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Hopping conductivity in the extended hard-core square lattice gas
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The hopping conductivity of particles on a square lattice, with infinite nearest-neighbor repulsion,
is calculated by a steady-state approach. Effects of dynamic correlations are taken into account in

the first nontrivial approximation. Static correlation functions needed for the conductivity formula
are computed in the Bethe-Peierls approximation, for concentrations c ~0.32. The charge correla-
tion factor is obtained, in good agreement with Monte Carlo results.

I. INTRODUCTION

Interactions between particles diffusing on a lattice
have been studied through various approaches like the
path-probability method, ' the rate-equation formal-
ism, and Monte Carlo simulations (see Ref. 9 and
references therein). While for some one-dimensional
models the electrical conductivity was exactly calculat-
ed, two-dimensional models are as difficult to deal
with as they are interesting. References 1 and 2 are con-
cerned with the honeycomb lattice, which is a good mod-
el for P-alumina. The square lattice gas of particles in-
teracting with infinite nearest-neighbor (NN) repulsion,
which forbids simultaneous occupation of adjoining sites,
was first studied in 1981 by Murch, ' with Monte Carlo
techniques. He obtained both f„ the tracer correlation
factor, and f, the charge correlation factor, in order to
determine the Haven ratio H =f, /f. A second paper on
the subject was published in 1986 by Chaturvedi, " who
calculated the tracer correlation factor using the
Zwanzig-Mori formalism.

In this paper we consider the same extended hard-core
interaction model on the square lattice. Our purpose is
the analytic calculation of the dc conductivity of the hop-
ping particles, taking into account dynamic correlations.
Thus, we attempt the theoretical determination of the
charge correlation factor defined as the ratio of the con-
ductivities at zero and infinite frequency: '

f =t~ltr(~) .

occupied, respectively. At equilibrium, in the absence of
an external field, translational invariance holds and the
mean value of n, is equal to the concentration of parti-
cles:

(n, )o=c =
A'

(2.1)

The subscript 0 indicates an equilibrium average.
The hard-core interaction limits the values of c to the

interval O~c ~0.5. Actually, Eq. (2. 1) holds only for
concentrations smaller than a critical value
c„=0.37. ' ' For c )c„translational invariance is bro-
ken, so that if the lattice is divided into two disjoint parts
in a checkerboard manner, one of the sublattices is pref-
erentially occupied.

The static correlation functions of this particular mod-
el were discussed in detail by Frobose and Jackie. ' They
have found that the analytical method which is closest to
Monte Carlo results is the Bethe-Peierls approximation
(BPA), which will be used here, in a modified version:
while Frobose and Jackie considered a square cluster
with three sites per side, we shall take a 4X4 square.
This is necessary because the formula for the conductivi-
ty obtained in Sec. III involves correlation functions for
sites situated farther apart than in the 3 X 3 square.

We consider the cluster in Fig. 1. The notations for
static correlation functions will have two indices, the first
representing the number of sites involved and the second
used for numbering. In order to evaluate correlators
such as

In Sec. II the static correlation functions needed later
on are calculated by the Bethe-Peierls approximation,
and compared with the results of Frobose and Jackie. '

In Sec. III a stationary Aow formalism due to Richards'
is used to calculate the conductivity, taking into account
dynamic correlations. A summary and discussions are
presented in Sec. IV.

geo
=

~ "7"&o ~o« 2

g„=( n, n, &o/c',
3

g3p $ n~n7n ]p /p/c

4g4p: & n2nsn7n]p fp/c

(2.2a)

(2.2b)

(2.2c)

(2.2d)

II. STATIC CORRELATIONS

We consider a system of X identical particles on a
square lattice with A equivalent sites. The only interac-
tion present is an extended hard-core one, which forbids
simultaneous occupation of nearest-neighbor sites. The
system is described by the set of occupation numbers
[n, I, n, taking the values 0 or 1 if the site i is empty or

the chemical potential and the sum over states are needed
as functions of concentration. In the BPA the chemical
potential on the boundary of the cluster is different from
that of the bulk, in order to take into account the effect of
those lattice sites not included in the cluster. Symmetry
leads to only three different values of the chemical poten-
tial: p for the bulk, p, for the sides, and pz for the
corners, and the respective fugacities
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z =e~", z1=e ', z2 =ePP1 PP2 (2.3) (n6)p= (n2 )p= (n i )p=c (2.4)

