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Effective dielectric response of polydispersed composites
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We generalize the concept of renormalized polarizability introduced in a recently developed

effective-medium theory to the case of polydispersed composites. We deal with a homogeneous and

isotropic ensemble of spherical inclusions with a continuous distribution of sizes. The theory ac-

counts for the correlated fluctuations among the induced dipole moments and the induced internal

Geld within the long-wavelength dipolar approximation. The statistical properties of the ensemble

enter in the final result through the two- and three-particle distribution functions. Numerical re-

sults are presented for a system of silver spheres in gelatin with a log-normal distribution of radii.

The roles played by the dipolar fluctuations and by the size-dependent relaxation time, due to the

surface scattering of the electrons, are analyzed and compared.

I. INTRODUCTION

The effect of the dispersion of sizes on the effective
dielectric response of a composite has not been thorough-
ly examined even in the simplest case, which is the one
that will be investigated here, of a homogeneous material
with spherical inclusions located at random and with a
given statistical distribution of radii. Besides the inherent
importance of this problem, the lack of an accurate solu-
tion has also obstructed the very much needed compar-
ison between the new effective-medium theories' ' and
experiment. ' While these theories are usually
difficult to extend to an arbitrary distribution of radii, the
experiments are commonly done in polydispersed sam-

ples. In the language of the electronic theory of random
media the problem is to introduce diagonal disorder into
theories which were tailored to deal with the non diago-
nal one, due to the long range of the electromagnetic in-

teraction.
There are several size-dependent mechanisms which

affect the polarizability of a single particle. For example,
the dielectric function of a metallic inclusion, smaller
than the electron mean free path in the bulk ( —500 A for
silver) depends on its size due to the effects of the electron
scattering with its surface. Electron scattering may
also be affected by size-dependent internal defects intro-
duced during the process of preparation of the sample.
The dielectric response of even smaller particles (less than
—30 A) will also differ from the one in the bulk, but now

due to the discrete nature of the quantum levels of the
conduction electrons when constrained into a small
enough volume. ' This effect is known as the quantum
size effect, and it is obviously size dependent. On the oth-
er hand, large particles with radius of the order of the
wavelength of light interact among themselves and with
the external field through a scattering process which is
also size dependent. Since this scattering process takes
radiation away from the direction of the coherent beam,
the concept of an effective dielectric response starts to
lose its strict meaning and it will not be discussed here
any further.

In this paper we deal with medium-size inclusions
(-30—300 A) embedded in a homogeneous matrix. In
particular, we consider a collection of spheres, with a
given distribution of radii, such that retardation effects
might be neglected and with filling fractions low enough
so the dipolar approximation is sufficient. This problem
has been treated, at least in the case of metallic spheres,
by considering the effects of electron scattering with the
surface or with internal defects of the spheres. This is
usually done by introducing a radius-dependent relaxa-
tion time in the dielectric response of the conduction
electrons for each of the spheres. Here, we consider
first that the dielectric function of the spheres e, is size
independent. The effect that we want to isolate is the
trivial dependence of the polarizability of the spheres
with the cube of its radius. In this case, it is well known
that the effects of polydispersion are completely absent in
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mean-field theories. For example, in Maxwell-Garnett
theory (MGT) the effective (or macroscopic) dielectric
response e~ is given through (eM —ez )/(e~+2ez )=fa,
where ez is the dielectric function of the host material, f
is the volume fraction of the particles, and
a—:a/a =(e, —

e& )/(e, +2el, ) is the effective polarizabil-
ity a of a sphere with radius a divided by a, and is in-
dependent of a. Therefore the difference between the po-
lydispersed and monodispersed composite will appear
only in theories which go beyond mean field. In other
words, the physical origin of the effect that we want to
treat here comes from the correlated fluctuations among
the induced dipole moments and the induced internal
field.

