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We investigate certain generalized flux phases arising in a mean-field approach to the ¢-J mod-
el. First, we establish that the energy of noninteracting electrons moving in a uniform magnetic
field has an absolute minimum as a function of the flux at exactly one flux quantum per particle.
Using this result, we show that if the hard-core nature of the hole bosons is taken into account,
then the slave-boson mean-field approximation for the 7-J Hamiltonian allows for a solution where
both the spinons and the holons experience an average flux of one flux quantum per particle. This
enables them to achieve the lowest possible energy within the manifold of spatially uniform flux
states. In the case of the continuum model, this is possible only for certain fractional fillings and
we speculate that the system may react to this frustration effect by phase separation.

The discovery of high-temperature superconductors has
led to a revival of interest in two-dimensional strongly
correlated electronic systems. A model of central interest
is the ¢-J Hamiltonian.! At half-filling, it reduces to the
Heisenberg model which develops long-range order at
zero temperature. Away from half-filling, however, a
quantum spin-liquid description has been proposed.! This
state is a spin singlet, has no long-range magnetic order,
and is characterized by a uniform charge density and
limited-range antiferromagnetic correlations.>”* Among
the suggested mean-field descriptions of the spin liquid,
the flux phase of Kotliar® and Affleck and Marston* at
and close to half-filling has the lowest ground-state energy
for a wide range of the parameters. Besides the mean-
field approaches, variational wave functions making use of
the Gutzwiller projection have also been proposed’ and
studied numerically.®’ Finally, a large number of related
works is concerned with chiral spin liquids, where excita-
tions with fractional statistics may arise.® However, these
states have been shown to give the lowest energy only for
large values of the next-nearest-neighbor (NNN) cou-
pling® and we will not consider them here. Long-range
generalizations of the flux phase, including NNN cou-
pling and beyond, have recently been studied. '°

In line with a suggestion by Anderson,!! Lederer and
co-workers studied possible generalizations of the flux
phases for different fillings.®’ Investigating a few doping
concentrations, they found evidence that the exchange en-
ergy (J) is minimized at about one flux quantum per par-
ticle. Then, using the same trial wave function, they cal-
culated the contribution of the kinetic term (¢) to the
ground-state energy and studied the competition between
the ¢ and the J terms which occurs because the former
prefers zero flux.

In this work, we first study the motion of an electron in
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a uniform magnetic field for arbitrary fillings and fields
and establish the linear proportionality between the filling
factor and the optimal flux with high accuracy. Then we
turn to the 7-J model and represent the doping and the
no-double-occupancy constraint in a slave-boson formal-
ism. Up to multiplicative factors in the effective Hamil-
tonian, the mean-field approximation for the slave bosons
is known to be equivalent to the Gutzwiller projection. ®’
However, in the slave-boson approximation, the hard-core
nature of the bosons is treated only on the average. We
develop a method to represent this feature more satisfy-
ingly and explore its consequences. Finally, we discuss the
relation of variational approaches to mean-field tech-
niques and the problems associated with the passage to
the continuum limit.

First let us consider the motion of an electron in a fixed
external magnetic field. The Hamiltonian is

H -(Z)ci"cjei°"’+ H.c., 1)
ij

where (i, ) refers to nearest-neighbor sites and the sum of
¢:.; along any closed contour gives the flux of the magnet-
ic field through the enclosed area. The single-particle
spectrum, which forms a well-known fractal, has been
studied in detail by Hofstadter. '2

We have numerically diagonalized Eq. (1) for lattices
of various sizes, up to 40x40. We calculate the ground-
state energy for a fixed number N of particles by summing
the first N energy eigenvalues.!> We obtained its value
for 200 different filling factors and about 1000 values of
the magnetic flux (see Figs. 1 and 2). Consequently, we
are able to find the location of the global and local minima
of the total energy with high accuracy. Figure 1 exhibits
two prominent features: (i) The ground-state energy
shows a sharp global minimum as a function of the flux
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FIG. 1. Fermi-sea ground-state energy (in units of the band-
width) vs magnetic flux per unit cell for a 20% 20 square lattice.
The filling factors are equal to (a) @5, (b) §, (c) T, and (d)
+. The minima become sharper with increasing system size.

exactly at plus or minus one flux quantum per particle,
® =+ v (in units of the flux quantum, modulo one flux
quantum per plaquette), where v is the electronic filling
factor; (ii) a set of harmonics is observed; there are local
energy minima at ®=v/M+ M,/M,, where M| and M,
are integers.

