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A study of nonlinear magnetodynamic waves on magnetic materials is presented. Attention is re-
stricted to an exact theory of electromagnetic waves propagating along the single interface between
a linear substrate consisting of a ferromagnetic and a strongly nonlinear magnetic cladding. It is as-
sumed that the cladding consists of an artificial paramagnetic material and that only third-order
nonlinearity is operating. It is shown that both TM and TE waves can propagate, with or without a
linear limit. Nonreciprocity is found to be strong only in the cases that have linear limits, but the
power dependence of this nonreciprocal behavior is quite dramatic and should lead to some applica-
tions. Many numerical examples are presented, supported by a detailed mathematical analysis.

I. INTRODUCTION

There is now a lot of interest in nonlinear waves in
solid-state optics. ' " In particular, nonmagnetic dielec-
tric materials that exhibit optical hysteresis, arising from
third-order nonlinearities, are expected to underpin the
development of optical computing or signal processing.
A search is therefore underway to find good nonlinear
materials, and these will include artificial dielectrics, such
as suspensions of polystyrene spheres for work at optical
frequencies" and suspensions of short graphite fibers that
will give strong Kerr-type nonlinear interactions, even at
microwave frequencies. '

In the infrared frequency range, the inclusion of the
magnetic properties of a material, through a linear per-
meability, can also influence optical bistability' with hys-
teresis loops that are very small in area. This feature, is a
function of the magnetic properties and illustrates the po-
tential of magnetic materials for future devices. In the
microwave frequency range, however, it is not only non-
linearity in the dielectric function' that is of interest.
Nonlinearity may also appear as magnetic-field-
dependent terms in the magnetic permeability. ' Al-
though this kind of nonlinearity can arise at quite low
power thresholds, ' ' in readily available insulator ma-
terials such as yttrium iron garnet (YIG), it is too weak to
change the modal fields of thin-film guided waves. In or-
der to achieve this, strongly nonlinear magnetic materials
will need to become available. If experience with non-
magnetic dielectric materials is to be relied upon, then
the search for large intrinsic nonlinearities will not be
easy but exploiting suitable waveguiding formats' and
the use of artificial' nonlinear magnetic media hold out
considerable promise. Such materials can be created'
with a suspension of magnetic spheres in a suitable medi-
um such as a liquid. Nd spheres in water has been sug-
gested, for example. ' It has been estimated that
paramagnetic or diamagnetic spheres' of radius 2 X 10

m, with a density 10' m, dispersed in diamagnetic
liquid will display a large nonlinearity at reasonable mi-
crowave powers. Unlike the artificial dielectric sys-
tems, "' such magnetic suspensions remain to be investi-
gated experimentally but will prove to be very interesting.

In the optical case it has been argued that liquid sus-
pensions of nonmagnetic spheres in a standing elec-
tromagnetic wave field experience a force that moves the
spheres into high-field regions of the standing wave pat-
tern. This induced movement of particles raises the aver-
age refractive of the medium in the high-field regions of
the artificial dielectric so that the whole suspension mim-
ics a conventional nonlinear medium with a high, posi-
tive, or negative, Kerr coeScient. " This same idea has
also been proposed for aerosols of glass spheres' subject-
ed to electrostrictive modulation of their density. The
fact that such artificial nonlinear media have nonlinear
coefficients that are a factor of 10 higher than those of
other readily available nonlinear, nonmagnetic, rnateri-
als" encourages the belief that artificial nonlinear mag-
netic suspensions of magnetic spheres will behave in the
same manner. It should be emphasized, at this stage,
however, that the appropriate parameters must be es-
tirnated, but the rather large artificial nonlinear
coefficients are at least expected to be proportional to the
radius of the spheres. '