The structure of theories which go beyond mean field
is, in general, more complicated and an extension to in-
clude diagonal disorder is usually not straightforward.
However, a simple effective-medium theory which con-
tains the effect of the dipolar (or field) fiuctuations has

been recently developed. ' In this theory the fluctuations
are included by replacing in MGT the bare polarizability
a by a renormalized one a'. Since a' has a clear physi-
cal interpretation, and its calculation is extremely simple,
an extension to include diagonal disorder is entirely feasi-
ble. A first step in this direction has been already taken
by considering a system with spheres of two different ra-
dii. It was found that additional peaks appeared, in the
imaginary part of the dielectric function of the composite
as a function of frequency, due to the excitation of a rich-
er spectrum of electromagnetic modes. Here we extend
the concept of a renormalized polarizability to the case of
an arbitrary dispersion of radii. We show results for the
imaginary part of the effective dielectric function with a
log-normal distribution of radii, for a system of silver
spheres embedded in gelatin. First we assume that the
dielectric function of the individual spheres are all identi-
cal. Then we repeat the calculation, but incorporating
now the effects of surface scattering, and we compare
both results. The paper is organized as follows: in Sec. II
we develop the formalism and in Sec. III we present the
nuinerical results comparing them with other approaches
and with other effects. We illustrate the physical inter-
pretation of the results by analyzing the case of a system
of spheres with three different radii. Section IV is devot-
ed to comments and conclusions.

II. THEORY

We consider a homogeneous and isotropic ensemble
with X &&1 spheres, X& of them with radius a&, located
at random positions IRPj, within a homogeneous medi-
um with dielectric function ez. A11 the spheres are made
of the same material and are characterized by the dielec-
tric function e, (co). The system is excited by a position-
dependent external field E'" oscillating at frequency co

and with wavelength much greater than the radii of the
spheres and the typical separation between them. In the
quasistatic-dipolar approximation the induced dipole mo-
ment p; of the ith sphere with radii a& is given by

PP=ap(co) E;p(co)+ g t Pjr.Pj (la)
Jr

where

ap(cu) =a p(eP e—
z )/(eP+2ez ) (1b)

p(r)= (Xp(5(r —Rt)),
l) r

(2)

where ( ) means ensemble average.
The effective (or macroscopic) dielectric response eM of

the composite is then obtained through'

&h(co) = 1 4nel, —g'"'.(q ~0, co), (3a)

where g'"' is the longitudinal projection of the Fourier
transform of the external susceptibility, defined as

P(q, co) =g'"(q, co) E'"(q, co) (3b)

and q is the wave vector. We remark that the introduc-
tion of the wave vector q eliminates the conditional con-
vergence problems and the shape dependence of some di-
polar sums that appear in the theory for constant exter-
nal fields, when the thermodynamic limit is taken first,
and the q ~0 limit is taken afterwards. '

Since there is no longitudinal-transverse coupling on a
macroscopic scale, due to the symmetry properties of the
ensemble, in order to calculate y'"'(q ~0, co) it is
sufhcient to excite the system with a longitudinal external
field with a single Fourier component, that is

E'"(r)=qE'"(co)e'"' .

Substituting Eq. (4) into Eq. (1) we can write

PP=ap qE'"/e&+ g TPJr (P~)
J~r

+ g'r', ,'(P; —(»))
Jr

where we define

(4)

(5a)

P13—pI3e (5b)

(5c)

in order to get rid of the trivial exponential factors; the
explicit dependence on q and co has been omitted. Notice
that we have separated the contribution of the dipolar
fiuctuations in the last term of the right-hand side of Eq.
(5a) and that the average of Pf is independent of i due to
homogeneity of the ensemble.

The Fourier transform of the polarizability field is then
given by

is the effective polarizability of the spheres with radius
a&, E; &

is the induced field at R~ in the absence of the
spheres, and

t Pr = (1—5,,5pr )V;'(I)', (1/RPJ~) (lc)

is the dipole-dipole interaction tensor. Here R,pj =lR;
—R r

~
and Greek indices distinguish between spheres

J
with difFerent radii.

