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Limits d = o and T = 0 may not commute in the Ising spin glass
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A replica-symmetric low-temperature expansion for the short-range Ising-spin-glass model may
be arranged by the number of flipped sites —sites that have spins in some, say m, of the n replicas
"down. " The contribution of states with up to three flipped sites is obtained for the free energy
and the Edwards-Anderson order parameter. The two-flipped-sites contribution to the free ener-

gy, which at d oo gives the (negative) zero-temperature entropy of the Sherrington-Kirkpatrick
model, is shown at jinite d to give no entropy at T 0. Higher-order contributions are argued to
also not give any entropy at T 0.

Theoretical studies of spin glasses seem to have reached
an impasse in the past few years. On the one hand, the
Parisi solution to the Sherrington-Kirkpatrick (SK)
model2 —the mean-field solution —predicts many pure
states in the spin-glass phase, and the space of these states
is ultrametric. 3 The solution was first obtained using the
concept of replica symmetry breaking. '3 On the other
hand, phenomenological scaling theories predict only two
pure states. s The scaling theories are thought to be valid
for d-dimensional spin glasses with short-range interac-
tions when d is not much larger than the lower-critical di-
mension, which is between two and three. Indeed, a scal-
ing theory based on the behavior of the large-scale drop-
lets of low-energy excitations, by Fisher and Huse, has
been quite successful in explaining unusual dynamical
effects observed in real spin glasses. In spite of these
successes, however, there does not exist any detailed
theoretical study of a model spin-glass phase in finite di-
mensions that shows why the mean-field theory predic-
tions are so different from those of the scaling theories.
Several further arguments support the scaling-theory pre-
dictions;7 detailed analyses of the spin-glass transition,
however, have been carried out only for the approach to
the transition from the high-temperature, paramagnetic
phase. Even computer simulations, although they have
been extremely successful in elucidating the critical be-
havior at the spin-glass transition in three dimensions, 9

have not provided us an unambiguous answer on the na-
ture of the spin-glass phase in finite-dimensional sys-
tems.

Here, we shall discuss a replica-symmetric low-tem-
perature expansion for the d-dimensional Ising spin glass.
The expansion shows that the thermodynamic behavior of
the excitations about the replica-symmetric ground state
is singular in the limit d ~. The feature of the expan-
sion that underlies this suggestion: A term in the expan-
sion of the free energy that in the SK limit reproduces the
negative zero-temperature entropy of that model but con-
tributes no zero-temperature entropy when it is expanded
about T 0 at finite d. To appreciate the significance of
this result for spin-glass theory, let us recall that the nega-
tive zero-temperature entropy of the SK solution was one
of the two reasons that motivated the search for solutions
with broken replica symmetry. The negative value of the

Edwards-Anderson susceptibility was the second
reason.

We shall discuss the low-temperature expansion for the
finite-dimensional Ising-spin-glass model defined by the
Hamiltonian 's

[Z"],„Trexp( —PH„),
soi

(2)

—PH, —'P g ass,' (3)
i~j a

Thus there is an n-component vector s, a 1, . . . , n, at
every site i Each comp. onent of this vector is an Ising
variable and may be + 1 or —1.

The description of the spin-glass phase obtained in the
scaling theories raises the tantalizing possibility that the
short-range spin-glass model (1), when it is reformulated
as in (2) and (3), might be replica symmetric. What is
the replica-symmetric ground state of (2) and (3)? Un-
fortunately, there do not seem to be any studies of low-
temperature properties of the replicated model (2) about
its possible replica-symmetric ground states. This is not
all that surprising, in spite of the worldwide interest in the
model for the past 15 years, for the following two reasons.
First, the notion of replica symmetry and of the breaking
of this symmetry first arose in the SK, or mean-field, ap-
proximation. In such approximations one usually intro-
duces "collective fields*' that are conjugate to the ordering
fields, and one looks for nontrivial solutions to the equa-
tions of state for the collective fields. In the SK model,