Over the last two decades a lot of work in solid-state
physics has been devoted to surface polaritons. ' This
has mainly been based upon an optical point of view and
has largely centered upon nonmagnetic dielectrics. A
small amount of work does exist on surface magnon po-
laritons in which surface waves at the interface between
two semi-infinite magnetic materials or on a thin fer-
romagnetic film have been considered. ' ' This polari-
ton regime is sufficiently close to the light line for retar-
dation effects to have to be taken into account. For this
reason, and because a distinction must be drawn between
this and magnetostatic waves, it has also been referred to
as the magnetodynamic regime. ' The waves are non-
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reciprocal if they propagate perpendicularly to an applied
magnetic field lying in the surface. Nonreciprocity means
the dispersion relation is not the same in the positive and
negative wave number directions.

The purpose of this paper is to examine the behavior of
surface nonlinear magnetodynamic (polariton) waves that
are propagating along the interface between a semi-

infinite, weakly nonlinear substrate and the kind of dom-
inant strongly nonlinear magnetic, semi-infinite, cladding
that was defined earlier. The strong nonlinearity of a
magnetic cladding medium will always be assumed to
dominate that of a magnetic substrate, if it is associated
with a wave traveling along the interface. This assump-
tion allows us to completely neglect the weak, intrinsic,
nonlinearity attainable in the YIG substrate. Self focus-
ing, in frequency ranges for which no linear eigenvalue
exists is anticipated, and only third-order nonlinearity
is considered on the grounds that all harmonic generation
can be ignored because of lack of phase matching. In fre-
quency bands for which linear eigenvalues exist, harmon-
ic generation in any case corresponds to very weak,
driven, harmonic waves lying outside the linear eigenfre-
quency band. It should be mentioned that although the
mathematical infrastructure of the application reported
here is unique, there will be a similarity of attack between
the methods employed and some previous work on non-
magnetic materials. ' ' This is also true of many linear
problems, however.

II. THEORY OF TM WAVES

The guiding structure to be considered consists of a
linear semi-infinite ferri(ferro)magnetic insulator sub-
strate assumed from now on to be YIG, and a semi-
infinite nonlinear magnetic cladding in contact every-
where on the z =0, plane as shown in Fig. 1. It must be
emphasized that the substrate will always be assumed to
be linear, compared to the cladding, and that it exists in
frequency windows that make it appear to be ferromag-
netic.

It is well known that there is no linear band for TM
surface waves' propagating along the x axis, but experi-
ence with the nonmagnetic dielectric case' ' shows that

Nonlinear Paramagnetic,

there ought to be nonlinear TM waves above a certain
power threshold. Since the latter has to be reached be-
fore these are possible, they may require very high
powers, possibly beyond the current experimental reach,
to drive them. It is to these nonlinear waves that this sec-
tion is addressed.

The TM waves carry the magnetic field H and electric
field E components

NL +~HZ (3)

This expression arises because from an expansion of the
permeability about an applied static field Ho, and terms
that could lead to harmonic generation are neglected.

Hence H is now the ac magnetic field carried out by
the TM wave. )u, =pL is the linear part of the permeabil-
ity and a is a nonlinear coefficient. H is also real be-
cause only stationary, nonradiating waves will be con-
sidered. '

Maxwell's curl equations for the nonlinear medium
have the simple form

where m is the angular frequency and k is the wave num-
ber. For this polarization the YIG substrate can only
affect the propagation through a frequency independent
permeability p2= pz. The off-diagonal terms of the usual
Polder tensor are brought into action by TE waves, that
are to be considered later on. Some comments on the pa-
rameters normally assumed for YIG are now appropri-
ate. t' 2 ps is interpreted as the background permeabili-

ty caused by other magnetic dipole excitations, ' such as
optical magnons. It is interesting that, because pz is
close to unity, it is usually taken as unity in practical de-
vice designs ' without apparent penalty. pz ——1.25 in

practical frequency ranges for YIG, however, and the
background dielectric constant is also not equal to unity.
It is sometimes assumed to be so, ' ' but it has appeared
in the literature with quite a wide range of values. '