The polarization field P of the system is given by
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(pg I) (gex/~ )
CXp

1+2fa,'„
(8a)

1

l, r y

where n is the number density of spheres of radius y, V
is the volume of the system, and we have assumed that
the spatial and ensemble average are identical due to the
homogeneity of the system.

Following the same procedure as in Ref. 15, we take
into account the contribution of the dipolar Auctuations
through a set of scalar parameters [a&j which play the
role of renormalized polarizabilities, and are defined as

P~=a) qE'"/ez+ gT~f (Pr) (7)
ir

Taking longitudinal projection, ensemble average, and
the q ~0 limit on both sides of Eq. (7), it is easily shown
that

procedure fa,*„=fa,„=fa, one recovers MGT and
there is no effect coming from polydispersion.

In order to calculate e * in the most simple way, self-
consistency is imposed by substituting Eq. (7) into the
right-hand side of Eq. (5a),

P~=a& qE'"/eh + Q T ~f a* qE'"/eh
i r

+ gT k" (P") . (11)
k, q

Taking now longitudinal projection, ensemble average,
and the q ~0 limit on both sides of Eq. (11)and using Eq.
(8a) we obtain that the tag are determined through the
solution of the following set of coupled second-order
algebraic equations:

a& =1+ g a*a„' b T~y„, (12a)
a&

where the superscript / means longitudinal projection and where

fa,', = gfra r' .
r

(8b)

lim g T,~r' (q) = — n( 8m

q o " 3Jr
(9)

Using Eqs. (8a), (6), and (3) we are able to write finally

1+2fa,*„

1 fa,'„— (10)

which has the same functional form as MGT but with fa
replaced by fa,'„. In the absence of the renormalization

Here, f is the volume fraction of the spheres,

fr =4m a mr /3 is the volume fraction of spheres of ra-
dius a, a ' =a'/a, and we have used the result

aT~„= q T~r T» q
j,k

qy~r q qyr&q
j k

(12b)

is related to the fluctuations of the field. In the case of
uncorrelated Auctuations AT~ =0 and one recovers the9

pmean-field MGT. Let us recall that ETr„ is independent
of i due to the homogeneity of the ensemble.

The calculation of b, T~„can be done in terms of the
m-particle distribution functions p&

'

X(R„Rz, . . . , R ) which are proportional to the proba-
bility of finding a sphere of radius a& at R, , a sphere of
radius a at R2, . . . , and a sphere of radius a„at R
In terms of the two- and three-particle distribution func-
tions, we rewrite Eq. (12b) as

a a 5T~ =—' $ + Pp(R, z Rz3)
r n rn afar gp+ frf„2f d ~)z fd ~g3, , [pp'r', (R, ,R,,R, ) —pp", (R, , R, )p'(R, , R, )],

12 23

where P2 is the Legendre polynomial of order 2,

24f „p& '[(a&+a )x ]

(12c)

(12d)

and we choose the normalization

(13)

III. RESULTS

In this section we present numerical results to illustrate
the consequences of polydispersion on the macroscopic
dielectric response. To that end we make a further ap-

proximation. We notice that the second term on the
right-hand side of Eq. (12c) has an explicit quadratic
dependence in the volume fractions. Thus, in what fol-
lows we keep only the first term on the right-hand side of
Eq. (12c), which is valid at low enough densities. Under
this simplifying assumption Eq. (12) becomes
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(14)

In the case in which the dielectric functions e~ of the
spheres are all identical, then a&=(e, e—

I, )/(e, +2ei, ) is

independent of P.
Now, we solve the system of coupled quadratic equa-

tions [Eq. (14)] for a specific system. For concreteness we
choose the simplest two-particle distribution function

piI '(R) =e{R (ap+ar )),
where 8 is the unit step function. This distribution func-
tion, known as the hole correction, takes into account the
excluded-volume correlation between spheres of different
radii. For applications to real systems one should deter-
mine p&

' directly from the samples and it will depend, in

general, on the volume fraction of the particles. Our
choice here is done only to show the importance of the
two-particle correlations in the effective dielectric
response of the system; the use of a more realistic two-
particle distribution of a polydispersed system will be
highly desirable.

