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Dynamical simulations of fractional giant Shapiro steps in two-dimensional Josephson arrays
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We have performed computer simulations of arrays of resistively shunted Josephson junctions in

the presence of commensurate magnetic fields and alternating and direct currents.

We have

found fractional giant Shapiro steps in the simulated current-voltage characteristics in agreement
with recent experimental measurements. The detailed motion of the magnetic-field-induced vor-
tices is shown to be in agreement with a previously proposed phenomenological model of Benz

et al. [Phys. Rev. Lett. 64, 693 (1990)].

Experimental measurements' have shown that when a
radio frequency (rf) current, i,rsin(2zvt), is applied to a
square array of Josephson junctions in the presence of a
commensurate perpendicular magnetic field, fractional gi-
ant Shapiro steps occur in the dc I-V characteristics at
voltages
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where (V) is the average voltage across the array, n is an
integer, /V is the number of junctions in the array in the
direction of the applied current, and g is determined by
the vortex superlattice unit-cell size g Xq. The vortex su-
perlattice, in turn, is determined by the number of flux
quanta per array unit cell f=p/q, where p and q are in-
tegers. Such a rational value of fis essential for observing
fractional giant Shapiro steps because only for such fields
are field-induced vortices arranged in ordered superlat-
tices commensurate with the array of junctions.?® Since
the detailed motion of the vortices in response to the rf
current is difficult to determine experimentally, we have
performed simulations on two-dimensional arrays of over-
damped resistively shunted junctions (RSJ) to gain in-
sight into the physical origin of the fractional giant steps.
The simulations show fractional giant steps in agreement
with (1), and confirm the phenomenological model pro-
posed by Benz et al. ! (BRTL) to explain the steps.

Our numerical simulations were performed, as were
previous simulations,* by solving the coupled differential
equations found from current conservation at each node of
the array. In the RSJ model, the current i;; through an
individual junction is given by

ijj =icsin [¢j‘¢i‘ [%’;]LJA-dI

where @y is the flux quantum, ¢; is the phase on node i, A
is the vector potential, R is the junction resistance, and the
voltage drop across the junction is given by the Josephson
relation,
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We use the Landau gauge A =Hxy so that the integral
vanishes for junctions along the x direction and equals
QrH/®o)x(y;—y;) = +2xfx/a along the y direction,
where y; and y; are the coordinates of the ith and jth
nodes. Current conservation at each node requires
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In general if*'=0, except at the boundaries, where
(= =+ [i4.+isin(2rve)] is the current injected (+) or
extracted (—), as in the experimental configuration.

The coupled first-order differential equations resulting
from (2)-(4) were solved as in Ref. 4 by using a fourth-
order Runge-Kutta method with uniform time steps.
Starting with initial phases at each node, the equations
were integrated forward one time step to generate new
phases, which were then used to integrate forward another
time step, etc. I-V curves were calculated by ramping the
current from zero, where the phases were placed initially
in the zero-temperature ground-state configuration,’ in
order to avoid boundary-related metastable states due to
finite array size. The phases were allowed to relax over
200 rf periods before time averaging the voltage to obtain
the average voltage (V).

The choice of boundary conditions is not arbitrary.
Simulations must be done on small arrays, since it is not
computationally feasible to simulate the 1000x 1000 ar-
rays used in our experiments. Periodic boundary condi-
tions were chosen in the direction perpendicular to the
current, rather than free boundaries, because free boun-
daries cause nonuniform vortex motion in small samples.
The number of junctions in the periodic direction must be
a multiple of ¢ in order to accommodate a g X g vortex su-
perlattice.

A more critical boundary problem that influences the
dynamics of the array is the method of current injection.
We originally used busbars in our simulations by tying the
junctions on both ends to single nodes, and injecting and
extracting the current from these nodes. However, bus-
bars were found to strongly affect the simulated 7-V
curves because of the nonphysical phase constraints they
introduce, leading, for example, to unreasonably small
critical currents. Fractional steps were also observed in
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the simulations with busbars and periodic boundary con-
ditions or free boundary conditions, but we found that
uniform current injection and periodic boundary condi-
tions in small arrays more closely simulated the behavior
of our large experimental arrays. We note that the
dynamical behavior on the steps was not significantly
affected by boundary conditions, even though the values
of the dc currents at which steps occur were affected.

With periodic boundary conditions perpendicular to the
current and uniform current injection imposed at the ends
of the array, the critical current per junction for the f =}
state was found to be i, (f = 3 ) =0.35i.(f =0). This is in
agreement with the critical current found by Mon and
Teitel® for the same boundary conditions. It should be
noted that this critical current is lower than that calculat-
ed (for infinite arrays) by other methods,® where it was
found that i.(f =) =0.414i.(f =0). This difference is
due to the boundary conditions: Uniform current injec-
tion gives a pattern of currents that strongly deviates from
the periodic ground state near the current injection (or ex-
traction) nodes. By injecting nonuniform current values
chosen to match the spatially periodic ground state, we
were able to reproduce the i.(f=%)=0.414i.(f=0)
value in our simulations.” The critical current that is
found experimentally for the f= % state agrees more
closely with 0.414i.(f =0).