Both p~ and the background dielectric constant can lead
to branches in the dispersion relationship that exist be-
cause of their deviation from unity. '

In the presence of the microwave field associated with
a TM wave propagating along the interface, the nonlinear
permeability of an isotropic magnetic cladding is given
by16

Medium 0

; X

curlE=imp~ "H,

curlH = —icoeoeiE,

(4)

(5)

/
/

/ /'

Linear Ferromagnetic
/I

/

Medium 2
/ /

where e, is the relative dielectric constant of the non-
linear medium. Equations (3) and (4) yield

a
IkE — E = 1 COpgp Hy

FIG. 1. Coordinate system for the single interface between a
nonlinear paramagnetic cladding and a linear ferromagnetic
cladding.
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Hence,

H —(ki —kpe, aH )H =0,a' (8)

where kp=P1 /c =epPQPi . Ep and iMQ are the dielectric
permittivity and magnetic permeability of free space, re-
spectively, and

k2 k2 k26 p

Equation (8) is a nonlinear differential equation that can
be solved exactly, ' and the first integral obtained by
multiplying through by BH /Bz and integrating over z, is

i3H

a 1 201 y y
—(k ——'k e aH )H'=C (10)

where C is a constant of integration. For the surface
waves under investigation here H ~0 and BH /Bz~0,
as z~ ~ so that C =0. This conclusion also implies that
there is no radiation leaving the surface or returning to it.

The solution to equations of the form assumed by Eq.
(10) has the form now well known for TE nonlinear waves

propagating along the boundary between two nonmagnet-
ic dielectric media [see, for example, Eq. (1) in Ref. 5 and
Eq. (24) in Ref. 4]. It is

' 1/2

H (z)=
kp ae, cosh[ki(z —zp)]

where zp is a constant of integration that defines the posi-
tion of a self-focused peak in Hy.

In a linear ferri(ferro)magnet the field corresponding to
a surface wave at z =0 is given by

+k2z
H»(z)=Hr e (12)

where HL is the amplitude of Hy at z =0 and
k2=k —kpezp, 2. The usual electromagnetic boundary
conditions that express the continuity of the tangential
components of E and H and the normal component of
the electric displacement 0 at the boundary z =0 now

apply. In particular, the continuity of the tangential
component of 8 yields

H, = '
(13)

kp ae, cosh( k, zp )

k

kp E1 CKE'1

sinh(k, zp )

cosh (kizp)

k2
HL . (14)

The elimination of HL from Eqs. (13) and (14) gives a
dispersion relation for the nonlinear TM surface waves in
the form

k2e1
tanh(k, zp ) =

k1E2
(15)

This dispersion relation can now be used to obtain
bounds on the range of allowed values of the wave vector
k. Since we assume that the dielectric constants 61 and e2

The continuity condition of the tangential component of
E gives

are positive, and since the decay constants k1 and k2
must also be positive for a surface wave, the right-hand
side of Eq. (15) is positive. The positive values of the hy-
perbolic tangent on the left-hand side, therefore, lie in the
range from zero to unity, so we must have

k peies(eipz e&L )
2

k
2 2

E1 6'2
(16)

which defines an upper cutoff on the value of the wave
vector k that approaches infinity as e, ~e2. Actually, as
zp~ap, tanh(k, zp)~1 so that the cutoff is associated
with the self-focused peak in the field moving out to
infinity. It will be shown later that this cutoff leads to a
corresponding cutoff on the power flow. The require-
ments that k1 )0 and k2 )0 for a surface wave together
give the relations

k ) kp61pL
2 2

k )kpe~2,
(17)

so that there is a lower cutoff on k as well. We must also
note from Eq. (16) that, if e, & e2, we must have

1@2 62PL
Yet another inequality can be obtained by eliminating

zp from the boundary conditions, Eqs. (13) and (14), to
yield the result

2
k 0 E'16'22

2 (&iIi2 (18)