We concentrate our attention on the case of metallic
spheres embedded in gelatin. The dielectric function of
the metallic spheres will be modeled by a Drude dielec-
tric function

Q)p
e, (co)=l-

a)(co+i /r)

where co is the plasma frequency and ~ the electronic re-
laxation time. For the gelatin we take ej, =2.37 indepen-
dent of frequency.

We solve the system of coupled quadratic equations
given in Eq. (14) using an iterative procedure. At each
step of the iteration we choose the roots with a positive
imaginary part and we demand continuity of [a &I as a
function of frequency, partial volume fractions I f&], and
radii ratios Ia /a&); the eff'ective dielectric function is
then given by Eq. (10).

In Fig. 1 we show the imaginary part of eM(co) calcu-
lated with our theory for three difFerent composites with
the same total volume fraction f =

—,', . The systems are
made of inclusions of only one radius, of inclusions of
two radii in the ratio 1:16 with partial volume fractions
of

pp
each, and of inclusions of three different radii in the

ratio 1:4:16with partial volume fractions of —,', each. We
took the Drude parameter as e ~=92, which corre-

0
sponds to an electron mean free part l —120 A for the
case of silver (%co =9.2 eV and VF=1.39X10 cm/sec).
We also show the result of MGT with the same pararne-
ters. One can see that the results of our theory differ ap-
preciably from the ones of MGT: They discriminate sys-
tems with different radii ratios, the position and height of
the main peaks are red shifted and lower, and the curves
are asymmetric, broader, and with a richer structure than
the Lorentzian corresponding to MGT. As already men-
tioned in Ref. 15, while in our theory the broadening of
the curves is dominated by the excitation of collective
electromagnetic modes whose frequencies span a finite
range, due to the disorder-induced fluctuations, in MGT

8,0

4,0

0.2 04 14.
QJ/(d

FIG. 1. Ime~ as a function of co/co~ for a system of Drude
spheres with co~r=92 and f=

—,
' embedded in gelatin with

ez =2.37. The curve (MGT) was calculated using MGT and the
other three using Eqs. (14), (8), and (10) for spheres (1) with the
same radius, (1:16) two different radii in ratio 1:16and partial
volume fractions of 2'0 each, and (1:4:16)three different radii in

ratio 1:4:16and partial volume fractions of —,'0 each.

there is only one log-wavelength optical mode whose
broadening is dominated by the value of the electronic re-
laxation time. Our theory also predicts that as we in-
crease the number of species the main peak shifts to the
red and decreases in height while additional structure ap-
pears to the right of the main peak. Although the num-

ber of peaks increases, they become less pronounced.
Therefore one could expect that they will smooth out for
a continuous distribution of radii; this is the problem that
we now undertake.

We choose a log-normal distribution of radii which is
the distribution that has been observed ' ' and predict-
ed for samples prepared through a coalescence mecha-
nism. In a log-normal distribution the number of parti-
cles per logarithmic radius interval obeys a normal distri-
bution, and is given by

D(R)= 1 1

i 2m R IncrNL

ln(R /Ro)
exp

2 incr NL
(17)

where AN„ is a measure of the width of the distribution,

Ro is its inedian, and D(R) is normalized to unity. The
value o.N„=1 yields a 5 function at Ro and corresponds
to the monodispersed case. In Fig. 2 we show a series of
graphs of D(x)=ROD(R) as a function of x =R/Ro —for
several values of cr NL.

In order to calculate e~ we discretize the distribution
as follows: we define x;„and x,„as the extreme values
of x such that D(x) &0.005 and we locate a set of p
equidistant points Ix I

= [x, ,xz, . . . , x ] in the interval

[x,„,x;„]. We now consider a system of spheres
with partial volume fractions fr =fx&D(xr )/
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I

4,0
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0,4

NL ~
1

0,6 4U/41&

X=R/Ro

FIG. 2. Log-normal distribution ROD(R) as a function of
x =R/Ro, for different values of oNL.

