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Spectral and magnetic transitions in the quantum Ising model
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The quantum Ising model in a transverse field is studied where the exchange interaction is a
modulating function of sites with many harmonics. The magnetically disordered phase is found to
exhibit a "mixed" spectrum containing both critical and localized states, while the magnetically
ordered phase has a pure spectrum with all states localized. Therefore, the spectral transition, al-
though broadened, occurs simultaneously with the magnetic transition, and the magnetic disorder
is accompanied by spectral disorder.

where the tr„are Pauli matrices associated with the site n.
Without loss of generality, we will set the transverse mag-
netic field It„equal to unity. The model is made QP by
choosing the nearest-neighbor exchange interaction J„ to
be QP. The Ising models, by Jordan-Wigner transforma-
tions, can be mapped to fermion models, quadratic in fer-
mion degrees of freedom,

H g tcJA„c + —,
' (cnB„c +H.c.)) .
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Here, the c„are anticommuting fermion operators. The
matrices A and B are, respectively, symmetric and an-
tisymmetric and are defined in Ref. 2. The second term in

Eq. (2) is responsible for the long-range order in the spin
systems and hence makes the study of the spin problem
very different from all the previous studies' of tight-
binding models describing an electron in an external po-
tential.

A unitary transformation reduces the model to the fol-
lowing generalized tight-binding model

Jn —ititn- i+ (I +Jn ) it+tnJ nip+ni +(~ /4) tttn . (3)

Here, y„ is the wave function of the electron at sight n.
This generalized tight-binding model associated with QP
spin models exhibits a rich energy spectrum with either
critical or localized states depending upon the type of
quasiperiodicity.

In the previous studies of the QP models, two types of
exchange interaction have been studied: (A) J„ takes two
values A,; and A, 2 in a Fibonacci sequence. (B) J,

A, sin(2tron), where cr is the golden mean. The above
interactions will, respectively, be referred to as type-(A)

Following an extensive study of quasiperiodic (QP)
tight-binding models (TBM) for electrons, ' QP spin mod-
els are currently being investigated. z 3 The main purpose
for such a study is to investigate the effect of the lack of
translational order on the magnetic and spectral proper-
ties of the system. The one-dimensional QP quantum Is-
ing model in a transverse field has turned out to be an
ideal candidate for such a study, as the periodic model is
exactly solvable. The system is described by the follow-
ing Hamiltonian:

XJntrntrn+i hntsn sr

Pn+ 1+ tItln- i+Jngn Egn ~ (4)

This model, where the potential J is given by the above
two types (A) and (B), also exhibits a pure spectrum. In
the type-(A) case, all states are critical. On the other
hand, in the type-(B) case, states are extended for A, & 2
and are localized for X & 2. At A, 2, the Andre-Aubry
transition takes place and the states are critical. The cor-
responding spin model exhibits critical states for A, &2
and the spectral transition at A, 2 is accompanied by the
transition to LRO. Some recent studies5 of the electronic
TBM involving a more general type of potential have
pointed out that the QP potentials of types (A) and (B)
are very special and a pure spectrum is not a general
feature of the QP systems. Models with more general po-
tentials containing higher harmonics exhibit a mixed spec-
trum with both extended and localized states resulting in
mobility edges.

In this paper, I study the spin model (I) where J„ is a
modulating function of sites with three or more harmon-
ics. The main purpose of such a study is twofold: to un-
derstand the nature of spectral transitions in the QP Ising
model where the exchange interaction has a more general
form, and to study the relationship between the magnetic
and spectral transition. In particular, in models with a
more general type of exchange interaction, I address the
following questions: (i) Do the magnetic and spectral
transitions occur simultaneously? (ii) How does the
mixed spectrum, which I will refer to as spectral disorder,
affect magnetic order? (iii) Which states are localized

and type-(B) interactions. Both models were found to ex-
hibit a magnetic transition to long-range order (LRO). In
model (A), the energy spectrum was found to be a cantor
set and the states were critical in both magnetically disor-
dered and ordered phases. However, in model (B) the
states are critical in the disordered phase and are localized
in the LRO phase; hence, the magnetic transition is found
to be accompanied by a spectral transition: In the disor-
dered phase, all the states were critical, while in the mag-
netically ordered phase, all the states were localized.
However, the common feature of both the models is the
fact that the spectrum is always pure: i.e., all states are
either singular continuous (critical) or dense point (local-
ized).

The electronic TBM with QP potential is
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first as the parameters of the model are changed? In the
electronic TBM with two harmonics, it appears that states
at the edges are localized first. However, a recent study
on the electronic TBM involving a more general type of
potential has reported that localization could begin at the
center.

