yield considerable new insight into the properties of
quasi-two-dimensional electron-phonon systems. Experi-
mentally we have many parameters which we can alter to
explore the system and gain new information. A com-
bination of the steady-state and the pulse experiments
would be of particular interest.
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