Here, cr; and rrj are Ising spins at sites i and j and J;J are
elements of the random-exchange-interaction matrix be-
tween spins on nearest-neighbor sites of a d-dimensional
hypercubic lattice. The distribution of J;, is continuous
and symmetric about 0, and the variance J is its only
nonzero cumulant. In the replica method the thermo-
dynamics of a system with quenched disorder are obtained
from the statistical mechanics of an effective Hamiltonian
that is derived from the average over the quenched ran-
dom variables of the nth power of the partition function. '

The effective Hamiltonian for the problem defined by (1)
1s
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the collective fields are the elements q'~, aAP, of the n x n

matrix of overlaps between different replicas a and P. In
the SK solution, which is replica symmetric, the q ~ qsx
are all equal. In the Parisi solution, by contrast, the per-
mutation symmetry between different replicas is broken,
so that all the q'~ are not the same. But such a discussion
of replica symmetry in terms of elements q'~ of the
order-parameter matrix does not reveal what con-
figuration of the replicated spin variables s describes the
replica-symmetric or replica-symmetry-broken ground
state of the model. Second, since a proper understanding
of the mean-field theory is regarded as an important first
step in the study of phase transitions, the recognition that
the replica symmetric solution to the SK model is unsta-
ble"' discouraged further thinking on replica-symmetric
ground states of the finite-dimensional, short-range model.

The low-temperature expansion we shall discuss for the
statistical mechanical problem defined by (2) and (3) was
inspired in part by a solution to the renormalization-group
equations for kink energies in a one-dimensional model
with long-range interactions, ' and, in part, by the hope
raised by the scaling theories that the finite-dimensional
Ising spin glass might be replica symmetric. Use of the
replica method in Anderson localization, where replica
symmetry is unbroken, has shown that results obtained for
integer values of n when continued to n 0 are meaning-
ful if the theory turns out to be replica symmetric. '

Indeed, the low-temperature expansion we shall discuss is
about a state that maximizes the Boltzmann factor in (2)
and (3) for integer n, and the topology, as well as the en-
ergies, of excitations about that state have the same form
as those of kinks in the solution to the one-dimensional
long-range model discussed in Ref. 16.

All spins in all replicas at all sites point in the same, say
"up," direction in the state about which we shall discuss
the low-temperature expansion. So the expansion may be
arranged by the number of flipped sites —sites with
"down" spins in some, say m, of the n replicas. I have cal-
culated contributions to the equation for the order param-
eter q (see below for a precise definition), as well as to the
free energy, from states with up to three flipped sites. All
these reduce in the SK limit —the limit d ~ when
J —I/d —to expressions familiar in the SK solution. For
example, the expansion for the order parameter matches
the first three terms in the series obtained by iterating
about qsx 1 the self-consistent equation for the order
parameter qsK in the SK solution. This similarity is evi-
dence that the expansion is about the ground state de-
scribed by the nonzero value of the replica-symmetric, or
SK, ansatz for the order parameter matrix q'~.

Let us first discuss the choice of the ground state in a
little more detail, and then turn to contributions to the
free energy —especially, the two-flipped-sites contribu-
tion, which in the SK limit gives the negative zero-
temperature entropy of the SK solution. For the problem
defined by (2) and (3) the Boltzmann factor is maximum
for states in which s; sj. These are states in which each
replica is independently ferromagnetically aligned
throughout the system. The states are 2"-fold degenerate.
But the Edwards-Anderson (EA) order parameter is zero
when averaged over these states. To see this let us folio~

De Dominicis and Young' and define the EA order pa-
rameter q as

q-lim g &s sP&.
l

n -0 n(n —1),~p

Then, in a state with m ~ down spins at each site,

This result is not surprising, because we know that when
carrying out an expansion of the partition function about
a state that breaks the symmetry of the Hamiltonian, we
must introduce a small symmetry-breaking field to stabi-
lize the broken-symmetry state. In the Ising ferromagnet,
for example, a uniform field must be applied to pick out
one of the two possible ground states —those are the state
with all spins up and the one with all spins down. For the
replica-symmetric solution, the symmetry-breaking field is
thought to be a Gaussian random variable. ' Such a field
adds a term of the form

g sst'
i,aWP

to the Hamiltonian in (3). The effect of this term is to
align the replicas at each site. We shall not keep this
"field" term explicitly in the Hamiltonian, but we shall
choose the state favored by this term as our ground state.
This is the state in which spins in all replicas at each site
point up.

