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Energy gap, T„and density of states in high-temperature superconductors for retarded
s- and d-wave interactions
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We employ strong-coupling theory to investigate the eNect of the form of the spectral function
a F for isotropic and anisotropic interactions on the tunneling density of states N(to), T„and the
ratio 2n/ksT, . Resistivity data are used to fix the isotropic coupling constant Xp-1. This severe-

ly restricts the results for s-wave pairing; high-energy spectral weight is required in addition to
phonons. The anisotropic interaction is not restricted by the resistivity and thus with d-wave pair-
ing a variety of data, including the linear behavior of N(to) within the gap, can be fitted without
high-energy interactions.

Many measurements on high-T, superconductors yield
values for the ratio of the zero temperature gap 2h, to
ktt T, which are larger than the BCS weak-coupling value
of 3.5. For example, recent tunneling data' give a value
of approximately 4.1, while infrared data2 and high-
energy spectroscopy data3 yield about 8. The gaplike
feature seen in the tunneling conductance does not have
the BCS shape and there is a finite value at zero bias
which increases with T. Other experiments, in particular
Raman measurements, also indicate the existence of
electronic states extending below the gap. The latter ex-
periments have been explained by assuming a d-wave pair
state which has nodes within the superconducting gap.
However, for d-wave pairing, weak-coupling theory yields
a ratio 2LL/kaT, which is smaller than the BCS value.
Here 5 is the average over the Fermi surface.

The conditions under which the retarded interaction of
the Eliashberg theory can yield large values of 2h/kttT,
have been studied extensively for s-wave7 as well as for d-
wave superconductivity. In view of the new experiments
on high-T, superconductors it seems necessary to reexam-
ine the previous conventional strong-coupling theories.
Generally, one finds that a large ratio is strongly correlat-
ed with a large value of the mass enhancement parameter
A,o (s-wave coupling parameter). Here we investigate the
size of the ratio and the possibility of obtaining T, =100
K under the assumption that )i,o is relatively small, ko5 l.
Later we employ resistivity measurements to give some
justification for this assumption. This assumption leads to

restrictions on the possible pair states and pairing mecha-
nisms. We now find that, with reasonable assumptions for
the spectral function of the strong-coupling theory a2F, it
does not seem possible to obtain a ratio as large as 8. The
parameter values suggested by Ref. 1 (T, 90 K,
2h/kttT, 4.1) can be fitted for ko 0.8 with a phonon-
mediated pairing interaction in the anisotropic, d-wave
case. In order to fit these data for s-wave pairing, we re-
quire, in addition to the phonons, spectral weight at higher
frequencies ) 100 meV, arising perhaps from exchange of
excitons or spin fluctuations. In the isotropic case we of
course do not find the observed states within the gap. '

Our starting int is the well-known generalized Eliash-
berg equations for the renormalization function Z(k,
ito„), the energy shift g(k, iro„), and the order parameter
4(k,ita„) whose kernels depend on the retarded interac-
tion a F(k,k';0), the Coulomb interaction p (k, k'), and
the effective band ek. Here we assume for simplicity that
k and k' lie in the a-b plane (Cu02 plane). Thus we
neglect the relatively small band dispersion and the gap in
the c direction. The solutions of the full equations for a
tight-binding band' show that the Green's functions are
sharply peaked at the Fermi surface. Thus it is a good ap-
proximation to integrate over eq normal to the Fermi sur-
face from —oo to +Do. For small band fillings where the
Fermi line is nearly a circle, the Eliashberg equations be-
come approximately [p is the azimuthal angle of k in the
a-b plane, h(iro, ) rid(iro„)/Z(ita„) is the gap function]
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X(y,y';n m) - —do a'F(y, y';O)2ft(to2 + fi')
We expand a F and p in terms of basis functions Vr;(p) where the first few functions of lowest order are

Vro 1; Vrl (ti) icos(2&); ltt2(p) csin(2&) .

The d-wave functions fatti and Vr2 have I s+ and I 4+ symmetry. " We study here the following model interaction:

a F(y,y';fi) a2Foo(O)+a2F|((n)ttri(y)yl(y').

(3)

(4)

7289 @1990The American Physical Society



7290 C. T. RIECK, D. FAY, AND L. TEWORDT

Equation (3) then yields an analogous expansion for the
interaction kernel A, (p, p';n —m) with components

9 oo

k;;(n m—) dQ a F;;(0)20(co~ ~-+ 02) (6)

1.5.