Again taking e, ) e2 and noting that k must be positive,
we obtain the inequalities

—,E2QHL (61@2
—E~L,2

E1PL )—6'1CZHL,
] 2 (20)

PNL
kki dz

apikpepe, p cosh [k, (z —zp)]

kk i dz'

apikpepe, 'o cosh (k,z')
(22)

where z'=z —zp. The quantity zp is the position of max-
imum power density and when it moves to infinity, the
power flow reaches the value

kk1 dz'2

PNL
cxcok p E'pE'1 ~ cosh k 1 z

kk,

cxcok p 6'p612 2
(23)

The substituting of the maximum value of k, as specified

by Eq. (16) then, gives the following cutoff power flow:

Thus, depending on the material parameters, there is a
maximum value of the magnetic field amplitude HL .

The power flow in the direction of propagation (x
direction) is given by

P =
—,
' f (EXH')„dz = —

—,
' fE,H» dz .

Hence P, the power flow in the nonlinear medium, is
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FIG. 2. TM waves: normalized power Bow along the x direction as a function of wave index (n =ck/m, @1=@1=1.29,
e, =eL =2.3, p,,=2, e, =2). Frequency f =90 GHz. a=8, 869X10 ' m'A '. The normalized power is P/Po, where

Po = 1/(2coaeo). so= 8.85 X 10 ' F m ' is the permittivity of free space.
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I', the power flow in the linear medium, is given by

L k 2I' = HL,

(24)

(25)

index becomes smaller on the left of the minimum. Equa-
tion (17) shows that this lower limit n;„=(p zez)' =2,
for the data chosen. Data required to illustrate this work
are not easy to find, so parameter values have been select-
ed that have been referred to in the literature at least as
possibilities. ' ' These are shown in Table I. As
(pzez)' is approached most of the power resides in the
linear medium, necessitating very large powers to drive
the nonlinear wave. Note that the power in Fig. 2 is nor-
malized with

from which it can be seen that when zo ~~, P ~0, and
all of the power flow is in the nonlinear medium.

III. NUMERICAL RESULTS FOR TM %AVES

The dispersion equation, in this case, coincides with
the dependence of the total power flow in the x direction
upon the surface-guided wave index n =cklco. The in-

terface, in its linear state, will not support TM surface
waves so it is not unexpected' ' that a power threshold
has to be exceeded before nonlinear waves can propagate.
This is shown in Fig. 2, together with two other features.
First, the power approaches an infinite value as the wave

n max n min ~1 ~1 (el —ez) =2.68,

the upper wave-number limit given by Eq. (16) and finite
power limit given by Eq. (24). At this extinction point

I'0= =1.127 M% m
1

20!NEO

This is quite high but the power essentially scales as the
inverse of coa so that working at low frequencies requires
large a to ofFset this fact. As n increases, the power
passes through a minimum and finally reaches

1/2

TABLE I. Parameter values (obtained from indicated references) used in figures.

0 (m~A-~)

8.869 X 10

I I (=VI)

1.29 2.3

Nonlinear cladding
Figure number

2, 3, 4, 5

Reference

25, 16

@080 (G) POMo «l
Linear substrate

p& (=pp) Figure number Reference

1000
1750

2
1.25

I

2
1

16

2
7

8—13

24, 26
19

21-23
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n =2.645, n&=2.449,l corn onent across the interface for the wave index valuesP~ ~ ~

n3 =2.36. These refer to curves with descending maxi

p(r0) = 0 p~ 0

Pxz 0 Pxx

0. 0

(26)

an self-focused peak has moved out to infinity and allany se-
the ower How is in the nonlinear medium. ig
show, respectively, the shape of the nonlinear

e pow
r E E and

H electromagnetic field components in the vicinity of
the interface for the n values '~5, ~6, an
veniently chosen to represent typical values in the permi-
ted range 2 & n & 2.68.