Considering c as a parameter, the z's are determined by
Eq. (2.1}:

The grand canonical partition function for the reduced
lattice reads

Z =(z2+1) (z +4z+I)+8z, (zz+I) (z +3z+1)+4z, [(z2+1) (z +3z+I)+(zz+ I) (2z +10z+5)]

+8z, [(z2+1) (z +4z+2)+2(zz+ 1)(z+1}]+2z,[(z2+1) (z+1) +6(z2+1)(z+1)+1] . (2.5)

Equations (2.4) become

z BlnZ
C =

4 az

z& BlnZ
C =

8 c}zi
(2.6)

l

naturally inclined to believe that by increasing the size of
the cluster all approximate thermodynamic functions will
monotonously approach the exact ones). The advantage,
however, is not the insignificant gain of precision, but the
possibility of calculating higher-order correlators, such
as, say,

z2 QlnZ
C =

4 az2

Equations (2.6) are solved numerically giving results
very close to those obtained by the 3 X 3 BPA, which also
involves three fugacities. We present, for illustration, the
c dependence of the bulk fugacity, obtained by both
methods, in Table I.

The present calculations concern only the disordered
state below c„. If the ordered state was to be taken into
account, one would have to use an adequate BPA, with
broken translational symmetry, which gives c„=0.32, '

lower than the Monte Carlo c„=0.37. For this reason
we limit all calculations of the paper to the interval
0 c ~0.32, the results above c=0.32 being meaningless
in the frame of BPA.

The 4X4 BPA leads to values of the correlation func-
tions which differ from the 3X3 BPA results by only a
slight displacement towards the Monte Carlo ones (one is

gz&
= (n3n6n9n &4) Ic (2.7)

Equation (2.7) must be evaluated by factorization in the
3 X 3 BPA, an additional approximation which is avoided
in the 4X4 BPA. For illustration we give the best factor-
ization estimate of g41.

fa
g 41 g20g30 (2.8)

In Table II numerical values of Eqs. (2.7) and (2.8) are
presented for comparison. Factorization turns out to be
good at small concentration, while at high concentration
significant discrepancies appear.

A drawback of the BPA is that it gives correlation
functions which are not translationally invariant. For in-
stance g4, is topologically equivalent to

4
g42 5 n 3 n 6n 11 n 16 10/C (2.9)

but their values are different, especially at high C. At
c=0.3, g42 takes the value 5.902 which is closer to the
factorization approximation. Though there are no Monte
Carlo data to support the choice between g41 and g42 as a
better estimate of the correlator with the given topology
of sites, we believe that g4, is the best candidate. We base
the assumption on the fact that g4, is more "centered" in
the 4X4 cluster, as it contains no corner site. An analo-
gous situation is that of the two-particle correlators
(n2n&)pic and (nin6)pic out of which the first is
closer to the Monte Carlo one, in the 3 X 3 BPA. '

As we have said, the results for lower-order correlation
functions are essentially those of Ref. 12 and will not be
discussed further.

III. STATIONARY FLOW

10

13 14 15 16

FIG. l. The cluster replacing the lattice in the 4X4 BPA.
The three different chemical potentials are indicated.

We turn now to the dynamics of the model following a
steady-state approach developed by Richards for a one-
dirnensional problem. ' The lattice will be considered an
l Xm =X rectangle periodically repeated to cover the
whole plane, in order to assure the possibility of station-
ary Aow without sources of particles. The sites are la-
beled (ij) with i =1,1 and j = l, m corresponding to the x
and y axis, respectively. The particles, having positive
electrical charge e, can jump to a NN vacant site with
jurnp rate 8'only if all the other three NN's of the vacan-
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TABLE I. The bulk fugacity obtained by two versions of the BPA: a 3 X 3 and a 4X4 cluster. A
very slight difference is seen only at high concentration.