Note that Eq. (5) is invariant under rotation by x/2. For
the isotropic and anisotropic spectral functions a F;;(0),
(i 0, 1), we have taken b function or Lorentzian peaks at
different frequencies with different weights. The coupling
strengths X; are defined by X; k;;(0).

We have solved numerically the system of coupled
equations (1) and (2) with kernels given by Eqs. (3)-(6).
To a good approximation we find that Z(p, iro„) is always
independent of p and that h(p, iro„) is either purely s wave
or purely d wave. The region of stability of the two types
of solutions depends on the relative positions and strengths
of the peaks in a F;;; in general, the stable solution is the
one corresponding to the peak with greater strength
and/or higher frequency. If both peaks have comparable
strength and position, the choice of trial solution deter-
mines the solution to which the iteration procedure con-
verges.

We first consider d-wave pairing. Consistent solutions
are obtained by setting Z Zp(im„) and 6 h&(iro„)
& y~(p). The results for 62(iro„)yq(p) are identical. In-
serting these expansions together with Eqs. (3)-(6) into
Eqs. (1) and (2), Eq. (1) becomes a set of equations for
Zp(iro„) containing the isotropic interaction A,pp(n —m)
and Eq. (2) becomes a set of equations for d ~(iro„) con-
taining the anisotropic interaction [A, ~ ~ (n —m ) —p ~ ~ ]
&y~2(p'). The gap function h~(ro) is obtained from
h~ (iro, ) by the analytic continuation iro„ro+i0 with
the method of Pade approximants. The average of the
magnitude of the gap is given by LL~ Rely~(A~)]. We
calculate the tunneling density of states from

N(ro) 2' d Re(ro(ro' —a'(ro) y'(y)] '"] (7)
Np "o 2n

Note that our procedure differs from that of Ref. 8 where
only the anisotropic part and not the coupled equations
was considered. Also, the k dependence of the gap func-
tion appearing within the square root in Eqs. (1) and (2)
was neglected there, which could adversely affect their re-
sults far below T,.

One of our primary goals is to investigate how well the
theory can reproduce the measured tunneling conductance
G(V) for YBa2Cu307/Pb junctions. ' At low temperature
G(V) rises almost linearly with V from a zero-bias value
(the feature at 4 meV is attributed to 5, which is neglect-
ed here). The reason that the zero-bias value is finite and
increases with T is not yet known. At 19 meV a peak
occurs which is attributed to the 6, b gap. A second peak
occurs at 36 meV followed by a minimum near 49 meV.
The sharp decrease around 42 meV is thought to arise
from a phonon peak in a F at about Oo 23 meV, since
5, b+ Qo 42 meV. We have thus assumed an isotropic
peak in a F~ at Qo 23 meV with a coupling strength
somewhat arbitrarily fixed at ko 0.8. For simplicity we
always assume p 0. In Fig. 1 we shown N(m) for the
case of the anisotropic peak at Q~ 30 meV with X, ] 1.33

1.0

0.5.
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FIG. 1. Tunneling density of states for d-wave pairing with
parameters kp 0.8, A, ] 1.33, Op 23 meV, 0] 30 meV,
T 10 K, T, 89.6 K, p 0, and 2h~/koT, 4.16. Solid
curve: 8-function peaks in a F. Dashed curve: Lorentz peaks
with half-width 14 meV.

which yields T, 89.6 K, h~ 16.08 meV, and 2h~/koT,
4.16. N(m) is accurately linear for small ro and a first

peak occurs at 425~ 23 meV corresponding to the am-
plitude of the d-state gap. By examining Eq. (7) for
N(ro) one can easily verify that N(ro)=ro/Red~ for
ro 0, and that N(ro) diverges logarithmically for ro ap-
proaching the gap edge from below. A second peak occurs
in Fig. 1 at about 37 meV. This peak arises primarily
from the peak in azF

~ ~ as can be seen by varying 0 ~ and
Both peaks in a F have been taken as b functions.

Except for a little smoothing of the phonon peak, finite-
width peaks in a2F lead to only minor changes in the de-
tailed structure of N(ro), as seen in Fig. 1.