We suggest a physical reason for this result: Away
from half-filling, the Fermi energy at one flux quantum
per particle lies in the biggest gap of the spectrum, which
in the continuum limit is equivalent to the first Landau

gap. Thus, adiabatic manipulations should not change the
]

FH=—t Z b,-*b,-c;f‘,c,-,‘,+ H.c.— J

(i,j)o s (i,j),0,0°

where N, is the number of spinon species and the term
with the Lagrange multiplier A ensures the one-particle-
per-site constraint. A typical procedure? now would be to
assume a mean field for the holons to give simply a renor-
malized hopping matrix element and then to treat the ex-
change term by means of another mean field. However,
this approach reflects the hard-core nature of the bosons
only on average. For an improvement on that point we
represent the bosons by fermions (fermion holon operators
h,h") with a vortex tube carrying one flux quantum at-
tached to each.'®!” In this approach no two like particles
can occupy the same site simultaneously, so it recognizes
the local character of the constraint and treats it more
)
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"J
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qualitative features of the system. Let us imagine that we
shrink the homogeneous magnetic field into infinitesimally
thin vortex tubes, bound to the electrons. Then the unit
flux quantum per particle turns each electron exactly into
a boson, thus allowing all of them to occupy the lowest-
energy state and thereby maximizing their energy gain.
This type of argument is familiar from the theory of the
quantum Hall effect. The analogous reasoning for the
Heisenberg model is that if we treat the model in fermion-
ic’ and bosonic'* mean-field approximation, the ground-
state energy in the latter case is considerably lower. Thus
the fermions try to lower their energy by “turning into bo-
sons”!® and the closest they can get to this within the
bounds of the mean-field approximation is the generalized
flux state with unit flux quantum per particle.

For the ¢-J model, we choose a spin-fermion (“spinon”)
and charge-boson (“holon”) representation of the prob-
lem:

> [gc.-T.,c.-,ﬁb.-*bi -1 ] , )

r
symmetrically with respect to holons and spinons. There
is a constraint relating the flux of the statistical gauge po-
tential through a plaquette of the dual lattice to an odd in-
teger g times the hole density at the corresponding site of
the original lattice: '’ Zj'plan,; j -q27rh,-*h,-. We make a
“mean-field” approximation by replacing the vortex tubes
of the statistical gauge field A4; ; by a homogeneous gauge
field A4; ;. 17 The ¢ and J terms are now each four-fermion
interactions. We decouple them via a Hubbard-Strat-
onovich transformation. The resulting Hamiltonian de-
scribes two types of fermions, propagating in (different)
gauge fields:

2l Qi j | CXP(i¢i,j)CitaCj,a+ H.cl

2
+ TVJ_ 1Qi;l 2+N,—’;—h,-*h,~h}h,- + 7 (constraint) , (3)
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where ®; ; is the phase associated with the auxiliary field
Q;:.;- The four-holon interaction term gives approximately
a constant shift ~N,8%t%/J, where & =doping, to the en-
ergy because of the constraint. This may be neglected in
the limit ¢t6/J<1. We now employ a variational ap-
proach, analogous to the one in Ref. 7. We look for the
minimum of the action in the space of functionals which is
restricted by the requirement that the effective hopping
amplitudes | Q. j | correspond to an isotropic hopping
probability and the phases to a uniform gauge flux ®. As
demonstrated in the first part of this paper, the optimal
flux for fermions propagating in a magnetic field is one
flux quantum per particle. The relevance of this result to
the present problem was first stressed by Anderson.!! In
the arising mean-field Hamiltonian we have two types of
fermions which propagate in simply related magnetic
fields with only one variational parameter ®. The number
of holons and spinons is different, therefore the optimiza-
tion of their energy terms with respect to the flux seems to
lead to conflicting requirements for ®. However, if one
takes into consideration that the energy is periodic with
periodicity of one flux quantum per plaquette and that the
statistics-changing flux per holon can be any odd multiple
of the flux quantum, then the following equations are ob-
tained for the total optimal flux for spinons and holons, re-
spectively: ®.N.,=*+xN.+p N, and O N +gN,
= + N, +p,N, where p,,p, are integers, 2a®d, is the op-
timal flux per spinon, and N, and N, are the numbers of
holons and spinons of a given type, respectively. Direct in-
spection shows that both fluxes can assume the value of
one flux quantum per particle simultaneously for all ra-
tional filling factors, § =N,/N_, which are the ratio of odd
integers. Thus we find that the hard-core nature of the
holons does lead to an important result; namely, both
types of excitation may be associated with an accompany-
ing gauge field such that the lowest energy is obtained
within the mean-field scheme. Since the Fermi energy
now lies in the biggest gap for the doped systems, we can
imagine again an adiabatic transformation of the gauge
fields into tiny vortex tubes. Then this result implies that
the spin quasiparticles still turn effectively into bosons but
without changing the statistics of the holons into fermions.
This is a genuine many-body effect, since one of the bare
spinons or holons must be fermionic because of their elec-
tronic origin. This unusual result is somewhat paralleled
by recent studies on slave-fermion models.'® There the
spinons are naturally represented from the outset as bo-
sons, the holes are fermions and (in the ground state) a
phase factor proportional to the doping is associated with
the fermions within the mean field approximation. How-
ever, that phase does not represent a flux and it leads to
the so-called spiral state.