Figure 1 shows representative dc current-voltage (7-¥)
curves computed for various values of external field f with
an applied rf current. The first curve shows results for
f=0 and is=i.(f=0), at a normalized frequency
Q=v/v.=1, where v. =2ei.R/h is the characteristic fre-
quency. i is the applied dc current per junction parallel to
the current flow, and (V) is the time-averaged voltage
across the array. The constant-voltage Shapiro steps
occur at the voltages given by (1) with ¢ =1. This curve
is the same as the response of a single junction to com-
bined dc and rf currents because each junction responds in
the same way to the external dc and rf currents.
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FIG. 1. Normalized time-average voltage vs normalized
current per junction for simulated M XN arrays with Q =1,
ir/ic=1, and different magnetic fields: f=0, 4x5 junctions;
S=1%, 4x5 junctions; f= %, 3X6 junctions. Curves f= % and
S =0 are shifted from the origin along the current axis by suc-
cessive 0.25 increments.

The second curve in Fig. 1 shows an -V curve for
f=1%, with the same rf current amplitude and frequency
as the f =0 curve. Fractional giant Shapiro steps now ap-
pear at voltages given by (1), with ¢ =2. The third curve
shows an I-V curve for f=1%. The voltages of the
Shapiro steps are also given by (1), with ¢ =3 in this case.
All of these simulations produce results which are in
agreement with experiment.

To gain further insight into the rf response of arrays,
and to make a detailed comparison with the theoretical
model discussed by BRTL, we have looked at the instan-
taneous voltage and phase difference across individual
junctions in the array as a function of time. A 4x5 junc-
tion array was chosen so that one row of junctions would
be symmetrically located between the current injection
and removal edges of the array. Figure 2 shows the volt-
ages across two adjacent junctions in this row oriented
along the current direction on the lowest fractional step of
the f= % curve shown in Fig. 1. Two main features are
worth noting. First, the two junctions have the same volt-
age wave form, but are out of phase by exactly one rf
period. Second, the period of the voltage on each junction
on this lowest step is twice the period of the external rf
current, although the spatial average voltage retains the
period of the drive.

Figure 3 shows the phases and supercurrents in two ad-
jacent unit cells in the center of the 4x35 junction array
(with f= 1) at the times A, B, C indicated in Fig. 2, i.e.,
before, during, and after the phase slips which dominate
the behavior of the array on the lowest-voltage step. [The
dc current flows from top to bottom in this figure. The in-
stantaneous voltage of the center junction (labeled 2 in
Fig. 3) is plotted by the solid line and the junction to the
left (labeled 1) is plotted by a dashed line in Fig. 2.] Fig-
ure 3(a) shows the junctions at a point in the drive cycle
when the rf and dc currents nearly cancel, and the phase
and current configuration resembles the /=0 ground
state. In Fig. 3(b), the current in the center junction (la-
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FIG. 2. Normalized instantaneous voltage vs normalized time
across two adjacent junctions (labeled 1 and 2 in Fig. 3) parallel
to the current for a 4x5 array on the n=1, g =2 fractional gi-
ant step, with f= 3, @ =1, i/ic =1, and ia/i. =0.65. Lines A,
B, and C mark the times associated with the snapshots shown in
Fig. 3. Time is normalized to the external rf current period, 1/v.
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FIG. 3. Supercurrents (thick arrows) and phases (thin ar-
rows) for two unit cells in the center of a 4x 5 junction array un-
der the same conditions as in Fig. 2. (a) v¢=100.7, (b)
vt =101.15, and (c) vt =101.7. Times (a) and (c) are exactly
one rf period apart and show all currents having exactly reversed
direction.

beled 2 in Fig. 3) has increased toward the zero-field criti-
cal current, while the currents of opposite sense in the ad-
jacent junctions (labeled 1 and 3) have decreased nearly
to zero. The phases continue to evolve until the currents
in the outer junctions go to zero and begin to increase in
magnitude in the opposite direction, after which the
current in the center junction goes through zero and
changes direction. Finally, the currents in the transverse
junctions also reverse, so that unit cells which started with
clockwise (counterclockwise) currents in Fig. 3(a) end up
with counterclockwise (clockwise) currents in Fig. 3(c).
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In effect, the £ = 5 vortex superlattice has moved one unit
cell. The phase difference across each junction in the
direction of the current has advanced by an average
amount of =, which leads, via the Josephson voltage-
frequency relation, to (1) for the voltage drop across the
whole array, with n=1 and g =2. More generally, when
each junction has an average phase slip of nr per rf cycle,
the nth step results. These results give detailed confirma-
tion to the model proposed in Ref. 1.

Analogous behavior occurs for f =+ . The period of the
instantaneous voltage across a single junction as a func-
tion of time on the lowest step for f=§ is tripled with
respect to the rf drive, instead of doubled as for f= .
The voltage wave forms across adjacent junctions are the
same, but again are out of phase by one rf drive period.
This shows that the vortex superlattice effectively moves
one junction lattice unit cell per rf cycle.

We have also investigated the response of the arrays to
lower frequencies, specifically @ =0.1. Since the charac-
teristic response frequency of the junctions v, is ten times
faster than the drive frequency in this regime, the vortices
slip more quickly (in a time 1/v.) into adjacent cells. The
junctions in the array still collectively lock to the same
voltage so that the steps are given by (1).

In conclusion, we have performed RSJ model simula-
tions on arrays of overdamped Josephson junctions and
studied their dynamical response to applied rf currents in
the presence of a magnetic field. The results show frac-
tional giant Shapiro steps at voltages (1) in agreement
with recent experimental observations.! By following the
response of adjacent junctions in the array, we have shown
that on fractional giant steps, the vortex superlattice does
indeed slip perpendicular to the applied current in syn-
chrony with the rf drive current as in the model proposed
by BRTL.
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