IV. THEORY OF TE WAVES

In this case the permeability tensor of the linear mag-
netic substrate medium, for this geometry, is

Pxx 0 Pxz

Pxx =Pa
o(o+~~ )

2
'

COO N2 2

CONm

Pxz ~Pa ~ q ~Pe. Pa
COO 6)

are the usual Polder tensor elements, with coo=yp~o
pe H is the applied magnetic field,and m =yp 0. 0 is

y=1.76X1v s i0" ' T ' 's the gyromagnetic ratio, and Mo
is the dc saturation magnetization.

The electric and magnetic field vectors of the elec-
tromagnetic field for the TE waves take the form

E= [O,Z, (z),O]e'~"" (27)

where the magnetization and the external magnetic field
are in the y direction and

-0 1

E
O
O

hl

LLj

-0.2

-0 3

—0. 6
-3.0 0.0 1.0 2. 0 3.0

Z( IO m)

f h E field component across the interface for the data of Fig. 3.FIG. 4. TM waves: Variation o t e, e c
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FIG. 5. TM waves: Variation of the H~ field component across the interface for the data of Fig. 3.

H = [H„(z),0,H, (z) ]e '"" (28)

BE
l Q)pop H

Bz

kE =coppp "H

H
1kHz = l coEp6'&Ey

Bz

(29a)

(29b)

(30)

In order to make contact with previous analogous work
on nonlinear TM waves, ' we eliminate E rather than
H and H, from Eqs. (29), and exploit the m/2 phase
difference between H„and H, for TE waves with
definitions H, =h„H, =ih, to obtain

and the relevant components of Maxwell's equations for
the nonlinear medium are

In the linear medium, the differential equation satisfied by
Ey 1s

BE —yqE =0,
BZ2

where

(36)

magnetic field components (h„,h, ) describe a surface
wave localized at the interface z =0 and n =k Ik0.

If we regard the nonlinear parameter a as small, we
can obtain an approximate expression for the first in-
tegral correct to first order in a that has the form

ah
(2n —e,pL )h, —n h + (n h —2e, MLh, )=0 .

pl

(35)

Bh Bh,+k
BZ2 Bz

Bh„

Bz

2~ pNL

1= ——(k —k ep )h0 1 z

(31)

(32)

Pv=P, +, y2=k —koPv2= 2 2

pxx

The solution of Eq. (36) corresponding to a surface wave
localized at z =0, is given by

The first integral is obtained from Eq. (31) by multiplying
it by Bh /Bz and utilizing Eq. (32) to give

r 2

B Bh. , Bh,', Bh', , Bh'—k +koE']pl. + 2kpE', Q =0
Bz Bz Bz Bz

(33)

Fy(z) =FLe (37)

Once again the m/2 phase relation between the field corn-
ponents, permits the definitions

Hx hx~ Hz z~ y y

So that the field components h and h„ in terms of e, are
where h =h +h, . The integral of Eq. (33) with respect
to z gives

an2h4
[2n —et(pl +ah )]h, nh + — =0, (34)

2(pl +ah )

where the constant of integration is zero, since then the

h

h, =

—
y2p —ik p,
~pppxx p V

kp +i@~,
e

~popxx p v

e (38a)

(38b)
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The nonlinear dispersion relation can now be obtained by
applying the electromagnetic usual boundary equations.
From the continuity of tangential H at z =0 we get, from
Eq. (38a)

h„=h,'," 1 — [(h,',") + A ]
PI.