We continue with two remarks on the peculiarities of
the model. First, had we considered the continuum model
from the outset, there would not have been a unit-flux-
quantum-per-plaquette periodicity in the energy as a
function of the flux and consequently (with p, =p,=0 in
the above formulas), the competition between the 7 and J
terms would be reestablished and the optimal unit flux per
particle could be achieved only for particular values of the
doping (the “happy fractions™): §=1/(odd integer). The
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main reason for this different conclusion lies in the
different topology of the lattice and the continuum. Also,
the two results correspond to different continuum limits;
namely, the particle number per site is kept constant in
the first case and the particle number per unit area in the
second.

If one moves away from these special values, at least
two scenarios are possible: (i) the system will favor the
flux corresponding to the nearby happy-fraction value as a
background and it absorbs the additional flux by creating
quasiparticles with fractional statistics, as happens in the
case of the fractional quantum Hall problem and as was
suggested recently by Laughlin®; (ii) the system phase
separates and splits into domains, where the flux takes on
the values corresponding to the two neighboring happy-
fractional fillings. There is some evidence for phase sepa-
ration in the 7-J model from exact diagonalization on
small lattices, especially for large J/1.'° Of course, the
long-range part of the electrostatic energy opposes such a
spatial inhomogeneity, but this case should not be exclud-
ed a priori.®® The size of these domains is determined by
the competition of the magnetic and electrostatic energies
and can shrink to the size of the unit cell, in which case
the situation is similar to scenario (i). Different, but re-
lated mechanisms for phase separation have also been sug-
gested.?!

Second, we remark on some details of the different
techniques applied. Had we not constrained the function
space to spatially homogeneous flux states when searching
for the minima of the action, we would not have been able
to carry through a self-consistent procedure. The reason
is that a constant (mean) flux associated with the decou-
pling of the magnetic exchange term requires a proper
nonuniform arrangement of the complex gauge factors
along the bonds. When one then introduces the resulting
spinon mean field into the holon ¢ term, the resulting
effective kinetic energy corresponds not only to a nonuni-
form magnetic field, but also to a spatially varying hop-
ping amplitude. This would take us out of the Hofstadter
problem which requires a uniform hopping. Therefore,
our numerical results would not apply. This shows that
the energy minimum we obtained by our variational ap-
proach is the result of a strongly restricted search and
does not necessarily represent a local minimum in an
unrestricted space.

We now address the question of the diamagnetic prop-
erties of the model. It is clear that for the case of the lat-
tice, in our uniform mean-field treatment, any external
flux can be accommodated by changing the internal field
such that the total flux remains the optimal value.® This
means that an external field is not expelled from the ma-
terial. In this connection, we remark that the absence of
flux quantization in a ring geometry for a related model
has been demonstrated at the mean-field level.?> For our
model, again in this same uniform mean-field approxima-
tion, a gap is present in the spectrum and renders the sys-
tem insulating. However, investigation of collective
modes could reveal the existence of low-energy excita-
tions.232* According to Ref. 23, there is hope for super-
conductive behavior only in those extended mean-field ap-
proaches in which the value of the flux is allowed to follow
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the local changes in the particle density. We note that in
the case of the continuum model an external magnetic
field leads to an energy increase which is linear in the
magnitude of the field. Thus a divergent susceptibility is
obtained. This is reminiscent of the situation in the anyon
gas,®2¢ but it should be emphasized that unlike that situa-
tion, we permit the internal fluxes seen by spinons and
holons to adjust in such a way as to minimize the energy.
To summarize, we investigated certain flux phases aris-
ing in the mean-field approach to the z-J model. First we
established for the whole range of parameters that the en-
ergy of an electron moving in a uniform magnetic field has
a sharp minimum as a function of the flux at exactly one
flux quantum per particle. Using this result, we showed
that if the hard-core nature of the holons is taken into ac-
count, then in a mean-field approximation of the -J Ham-
iltonian both the spinons and the holons experience a flux
quantum per particle, enabling them to achieve the lowest
possible energy within the manifold of spatially uniform
flux states. In the case of the continuum model, however,
only certain (happy) fractional fillings were possible and
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we speculated that the system may react to this frustra-
tion effect by phase separation, i.e., by developing nonuni-
form distributions of the electrons. It is worthwhile to
mention that some recent experiments on the high temper-
ature superconductors can be naturally explained by as-
suming phase separation of the electrons.?
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