0.1 0.15 0.2 0.25 0.3

3X3 BPA
4X4 BPA

0.17678
0.17678

0.372 38
0.372 37

0.720 13
0.719 87

1 ~ 3334
1 ~ 3303

2.3844
2.3625

cy are empty (Fig. 2).
The average jump rate (for any time-dependent or sta-

tionary probability distribution) thus depends on the
mean occupation of the four sites involved in this pro-
cess. For the jump indicated in Fig. 2, it will be

iJ, l +ij &

Equation (3.2) is written only to first order in E which
is sufficient for the calculation of conductivity. In the fol-
lowing we will systematically discard higher-order terms.

If A=a denotes the area per site, then the charge
current density is given by

=W&ni(1 n;
—

+2&)(1
—n;+i +i)(1—

n; +i i)& . cev

NQ 0 (3.4)

with

W +i = W,i +i)(1+i')

eEa
2kT

(3.2)

(3.3}

(3.1)
A factor 1 n;+—,, is not needed because n, +, =0 in all
configurations with n, =1.

In the presence of an electric field E=Ee„, the
difference in energy between two NN sites in the x direc-
tion is eEa, a being the NN distance. In order to satisfy
detailed balance, the rates for jumps parallel to the field
are modified symmetrically as follows:

where v is the stationary flow mean velocity of the parti-
cles in the x direction. The velocity is calculated as the
difference between the number of jumps to the right and
of those to the left in unit time:

u =a g ( & W,'„„„&—
& W,', , „&) . (3.5)

The correlation functions involved in Eq. (3.5) are
steady-state averages, which are different from equilibri-
um ones. They retain, however, two useful symmetry
properties: they are invariant under translation and un-
der reflection with respect to the x axis. Using this and
the labeling in Fig. 1 Eq. (3.5) becomes

u =aN(( W67 &
—

& W7s6 &)

=aNW[(1+6, )&n6(1 n)(31—ns)(1 n„)—&
—(—1 —b )&n7(1 —n2)(1 —ns)(1 nip) &]—

=aNW(&n3n6n, i &
—

&nzn7nip &)+2aNWE&n6(l n3)(1 ns)(—1 n—» ) &p—
=Vcprr+ V oo (3.6}

V =
& n 6( 1 n3 ) ( 1 ns —)( 1 n»—) & plc . — (3.7)

We see that v„ is proportional to V. It leads to the
infinite-frequency conductivity

In the first term, v,p of the right-hand side of Eq.
(3.6) all dynamic correlation functions but two cancel
through symmetry. In the second term, v „,the average
is taken in the equilibrium ensemble, that is zero order in
E, due to the 6 prefactor, higher precision being
superAuous, as previously remarked.

The vacancy availability factor is defined as'

J~
o'

oo

cev „ep Npe a2 2

0, 2kTA AkT
(3.8)

(3.10)

The first term of Eq. (3.6), u„„„contains all dynamic
effects which make the dc conductivity o lower than o.„.
From the obvious relation

& I23fl6li 11 & n3n6n 11 &p+0(5) (3.9)

it follows that

g= «n3n6n» » = &n3n6n» &
—

&nzn7nip & =0(b ) .

TABLE I. The bulk fugacity obtained by two versions of the BPA: a 3X3 and a 4X4 cluster. A
very slight difference is seen only at high concentration.

3X3 BPA
4X4 BPA

0.1

0.176 78
0.176 78

0.15

0.372 38
0.372 37

0.2

0.720 13
0.719 87

0.25

1.3334
1.3303

0.3

2.3844
2.3625
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(nsn6n], ), in a time-dependent ensemble. It can be de-

creased by particles hopping from sites 3, 6, and 11 to
sites 4, 18, 5, 12, and 15 (Fig. 3} and increased by the re-
verse jumps. This is described by the following rate equa-
tion:

iJ ' l+1J l+gJ d
dt (tl31l61l]] ) (( W3 41l61l]] )t+ ( W3 ]g1]61l]])t

+ & ~6,5n3 11 &1 & ~11,12 3 6 )t

+( w„]snsn6), )+ (3.11)

FIG. 2. A particle hops only if the vacancy has no occupied
NN.

By ((f(n))) we denote the difference between (f(n))
and its symmetric with respect to the y axis.