The energy of the ground state is of order n 2, so its con-
tribution to the free energy vanishes in the limit n 0.
For each flipped site we must sum over the 2"—1 states
that that site may be in if it is not in the ground state. We
may write the free energy per site as

f f)+df2+d(2d —1)fi (4)

where the d-dependent prefactors of f„'s give the number
of ways per site for choosing a connected cluster of r-
flipped sites on a d-dimensional hypercubic lattice. ' Un-
like the Ising model or other spin models, many-spin-
flipped states contribute to the free energy of the model
(2) and (3) only when the flipped sites form a connected
cluster. This is true also for the contributions to the EA
order parameter. The fact that each connected cluster
gives a contribution of order n to the free energy is the
reason for this feature of the expansion. So when the con-
tributions of configurations consisting of disconnected
clusters are divided by n, the result for the free energy
varies as a positive power of n one less than t—he number
of connected clusters —and vanishes when the limit n 0
is taken.

The expression for f& was given in Ref. 16; it is the
same as obtained when qsx is set equal to unity in the SK

g sos/' (n —2m ~ ) n.—
a&P

Summing over m~ because states with different m~ have
the same energy, and using binomial weights (",) for
difl'erent m ~ values, we get 0, because

iP

N

n —m~ n
m, -o m
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free energy. The procedure outlined above gives for f2,

pf—2 [dy &] [dy2] [dy )2] in[@2]

—
&

[dy~][dy~2] ln[2cosh(JPy~+ JPy~2)]

[dy2][dy~q] ln[2cosh(JPy2+ JPy~2)], (5)

where

42 4cosh(JPy~) cosh(JPy2) cosh(JPy~2)

+4sinh(JPy ~ ) sinh(JPy2) sinh(JPy ~2) . (5a)

The integrals have Gaussian weight factors —of variance
(2d —1)/2 for y~ and y2 and of variance 2 for y~2. That
1S

+"
dye 2„[dy i,2] —=„',&, exp[ —y l,2/(2d —I)] .

x 2d —1

To compare this to the SK solution, let J=J/Jd and take
the limit d ~, which gives

f2 —= lim dfpd~ oo

-
4 PJ 1

— [dy]M ~ (PJy )

The notation M, (y) d'Mo(y)/dy' and Mo(y)—= ln(2coshy) is familiar in the series analysis of the Ising
model: M, (y) are cumulants of an isolated Ising spin in a
magnetic field y/T. The expression for f2 is the same
as obtained when once-iterated qsK is substituted in the
SK free energy, and it gives a value of —I/2x for the
zero-temperature entropy.

At finite d, the large-P —or low-temperature —expan-
sion for f2 is of the farm

Pf2 Pf2, —I + (I/O )f2, 1 i

f — (4/K )([(2d —1)/2] ' cot '[[(2d —1)/2] '
I —(2d) ' cot '[(2d) ' ])

f -(4/z'~') g(2) (I/4[(2d —1)/2] '~'cot ' [[(2d —1)/2] ' ] + (2d) '~'cot ' [(2d) '~'] )+ (I/2zd) ' 'ri(2),
where

g(s) - g —( —I/m)'.
m 1

The exact values of the coefficients in the expansion (7) is
not of interest right now; that the expansion has no con-
stant term is of interest, because it implies that the entro-