[g~,x D(x )] and radii Ia,, j
= Ix Roj. The set Ia'j

is then obtained by solving the system of p coupled quad-
ratic equations given by Eq. (14), using the same iterative
procedure as before. The limit of a continuous distribu-
tion of radii is attained when an increment in p does not
change the results.

In Fig. 3 we show the imaginary part of @sr(co) for a

system with a log-normal distribution of radii with
several 0 N„and three different relaxation times:

cour =45, 82, and 178. The relaxation times are identical
in all the spheres and they correspond, in the case of
silver, to electronic mean free paths of 50, 100, and 300
A, respectively. We attained the continuous limit for

p =21. The line shapes are asymmetric and there is a
main absorption peak with almost no additional struc-
ture. As oNL grows the height of the peak diminishes

and the absorption frequency range increases. For a
given co~ and a given ONL an increase in ~ affects the
shape of the curve only in a small region close to the peak
and at the absorption edge. On the other hand, MGT
generates a Lorentzian curve with a width directly pro-
portional to I/r independent of o NL. This can be readily
understood by analyzing the difference in roles played by
the dipolar fluctuations and the electronic relaxation time
during the absorption process. This process can be pic-
tured as an accumulation of energy through the excita-
tion of the different electromagnetic normal modes of the
system. If the contribution of the dipolar fluctuations is
neglected, as in MGT, there is only one optical mode ex-
cited and in the absence of any other dissipation process-
es it shows up in ImeM as a 5 function. The introduction
of a relaxation time ~ opens channels through which the
electromagnetic energy accumulated in the normal modes
is dissipated into other forms of energy, yielding a finite
width proportional to 1/v. In our theory, the contribu-

FIG. 3. Ime~ as a function of co/co~ for a system of Drude
spheres embedded in gelatin with eI, =2.37 and a log-normal
distribution of radii for different values of ON„. Here, f=

—,0

and p =21. For each value of ONL curves with three values of
co~~ are displayed. The highest, the middle, and the lowest cor-
respond to co~~=45, 82, and 178, respectively. The highest is

also the steepest at the low-frequency edge.

tion of the dipolar fluctuations allows the excitation of a
whole collection of electromagnetic modes whose fre-
quencies span a continuous range even when v~ ~. Dis-
sipation, introduced through the relaxation time ~, will
broaden the contribution of each mode by b,co-=I /r. For
the values of 7. chosen here, b,cairo =0.022 0.012, and
0.006. Therefore, a finite value of ~ will enlarge slightly
the frequency region of absorption by -b, co and will also
smooth out any structure narrower than hco. This can be
clearly seen in Fig. 3 where, for all o NL, the effect of de-
creasing ~ only affects a small region around the main
peak and near the absorption edge.

From the results shown in Fig. 3 one could expect that
the inclusion of surface scattering through a size-
dependent v. should have only a small influence in
ImeM(co). This can be shown by taking in Eq. (14)

(18)

where e, (~&) is given by Eq. (16) but with a size-
dependent relaxation time ~& given by

+
1p 'Tg ap

Here, VF is the Fermi velocity, ~z is the relaxation time
in the bulk, and Eq. (19) is the simplest way to incorpo-
rate surface scattering.

The calculation of ImeM ( co ) is done using the same
procedure as before, that is through the solution of Eq.
(14) combined with Eqs. (Sb) and (10). In order to be able
to compare these results with the ones of Fig. 3, we
choose the same system with a log-normal distribution of
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20—

WNL 1 5
8,0—

I I

0 0.2 0 6 4U/&p

FIG. 4. Upper panel: Ime~ as a function of cu/co~ calculated
within MGT for a system of silver spheres embedded in gelatin
with f =

—,'0, eI, =2.37, and a log-normal distribution of radii

with o.
&L =1.5 and p =21. Three curves are displayed for three

different values of the median Ro. The highest, the middle, and
the lowest correspond to Ro equal to 50, 100, and 300 A, respec-
tively. Silver was modeled by a Drude response with ~ given by
Eq. (19) with VF=1.39X10 cm/sec and ~&=3.1X10 ' sec.
Lower panel: ImeM as a function of cu/co~ calculated with Eqs.
(14), (8), and (10) for the same system and the same parameters
as above.