While no exact calculation for g is possible, a good es-
timation can be derived from the rate equation for time-
dependent g, . In order to write it down, consider

I

+2(( W]g 3 W3 ]g)ngn» ) . (3.12)

An analog equation for (n2n7n, o), is needed to calcu-
late g. Taking the difference between Eq. (3.12) and its
symmetric with respect to the y axis we obtain

where the ellipsis represents terms for reverse jumps. In
the steady-state, the left-hand side of Eq. (3.11) is zero
and symmetry can be used to get

0= ( ( WS 6 ~6 5 }n3 n 11 & +2( ( W4 3 W3 4 )ll 6n 11 &

(5=2(( n6n]]n]g))+2((n4ngn]] )&+'«n31lsll 11 »+2'«n6n9n]41l]7 »+ '«n3n6n9n]4)&

+2((n21]4115nlp »+2((1l31l6n91l ll »+'«Il3n61l 1]1l]9»+2((n31l6n]]1]]41l]7))

+2((n, nsngn»n]4)) +2((nsn6ngn]]n]7 ))+2((n]nsn6ngn]] )) +2((n]nsngn]]n]7 ))

—2 (( n, n 3 n 6n» n» )) + (( n, n 3n 6n 9n» n» )) —2 (( n, n 3 n 6n „n,4n, 7 )) 25(p,

where go is given by

0o=("3"6"]] &o+2(n4ngn]])o &nsnsn]] &o 2& "3"6"gn» )o—2(nsngn9n]4&o 2(n2n4nsn]o&o

(3.13}

+2(nsn6n9tt]] )p+(nsn6n]]n]9)p 2(n4n6n]]n]g)p+4(nsngngn9n]] )p

+2(n31l61lgn91l]4)p (tl]tlstl61l9tl]1)p 2(n]1lstl61l]]n]9)p 2(1l31]61lgtl91l]]n]4)p+(1l]tl31lgtlgt]91]]])p.

(3.14}

17

The dynamic correlations in Eq. (3.13) must be evalu-
ated. For each of them an equation analog to Eq. (3.13)
can be written, yielding an infinite hierarchy that must be
truncated.

Let 5, be the deviation of n; from its equilibriuln value
c. Then, a correlator of, say, four particles, can be writ-
ten as

19 5 6

ar
4

20

(( n, n n, gn ))d= (( ( c +5, )(c +56 )( c +5, )(c + 5d ) ))

=c3y ((5, ))+c'g (&5,5, ))
I J,J

+. y «5, 5,5„»+«5.5,5,5, » .
i, J, k

(3.15)

10
itE'hV «+ 12

11

%e have, by symmetry,

&(5, »=0, (&5,5, )&=0 (3.16)

14 15

FIG. 3. Jumps contributing to the decrease of (n3n6n „),.

so we are left only with three-particle and higher correla-
tors.

The first approximation is to retain only terms of order
3 in 6;. Even so, we are left with the infinite number of
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three-particle correlationn functions.e uations reating r
exce tWe shall cut t is no yh k t by neglecting all of them, ex p g,

for which we have

g= (( &3&P]] )) . (3.17)

Thi is a compromise between yn feasibility and the quest
her r ~

'
h of e uations for t ehi her recision. The hierarc-y q

rs had to be truncated. We chosethird-order correlators a o e
lest way of retaining only one corre a ionthe simp es w

the amount of work.tion which reduuced to a minimum e
ion further, we wouldin the degree of approximation ur er,

, h her h-. "-.1.-"fnsidered, beside g, t e o er
. (3.13). W iti i 1

them ields four coupled equations
articles involved in Eq.

equation for each of them, yie s
1 n theser arameters. It turns out that by so ving eP

value of does no c
e resent here for illustration only a simp i e v

dbTh four parameters are denote ytors were kept. e

Q
30

9

&20
C)
U

P )0
]

I

0.3 0.40.1 0.2
CONCENTRA TION

de endence of four static three-FIG. 4. The concentration depen ence c-
the 4X4 BPA. g30 dominates at ig c.particle correlators in t e

=(&n, n, n„)), a=(&n, n, n„)),
=«n4n6n»)), y=((n6n»n]]])) .