If we define

(48)

y~„+ikp,
~P0Pxxp v

et =h„&(0), (39) PxxP vk

PL(3 &„„+ikp,)
(49)

(40)

where eL = —iEL. From the continuity of normal B at
z =Owe get
—p„,h„(0)+Ip,„„h„(0)=i (pL+ alh) I')h, )(0) . GAO 1

then h,',"=GAD, and Eq. (48) becomes

aA0 (1+6 ) {SO}

The subscripts 2 and 1 in Eqs. (39) and (40) denote the
linear and nonlinear media, respectively. Eliminating
h„z(0) and h, 2(0) from Eq. (40), with the aid of Eqs. (38)
yields

n (G —1)—e,pLG— (6'+ 1)

Eliminating h„, and h„ from Eq. (35) in favor of AD and
6 yields the nonlinear dispersion relation in the form

p, (lz2it, +lkp, ) ip, (kp +i}z2it, )

~PDPxxp v PDPxxP v

=i [pL +ah, (0)]h„(0), (41)

X[(3G —1)n —2e,pL G ]AD=0, (51)

where we have discarded terms of second order and
higher in a. If we let a~O, we obtain

which can be simplified to

k eL=[pL+ahf(0)]h„(0) .
COP0

(42)

&&PLG
2

n 62 (52)

We can eliminate eL from Eqs. (39} and (42) and obtain
the relation

—(y~„„+ikp„,)[pL +a( A 0+h„(0)}]h„(0)

which corresponds to the linear dispersion relation of
Hartstein et al.

In Eq. (51) the dominant k terms can be determined by
letting k ~+~ to give G ~(G' —'), where now

kp pvAD (43) (6 —1)— (6 +1)(36 —1)AD=0,
2PI

(53)

where Aa=h„~(0) can be regarded as a nonlinear param-
eter.

Equation (43) together with the first integral given by
Eq. (35) determines the nonlinear dispersion relation. In
order to obtain this explicitly, we must eliminate h„(0}
from these two equations. Although this is diacult to do
for a general nonlinearity, it can be done rather simply
for the case of weak nonlinearity.

Let us rewrite Eq. (43) as

which gives

PI 16 ——+
3aAD

where I =2a AQPL.

Pl 4 6aA0

3aAp 3 Pg

2a A0 =1+
PL PI.

(54)

ah„(0)+aADh, ~(0)+pL h„(0)+ AD=0,
72Pxx +&kpxz

(44)

V. ASYMPTOTIC LIMITS FOR
LARGE WAVE NUMBER: TE WAVES

As k ~+ oo, y2 lkl and

and assume that ah„(0)«pL, a A 0 «pL . We set

h„(0)=h,"'+t} (45)

(+) PxxPv ( )
PxxPv

P 1(V +'XPX} xzP1(Pxx 'Pxz )

(55)

where

h„=—( &) PxxPv 0

i i(}u..+iki ., }
(46)

and hence

and b, is O(a), and substitute into Eq. (44). Neglecting
terms of higher order than the first in a, we find that

ah,(,"
[(h,',") + A ]

(p„„ip„, )
—p, = I—for k )0,

(p,„+i@„)—p, =l for k &0 . (57)

If I =0 and the nonlinearity disappears then these limits
yield

p —ip, =+p, for k &0,
with possible solutions

(58)

so that the large k limits of the nonlinear dispersion equa-
tion are given by
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Pz
CO+ —COp+ ~m

Pz Pi

Pz
CO

—COp+ M~
Pz+P&

The original unsquared dispersion relationship is

Pxx IPxz P& ~

(59a)

(59b)

(60)

are

2
Pz~m

M —COp+
Pz P) I

2
Pzm

CO
— COp+

(p2+ I )1/2

for k &0,

(66)

however, so that only cu is an acceptable solution. For
k&0 ( 2+ I )1/2

for k &0. (67)
Pxx + 'Pxz +P

& ~

with possible solutions

Pz
Cg —

CO+ o mCO

(61)

(62a)

Several cases can now be developed, taking as an exam-
ple a self-focusing situation in which a&0 and I &0.
The k & 0 cases are

Pz
o ~m

Pz+P&

The original unsquared dispersion equation is

Pxx +'Pxz P ] ~

(62b)

(63)

case A: pz —-p, = 1, lp',—pal « I, «&1,
COp~=~,+ +o(r),
2

case B: p~ &p„0&I &
~p~

—p, ~,

(6g)

(69)

so that co+ must be disregarded. In this case, however,
since co is negative no large k limit exists at all.