In Fig. 2 we show the dependence of the ratio 26~/koT
on the position 0 ~ of the anisotropic peak for constant iso-
tropic peak. Also shown is the value of A. ~ required to
maintain T, 90 K. We see that, if one wants a large ra-
tio, there is an "optimum" value of 0~ at about 40 meV
which depends on T, but not on Qp or A,p. The value of
the ratio at maximum, however, increases with decreasing
Qp, but it does not seem possible to get ratios much above
4.5. Note that ratios less than 3.5 can occur for large 0 ~.

Below about 30 meV, h~ decreases as (A, ~) '~ Q~. It is in-
teresting that the isotropic peak tends to be pair breaking
in the sense that increasing A, o with Ao constant requires
an increase in A, ~ to maintain constant T,. This could lead
to a reduced isotope effect.

We turn now to the isotropic solutions of Eqs. (1) and
(2) which are stable for A,p & X~. A consistent solution is
obtained by setting Z Zp(iso„) and 6-Ap(iso„) Equa-.
tions (1) and (2) then reduce to the standard isotropic
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TABLE I. "Exciton" coupling parameter A., and the ratio
2+'k&T, for various exciton frequencies. T, 90 K and A, ~h 0.8
in ail cases.

0, (meV)

30
70

200
300

2.20
0.80
0.42
0.35

2hlk g T,

5.98
4.84
4.55
4.53

.5

7
20050 100 150

Q1(mev)

FIG. 2. Anisotropic ratio 2h~/ksT, and pairing parameter k~

vs anisotropic peak frequency AI for A,p 0.8 and Qp 23 meV
(solid), 50 meV (dashed), and 70 meV (dot-dashed). T 10 K
and T, 90 K. The A, ~ curves for Ap 50 and 70 meV are indis-
tinguishable.

(T) 4am
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~here the transport coupling function is defined as

Eliashberg equations. We have investigated several possi-
bilities for c F to see if the conditions k= 1, 2h/kaT, =4
and T, =90 K can be fulfilled simultaneously: (a) "Pho-
non" peaks alone; (b) "phonon" plus "exciton"; (c) "pho-
non" plus negative p . In case (a) we consider typical
phonon spectra in the frequency range below 100 meV.
For example, a single peak in a F at 30 meV with a half-
width of 20 meV yields the expected structure in N(ai)
but A, 2.9 and 2hlkaT, 5.9 are much too large. With
two peaks at 20 and 70 meV we can only come close to
fulfilling the conditions when almost all the spectral
weight is in the upper peak. Then the structure in N(ra)
near 40 meV disappears. The condition A, =1 severely re-
stricts the possibilities: We cannot then obtain T, as large
as 90 K with a reasonable phonon spectrum and we con-
clude that isotropic phonons alone are not sufficient. A
number of experiments, however, e.g., thermal conductivi-

ty measurements, give strong evidence that the electron-
phonon interaction does play an iinportant role in high-T,
materials. The coupling strength, at least for acoustic
phonons, seems, however, to be relatively small. ' In case
(b) we thus assume a phonon peak in a~F of half-width 15
meV centered at 23 meV as indicated in Ref. 1. This peak
alone yields Xi,i, 0.8, T, 21 K, and 2A/kaT, 3.98. A
b-function exciton (which could be a spin fiuctuation or

I

~max h a)a,'F(co)
dN

[exp(hco/ka T) —1][1 —exp ( —@co/ksT))
' (8)

other type of excitation) peak is then placed at 0, with

strength A,, adjusted to yield T, 90 K. The results for
several values of 0, are shown in Table I. It is seen that
the conditions k, +A, i,h =1 and a ratio of 4 require an exci-
ton peak at a frequency above 100 meV. N(m) shows the
expected structure due to the phonons and exciton al-
though the phonon structure is rather weak for ru, & 100
meV.

For completeness we have considered the above phonon
but replaced the exciton peak with a negative p . A p of
-0.2 yields the same results as the exciton peak at 200
meV. A peak in a~F, however, seems to be a more plausi-
ble representation of the likely nonphonon mechanisms.