py vanishes at T 0.
The three-flipped-sites contribution to the free energy

f3, as well as the four-flipped-sites contributian when the
four flipped sites lie on the vertices of a square, are similar
to f2. The former involves a five-dimensional integral,
with Gaussian weights, of a logarithm of a sum of prod-
ucts of exponential factors (which may be written as a
sum of products of hyperbolic functions); the latter in-
volves an eight-dimensional integral. The logarithms in
each case arise from continuing to n 0 the nth power of
multinomials of products of exponential factors. These re-
sults suggest very strongly that the higher-order contribu-
tions all involve similar multiple Gaussian integrals of log-
arithms of sums of products of exponential factors. (De-
tails about higher-order terms —from connected clusters
of four or more flipped sites —as well as their contribution
to the order parameter, will be published separately. ) It is
therefore instructive to briefly review the mathematical
steps taken to obtain the large-P expansion (7) for f2, for
it seems that the higher-order terms will also not give any
nonzero contribution to the entropy at T 0.

It is best to write out the integrand in (5) separately in
each quadrant or octant and to restrict the ranges of in-
tegration to positive line segments. In quadrants or oc-
tants in which all or an even number of the variables are
positive, the large-P expansion is quite straightforward
and is obtained by a procedure similar to the one used for
expanding the SK free energy around T 0: After factor-
ing out a symmetric product of exponential factors, the ar-
gument of the logarithm is one plus a sum of products of

I

exponential factors of negative arguments. So the loga-
rithm may be expanded because each exponential is small
for large P. Each term in the expansion now involves in-
tegration of exponentials of quadratic functions over
semi-infinite positive line segments. Each such integration
yields an error function of argument proportional to P, for
which the asymptotic series for large P starts at I/P and
has no term independent of P.

In quadrants or octants in which all or an odd number
of variables are negative, it is not possible to write the ar-
gument of the logarithm as one plus a sum of exponential-
ly small factors —the argument is a sum of exponentially
small factors. So one must break the volume of integra-
tion into simplexes in each of which the variables are or-
dered by magnitude. The procedure outlined above may
now be used for each simplex. But the large-P behavior is
more difficult to extract because the ranges of integration
are now finite. Each integration step may still be ex-
pressed as an integral or repeated integral of some error
function or as an incomplete y function of arguments pro-
portional to P. All these functions have asymptotic expan-
sions for large P that start at 1/P and do not have the con-
stant term.

The perceived similarity of the higher-order contribu-
tions to those of two-, three-, and (one of the) four-
Aipped-site contributions, and the analytical properties of
these contributions outlined above when discussing their
large-P expansions, suggest very strongly that in the
replica-symmetric expansion discussed here the entropy
vanishes at T 0 for all finite d, quite unlike the result ob-
tained by SK by taking the limit d~ ~ before expanding
the thermodynamic properties about T 0.

As already mentioned, a negative value of the T 0 en-
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tropy in the mean-field, SK solution was one of the two
reasons that motivated the search for mean-field solutions
with broken replica symmetry. So the above discussion on
the vanishing of the T 0 entropy in the replica-
symmetric spin-glass phase at finite d brings us a step
closer to resolving whether the ground state of the short-
range Ising-spin-glass model is replica symmetric or
whether it too breaks replica symmetry. Final resolution
of this puzzle must await a careful examination of the
Edwards-Anderson susceptibility, for proof of the non-
negative value of this susceptibility was an important cri-
terion for the acceptance of the Parisi solution even after
there was reason to believe that the zero-temperature en-
tropy vanished in that solution. ' '

It would be of interest to carry out the low-temperature
expansion outlined here also for the model defined on the
Bethe lattice, as well as for other mean-field-like Ising-
spin-glass models with finite connectivity. 2' Finally, one

might also like to compare the energy of the replica-
symmetric ground state discussed here against possible
replica-symmetry-broken ground states. It is heartening
to note in this regard that the p-adic analysis of replica
symmetry breaking might make it possible to develop a
low-temperature expansion for the Parisi solution at finite
d, and therefore to compare at finite d the ground-state
energy in that solution with that in the replica-symmetric
solution.
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