The inclusion of nonlinearity changes Eqs. (58) and (61)

CO —COp+
(p,'—pi) —r

It appears that when I =(pz —pt), the nonlinearity will
significantly alter the larger k &0 limit. For k &0 we
have

(p~ —pt —I )~'+2l —pP~. +~o)+~o(pt+ I ) I~

+p~(a)o+co~ )
—too(p, +I )=0 for k )0,

(pq —p, —I )co +2[pq(ro +coo) —coo(p, + I )]co

+pz(~o+co )' —coo(pt+I )=0 for k &0 .

(64)

case A: pz-—p, = 1, ~pz
—p, ~

&&I, I &&1,

~m
ru= —coo+ +O(I ),

2

case B: p, )p„~p,' —p', ~&1-,
(71)

The possible solutions of these quadratic equations, filter-
ing out the extra solutions that appear through squaring,

COp

20

—20

f (GHz)
FIG. 6. The effective permeability p ~ as a function of frequency f p~o =500 G, p~o = 1750. G, y =2rr(2. 8)

&10 rads '6 '. IM, =p~=1.25.
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P P g , t e power Aow in th 1'e inear medium, is

PaPxxP v
L. 2(kp„„+iy~„,) ~— (74)

VI. TK WAUKS PO%"KR FI.QW

Thee power How I', in the direct'
this case,

e irection of propagation is in

If h is eliminated in favor of h b m
d h d 1 ofh

by

n ence of h in the linear medium
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Then the result for
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If it is assumed that o, & 0, then the electric field com-

The exact evaluation of P can only be done numerical-
ly for p ~ & 0, but, for p z & 0, an approximate analytic
treatment can be carried out that gives rather good re-
sults. We proceed by using Eq. (29b) to eliminate h, in

favor of e in Eq. (73) to give

2

PNL= dz .
ey

2cup O pNL

2
NL 2 nkP =kb,ze~~/ 2ropo pL+ 2 z z earn

N pppL
(78)

5where bz is a suitable interval about the maximum.
At the maximutn of e~, t)e~ /Bz =0 and hence from Eq.

(29a) we have h„=O. If we take the first integral in the

ponent e reaches its maximum value e at the value of z
where the integrand is a maximum. We can therefore
write to a good approximation that
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VII. NUMERICAL RESULTS FOR TE WAVES

A. pv &0

The parameters used here are listed in Table I and the
appropriate p z, which is frequency dependent, is given in
the figure captions. In the Voigt propagation geometry
of Fig. 1, TE waves in the linear limit are controlled by
the eff'ective permeability p v that is defined as

p „+p„,/p„„. Linear surface polaritons can propagate
provided that pz&0. A dominant feature of nonlinear
wave propagation, as has already been shown for TM
waves, is the possibility of wave propagation in regimes
for which there is no linear limit. Accordingly, the fre-
quency region to the left of the resonance in Fig. 6, for
which p~) 0, is also of interest here and will allow non-
linear waves to be sustained above a threshold power.
Since TE waves are associated with both H„and H, mag-
netic field components they will depend upon the
frequency-dependent p„and p components of the per-
meability tensor as expressed through pv.

The power curves shown in Fig. 7 show a power
threshold but the curves now approach infinity both at a
lower cutoff n =Qp~ and as n ~~. The peak of the
self-focused field moves out to infinity for both TE and
TM modes but the distinction between the two modes is
that n has no bound for TE waves, i.e., as the self-focused
field moves out to infinity, n ~~. One of the features to
be looked for here is whether the nonreciprocal behavior,
often associated with magnetic materials, is present. As
can be seen in Fig. 7, this is not very strong here, with
only a slight asymmetry being detectable.