It is interesting that the ratio 2h/kaT, for the phonon
plus exciton together is larger than for either the phonon
alone or the exciton alone. The exciton at 200 meV alone
gives T, 60 K and a ratio of 3.74. Together with the
phonon at 23 meV, Table I shows a ratio of 4.55 while the
phonon alone gave 3.98. An exciton at 200 meV with X,,

0.496 yields T, 90 K and a ratio of 3.8. It is thus pos-
sible for the nonphonon part of a~F to be responsible for
the high T, while the phonons produce structure in N(co)
and both mechanisms together raise 2h/ka T, significantly
above the BCS value. Apparently a low-lying phonon has
an enhanced pair-breaking effect in the presence of the
high-energy excitation. A similar effect was found in Ref.
8 but only in the anisotropic case. That an exciton alone
at 200 meV yields a ratio 3.8 may seem surprising in view

of the fact that T,/Q, 0.04. We point out that in BCS
(i.e., a constant interaction A, NOV and cutoff ru, ), while

the weak-coupling limit A, ((1 gives the well-known ratio
of 3.53, the limit X, && 1 yields a ratio of 4. It is thus possi-
ble in BCS, even for rather small T,/co„ to obtain, with
A, = 1, a ratio greater than 3.5.

We now consider the justification for taking Ac 0.8.
This is important since, within the conventional isotropic
strong-coupling theory, it is relatively easy to obtain a T,
of 100 K and a ratio of 8 (or more), if one assumes strong
enough phonons which yield a large Ac. A major objection
to this procedure is that such phonons should have a
significant effect on the normal-state resistivity p(T). To
investigate this point we use Ziman's resistivity formula'

t

a),F(m) d kF n(kF)d kF'n(kF)a F(k,k', ro) 1—
~FS Vk

(9)
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Here n(kF) is the normalized density of states. Evaluat-
ing Eq. (8) in the present model we find that the aniso-
tropic part of the interaction, Eq. (5), does not contribute
and is thus not restricted by the resistivity. Inserting the
isotropic peak used in Fig. 1, p(T) is linear up to
T=1000 K. Values of 1.0-1.2 eV for the plasma frequen-
cy'4 and 50-200 p 0 cm for p(T, ) (Ref. 15) yield
)Le=0.3-1.4. Thus the chosen value of Ae 0.8 seems to
be, at least, consistent. To pose more restrictive bounds
on A,o, measurements of re~~ and p(T) on the same sample
would be extremely useful. Thus, a small value of A, from
electrical and thermal conductivity measurements does
not necessarily mean that the anisotropic part of the
electron-phonon interaction is small.

In conclusion we can say that it seems feasible that
Eliashberg theory can account for high-T, superconduc-
tivity if the isotropic electron-phonon interaction of mod-
est strength is supplemented by some other kind of mecha-
nism. For s-wave pairing we have obtained values of
2h/ka T, as large as about 5 by adding to the phonon peak
an exciton peak in the spectral function of the isotropic in-
teraction. The resulting density of states can show reason-
able structure above the gap but of course does not show
the almost linear behavior at low frequency observed in
the tunneling conductance of YBa2Cu307/Pb junctions. '

Anisotropic gaps, like our d-wave h~, can be found if

the retarded interaction contains a substantial amount of
d-wave component. This could arise from phonons, spin
fluctuations, or excitons, for example. We have seen that
one can easily obtain ratios 2LL/kg T, of 4 which are in ac-
cordance with Ref. l. We stress again that weak-coupling
theory yields a value of this ratio for a d-wave state
which is smaller than the BCS s-wave value of 3.5. Thus,
an anisotropic ratio of 4 corresponds to rather strong cou-
pling. The density of states N(ru) seems to fit the tunnel
measurements somewhat better for d-wave than for s-
wave pairing, especially the linear behavior for small ru

within the gap. This linear behavior of N(ru) is obviously
due to the four point nodes in the two-dimensional gap.
This is diff'erent from the three-dimensional case where
point nodes in the gap lead to ru2 behavior of N(ro). A
line of nodes, however, leads to N(e) a: ru.

'

The following point is worth mentioning: In strong-
coupling theory one very often simulates a peak in a~F
with a b function. This is quite satisfactory for determin-
ing the ratio 2h/kgT„ for example. One must be careful
in computing quantities like N(e) that depend on detailed
structure of the gap function. In the isotropic case the 8
function produced extraneous structure in N(co).

We thank Professor K. Scharnberg for helpful discus-
sions.
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