(3.18)

d in the same manner as Eq.The four equations, obtaine~ in
re(3.13), a

5(—a —2P —2y =26((n3n5n„p g3Q 2 npn5n]] Q

—g+10a —2p=2b(2(n2n5n„Q g3Q) — +&n, n, n, ),
2 ( Il 2 Il 9 Il 15 )Q )

(3.19)—a+8P=2b(g3Q —(n3n5n „)p (+ ( Il Il 9 Il ]5 )p

( Il3n91l ]4 )p),

+8y=2b, ((n n n,„) +(n n n„
—(n&n9n]5 )Q

—(n3n9n]4)p) .

g 3 ] ( ll 3 Il 5 Il ] ] )Q /C

3
g32

= (nzn5n» )p/c. , (3.20)

with the right-hand side (rhs) given by
h h o odPA at different concentrations shows t a is

lified versions of the equa-

'
ude hi her than a, , an y.

'
ns (for which the simp ] e vers'

tions are most suitable) a equi i rium
roximate value (i.e., c an soe h a

rhs's of the las
'

i i et three equations are neg igi e
ect to the first rhs. It follows that = y=

th first eq atio [ hi h is Eq.
(3.13) simp] e s1'fi d& hows that the error ma e y

the static values of the
is roughly, 10%.

ddition, let us examine t e s a
'
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4 at c =0.5, while g», g32, and g33proaching the value 4 at c =
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0 1
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0.2 0.3 0.32
CONCEN7 RA TION

I

0.4

~ 13) inindices relative to Eq.
er to obtain the best positioning of sites in t e

the BPA does not give translation-cluster of Sec. I, since t e
al invariant results.

tor of the extended hard-5. The charge correlation factor oFIG. . e
The Monte Carlo results of

h i 1 1

the s uare lattice. e on
Murch are presented along wwith the presen e
tion.



HOPPING CONDUCTIVITY IN THE EXTENDED HARD-CORE. . . 7161

by the 5 decomposition, Eq. (3.13) becomes self-
consistent. We get

2b, go

5 —11c +8c2—c3
(3.21)

The charge correlation factor may now be written as

=1+ =1+ =1-vcorr 0ov„2b,cV cV(5 —llc+8c —c )

(3.22)

IV. SUMMARY AND CONCLUSIONS

We have studied the square lattice gas with infinite NN
repulsions with the main purpose of computing the dc
hopping conductivity and its correlation factor f. This
was done by a stationary flow formalism. The formula
for o involves static as well as dynamic correlation func-
tions.

There are only two dynamic steady-state correlations
in the velocity formula Eq. (3.6). A new type of correla-
tion function was defined, so that g, Eq. (3.10), is the only
dynamic correlator which enters the dc conductivity for-
mula and the correlation factor Eq. (3.22). g was evalu-

go and V are evaluated in the 4X4 BPA and the resulting

f is given in Fig. 5, together with the Monte Carlo results
of Murch. We find fair agreement with the "experiment"
for c ~0.32, although only the first dynamic effect was
taken into account.

ated from the steady-state version of the evolution equa-
tion (3.11) by expressing all dynamic correlation func-
tions in terms of g. In this approximation all other
three-particle correlators vanish, while higher-order ones
are dealt with as in Eq. (3.15), neglecting all products of
5-s other than g. The relative error was roughly estimat-
ed to be less than 0.1, but the final results for the correla-
tion factor indicate that it is in fact of order 0.01.

For the calculation of the static correlation functions
we have chosen the BPA in the version with a 4 X 4 clus-
ter. This is an improvement in calculating higher-order
correlators which in the 3 X 3 BPA would have been eval-
uated by factorization. Let us estimate the error induced
in f by a single correlator for which 3X3 BPA is used.
We consider the four-particle correlator of Eqs. (2.7) and
(2.8). At c =0.3, gz'& is lower than g4& by 0.365. The
effect on go is lowering by 0.365c =0.002 96 which gives
an f higher by 0.0265. The effect of all deviations of the
correlators entering go, at c =0.3, is a value of f higher
by -4% than the Monte Carlo one, while the 4X4 BPA
result is —1% lower.

The final result, Fig. 5, shows good quantitative agree-
ment with Monte Carlo experiments for c 0.32, in spite
of the approximations used. Inclusion of more dynamic
correlators would probably improve the calculated values
of the correlation factor, but not enough to justify the
amount of work required.
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