I now summarize the results of this paper: In a phase
with no LRO, the energy spectrum is mixed containing
both critical and localized states, while in the LRO phase
the spectrum is pure and all the states are localized.
Therefore, magnetic disorder is found to be accompanied
by spectral disorder. The spectral transition, although
somewhat broadened, still seems to occur at the same
point as the magnetic transition. On the other hand, the
nature of magnetic transition is unaffected by this. This
study with various QP spin models indicates that both
types of localizations are possible; i.e., either the states at
the band edges are localized first or the states at the
center are localized first.

In this paper, three types of QP exchange interactions
containing higher harmonics are investigated and the re-
sults are compared with the QP model containing a single
harmonic. The exchange interaction is chosen to be of the
form J„)f(2rrrrn), where the function f(x) has the fol-
lowing forms:

f(x) A, [cos(x )+a cos(3x)+P cos(5x )], (5)

~
J(1+e) . sin(x)x arcsin

2K J(I+e)
tanh [a cos (x)]

tanh(a)

(6)

(7)

The above types of interactions have recently been investi-

gated in various contexts in the study of QP systems.
Models (5) and (6) have been studied in the context of
understanding the effect of higher harmonics in area
preserving maps. Model (6), in the limit as e goes to
infinity, reduces to model (B), while in the limit e equal to
zero reduces to the piecewise-linear potential. Model (7)
was recently investigated in the TBM to understand the
nature of the energy spectrum for a more general type of
potential. It should be noted that this model reduces a
single harmonic model as a goes to zero, and reduces to
the QP model with type-(A) interaction as a goes to
infinity. This model was studied to demonstrate the ex-
istence of a mixed spectrum where the localization begins
at the center for some values of the parameters. This is
unlike the previously studied case involving two harmon-
ics where the states near the band edges were found to be
localized first.

The numerical study of the QP model is along the lines
of previous studies. Instead of studying the QP model, I
study a sequence of periodic models which approach the
QP model in the limiting case. The above-described QP
modulating interactions were studied as the parameter A,

was varied keeping the other parameters fixed. The model
with the QP interactions as given above are found to ex-
hibit a transition to LRO signaled by the vanishing of the
gap and nonzero long-range correlation. The critical
point corresponding to the onset of LRO depends upon the
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FIG. 1. The TBW (scaled up by a factor of 9) (dotted line)
and the magnetization (solid line) for model (2) containing sin-

gle harmonics for 89 sites.
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FIG. 2. The TBW (dotted line) and magnetization (solid
line) for model (5) for a lattice with 89 sites. a 0.05 and

P 0.01.

parameters in the interaction. Figures 1 and 2, respective-

ly, show the magnetization and the total Lebesgue mea-
sure or the total bandwidth (TBW) of the spectrum for
the single- and three-harmonic cases. In the model with a
single harmonic (Fig. I), TBW increases monotonically as
the system approaches the critical point from both the
disordered and ordered phases. This is intuitively expect-
ed as the system tries to behave as close as possible to a
periodic system at the onset of LRO where the correlation
length is infinity. However, in models involving higher
harmonics, TBW is not a monotonic function of X,, but in-

stead exhibits hills and valleys. [Analogous plots are ob-
tained for models (6) and (7).) By studying the individual

bands, this is found to be due to localization of some of the
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states. As X, is increased toward its critical value, more
and more states change their character from critical to lo-

calized. Therefore, the system is subjected to two compet-
ing effects: the increase in the TBW as the system ap-
proaches LRO and decrease in the TBW as the various
states undergo transitions to localization. Note that un-

like the single-harmonic case where all the states become
localized simultaneously, the localization transition is
spread throughout the disordered phase. However, the
maximum drop in the TBW still occurs at the critical
value of A. corresponding to the onset of LRO where all of
the states become localized. As the X is increased beyond
the critical values, all the states remain localized resulting
in a pure spectrum in the ordered phase. It is rather in-

teresting that the spectral disorder is present in the mag-
netically disordered phase only. This fact further em-

phasizes a close relationship between the spectral and
magnetic transitions in QP spin systems where the ex-
change interaction varies smoothly.

Further study of the individual bands revealed that in

models (5) and (6) the localization starts from the edges

and eventually spreads throughout. This behavior is
analogous to that of electronic models involving two har-
monics and is identical to Anderson localization in three
dimensions. However, model (7) was found to exhibit
different behavior: Analogous to the corresponding elec-
tronic problem, but in contrast with the Anderson locali-
zation, the localization was found to start from the center
for some values of a.

The work described here along with that of Ref. 3 clear-
ly demonstrates the fact that in models exhibiting a tran-
sition to LRO and a transition to localization, the two
transitions are closely related. They not only occur simul-
taneously, but the magnetic disorder is also accompanied
by spectral disorder.
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