Pv(O
pv & 0 in a frequency range to the right of the singular-

ity in Fig. 6. For these frequencies the interface can sup-

port linear TE surface waves. For JuoHo=500 G and
)uoMo=1750 G, the resonance frequency is f„=3 GHz.
The linear dispersion curves shown in Fig. 8 are well
known, in principle, but have been recalculated here for
ease of reference. They possess several main points of in-
terest. These are (1) defined end or cutoff points, (2)
propagation characteristics to the left (k &0) and to the
right (k &0) that are not symmetrical, and (3) only the
right-hand-propagation dispersion curve having a large
wave-number limit and this tending to the familiar mag-
netostatic limit.

For a sequence of frequencies, labeled (1)—(5), that
cause pv to line in the range —7. 16 pv —16.72 the
variation of the wave index with total power flow is given
in Fig. 9. The curves labeled (1), (2), and (3) lie on both
the k &0 and k &0 branches of Fig. S, while (4) and (5)
lie only on the k (0 branch. The expected nonreciprocal
behavior shows a strong dependence upon power. For a
given frequency, the power flow can be significantly
greater in one direction than in the other. This could
lead to some interesting experimental possibilities involv-
ing nonreciprocal nonlinear power transfer. Figure 10
and 11 show, on an expanded scale, the k &0 power
curves as the nonlinear coefficient a or co (pv) is varied.
Since the nonlinearity is weakened by diminishing a or co,
higher peak values must be reached in both cases to enter
the strongly nonlinear regimes.

The variation of the H, H„E, field components is
shown in the sequence Figs. 12(a), 12(b), and 12(c) with
the nonlinear medium on the right-hand side. Several
values of frequency are selected corresponding to
different positions on the (p~, f) curve.

As a final numerical example, Fig. 13 shows the non-
linearity, defined as a~H~, as a function of z measured
from the interface for pz= —6.716 and several values of
n. The nonlinearity increases in strength as n increases.
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The absolute values of the nonlinearity appear to be
within the reach of experimental observation.

VIII. CONCLUSIONS

The theory of nonlinear TM and TE wave propagating
along the interface between two semi-infinite magnetic
media has been presented. Exact solutions are given for a
certain type of nonlinear magnetic medium that could be
created artificially. ' Since there has been recent experi-
mental progress on artificial enhanced nonlinear nonmag-
netic dielectric media' at microwave frequencies, there is
every reason to expect the magnetic systems, also with an
enhanced nonlinearity, consisting of suspensions of mi-
crospheres, can be created. ' The calculations reported
here, therefore, represent a starting point for a new area
of work in magnetodynamic and magnetostatic wave
propagation.

The power levels required for nonlinear magnetic TM
waves, since they are in the MW/m range, are of course
rather high, and it remains to be seen whether they can
be achieved. For nonlinear TE waves we have p~ &0 so
that the situation is rather different. Since pt, can be
readily adjusted with frequency for the ferromagnetic
substrate, we are actually presenting the first calculations
in which the required power levels to observe strong non-

linearity can be tuned. Hence, provided that suitably
high a material can be found, it is a relatively easy matter
to adjust p~ to reduce the power levels needed to observe
strongly nonlinear waves.

In the parallel activity in nonlinear optics the variation
of the mode index with power is often regarded as imply-

ing the possibility of optical switching. Roughly speak-
ing this is because a single power level can be given by
more than one wave index. Furthermore, it is a general
rule that the negative slopes of the power curves are quite
likely to be unstable. Hence in an experiment, involving
the variation of the input power into a surface-guided
wave with its output power, ' bistability, hysteresis, or
some form of switching can be expected. The single in-
terface calculation reported here represents only a begin-
ning for the theoretical foundations, since a thin-film for-
mat, involving a periodic structure, is likely to be more
attractive experimentally. It is hoped, however, this pa-
per will act as a stimulus for further work in this area.
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