0,4

radii [Eq. (17)] with o&L =1.5, Ro =50, 100, and 300 A,
and p =21. The results of this calculation are shown in
the lower panel of Fig. 4 with ra =3. 1 X 10 ' sec. In the
upper panel we display ImeM(co) using MGT and the
same parameters as above. As it was presumed, while in
MGT the width of the absorption peak is governed by the
distribution of relaxation times, in our theory it only
affects the height of the peak and a small region around it
and near the absorption edge.

IV. CONCLUSIONS

We have calculated the effective dielectric response
e~(co) of a composite, within the long-wavelength dipolar
approximation, by extending the concept of a renormal-
ized polarizability, introduced in Ref. 15, to a po-
lydispersed system. This renormalized polarizability ac-
counts, in an approximate way, for the dipolar Auctua-
tions, thus it yields a theory which goes beyond mean
field. We treated the case of a homogeneous and isotro-
pic ensemble of spherical inclusions with a continuous
distribution of radii, immersed in homogeneous medium.
A different renormalized polarizability was assigned to
each class of spheres characterized by its radius. The sta-
tistical properties of the ensemble enter in the final result
through the two- and three-particle distribution func-
tions. The calculation was performed for a system of
silver spheres embedded in gelatin. The Drude model
was used for the dielectric response of silver, the response

for the gelatin was taken independent of frequency, and
we neglected the corrections due to three-particle correla-
tions [second term of Eq. (12c)]. We show results for
Ime~(co) using a log-normal distribution of radii, a size
independent relaxation time in the Drude response, and a
step function for p'&. They display an asymmetric reso-
nance peak whose broadening is controlled by the spec-
trurn of excitation of the collective electromagnetic
modes allowed by the dipolar Auctuations. An increase
in the width of the distribution of radii enlarges the
broadening and the absorption region. Changes in the
values of ~ diminish the height of the peak but they have
only a slight influence outside a region of order b,co= 1/r
around the peak. The inclusion of surface scattering
through a distribution of relaxation times does not pro-
duce a substantial change in our results. This contrasts
with MGT, where the broadening of the absorption peak
is determined solely by the distribution of relaxation
times.

There have been other calculations beyond mean field
for a polydispersed system. ' ' Some of them ' were
done by simulating the spatially disordered system by a
cubic crystal with a collection of spheres randomly locat-
ed within the unit cell and then the results were averaged
over many configurations. In these calculations neither
the distribution of radii nor the two-particle distribution
function were reported, thus adequate comparison with
our theory was not possible. The case of two different ra-
dii has been treated by Liebsch and Villasenor within the
lattice-gas coherent-potential approximation (LG-CPA)
and, as already pointed out in Ref. 34, we found a
discrepancy with our results. While we obtained a large
red shift of the absorption peak by increasing the radius
ratio, LG-CPA gave a slight blue shift. Taking into con-
sideration that in LG-CPA the spheres are located at the
lattice points of a cubic lattice, when spheres of two
different sizes occupy the lattice, the small spheres will be
artificially separated from the large ones and from each
other. We have repeated our calculation for the case of
two different radii but now choosing a two-particle distri-
bution function p'& which could simulate this effect. We
took for all pairs of particles p' &(R ) =e(R —2 2 ), where
2 is the radius of the large particle and we obtained a
blue shift with a similar behavior as in LG-CPA. This
shows the importance of the two-particle distribution
function as a necessary input in the calculation of the
effective dielectric response of a composite. Unfortunate-
ly this type of information has only recently been report-
ed along with the experimental results. Nevertheless a
careful analysis of the dependence of our results with a
more realistic two-particle distribution function of a po-
lydispershd system (i.e., within the Percus-Yevick approx-
imation would be highly desirable. Also, the inclusion
of the effects of the three-particle correlation functions
are indispensable to extend this calculation to higher
volume fractions.
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