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Spin-dynamics study of the classical ferromagnetic XYchain

R. W. Gerling and D. P. Landau
Center for Simulational Physics, Uniuersity of Georgia, Athens, Georgia 30602

{Received 24 July 1989)

The time-dependent behavior of the classical, ferromagnetic xy chain in a symmetry-breaking

magnetic field was studied using a very fast, vectorized spin-dynamics method. The equations of
motion were integrated using starting configurations determined by Monte Carlo simulations. By
calculating spin-spin correlation functions and taking space-time Fourier transforms, we determined

S{q,co) for a wide range of fields and temperatures. We identify and measure the characteristics of
single spin-wave peaks and two spin-wave sum peaks, as well as central peaks due to both soliton
and two spin-wave difference processes. These results are discussed in light of existing theory and

experiments.

I. INTRODUCTION

The interest in the study of classical magnetic chains
has been great over the past few years. The reason for
this is twofold: first, there exist beautiful experimental re-
sults' for quasi-one-dimensional systems, and, second,
there are detailed theoretical predictions ' obtained by
mapping an easy-plane spin chain onto the sine-Gordon
model. Extensive investigations using a variety of
methods followed, but the situation was complicated by
differences between physical systems and theoretical
models, quantum corrections, and finite-size effects. "
From the experimental side the main difficulty is the
measuring of the neutron scattering law S (q, to): with the

q vector parallel to one of the three axes only the sum of
the polarizations of the two other axes can be measured.
The decomposition into single polarizations introduces
huge errors. The main interest of these studies was fo-
cused on the soliton-induced central peak. Because the
background in these experiments is largest for co=0, q=O
extra errors are added. In a computer simulation these
problems do not exist: the simulation is an ideal perfect
experiment with all parameters controlled, and all polar-
izations can be measured directly. We have been using
extensive computer simulations' ' to study the classical
ferromagnetic XY chain in a symmetry-breaking magnet-
ic field, because it is the model with the smallest number
of adjustable parameters. By comparing the results of
our simulation to the theoretical predictions, all the prob-
lems just mentioned are bypassed, and we can directly
test the validity of the sine-Gordon theory for classical
systems. The Hamiltonian of the XY'chain is given by

ff„=—J g (S;"S;"+)+SfSf+,) hg S;"—, (1)
i=1 i=1

where the S,- are three-dimensional classical vectors of
unit length, J is the exchange-coupling constant, and
h =gp&H is an external magnetic field in the x direction.
The exchange anisotropy makes it energetical1y favorable
for the spins to lie in the xy plane, and the magnetic field
tends to align the spins parallel to the positive x axis. We

have previously reported results of simulations using less
sophisticated techniques' ' which showed clear spin-
wave peaks in S(q, to) but had insufficient accuracy to
resolve soliton central peaks even though solitons could
be seen in microscopic spin configurations. In Sec. II of
this paper we present details of the simulational method
used, and include a discussion of the quality of the
method. A short overview of the theoretical predictions
is presented in Sec. III. Finally we present the results of
our simulations in Sec. IV, and conclude in Sec. V.

II. METHOD

+J (Sf+ )+Sf ) )e +he„], (2)

where e„, e, and e, are unit vectors in the x, y, and z
directions. The coupled nonlinear equations of motion
were integrated using a newly vectorized high-speed
fourth-order predictor-corrector method and a time in-
tegration interval b =0.01/J. Since the algorithm is not

A standard importance sampling Monte Carlo' tech-
nique was used to generate equilibrium spin
configurations for particular values of T and h with a
chain length of typically X =20000 sites amd a periodic
boundary. Spin updates were performed using a two-
sublattice decomposition and a vectorized algorithm on a
CDC Cyber 205. The first 3000 Monte Carlo steps
(MCS)/site were always discarded to insure that the sys-
tem had reached equilibrium and then ten spin
configurations, each separated by 200 MCS/site, were
chosen as starting configurations for the spin-dynamics
calculation. (We have tested that the correlation times
are sufficiently short and that the separation by 200
MCS/site insures that the configurations were uncorrelat-
ed for our choice of parameters. ) Averaging the results
over many starting configurations is essentially equivalent
to performing an ensemble average at the temperature for
which the Monte Carlo run was carried out.

The equation of motion for each spin in the xy model
is"

S,. =S,. X[J(S;+&+S;"
&
)e„
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self-starting, the first few time steps were integrated using
a fourth-order Runge-Kutta method. Each start
configuration was integrated out to time t,„=100/J.

For each time integration we calculated the time- and
space-dependent spin-spin correlation functions

lV

&s,"(o)s,",„(t)) =—y s,"(o)s,"„(t)—& s,"(o))',
i=1

where r is the distance measured in lattice spacings and
k =x,y, z denotes the polarization. The squared magneti-
zation &S;"(0)) is subtracted to avoid problems in per-
forming the Fourier transformation. The correlation
functions were averaged over the ten starting
configurations and then used as input for the last step of
the program, which performed a double Fourier trans-
form to yield the scattering law Sk(q, co). To reduce
cutoff effects we introduced a Gaussian spatial and tem-
poral resolution function. We first performed the space
Fourier transform

&s( —
q, o)s(q, t)) =

—,'&s;"(0)s;"(t))

max

+ g cos(qr)&S;"(0)S;"+„(t))

changed less than 10 . The limiting feature of the spin-
dynamics simulations was not the time integration rou-
tine but rather the number of start configurations which
were used. Two different runs, each of which included
averages of ten configurations, showed small, but distinct,
differences. More initial states must be used to provide a
better description of the equilibrium distribution of states
before further improvement of the time integration
method can be used to advantage.

In order to measure the intrinsic parameters of the line
shapes in the simulational results for S(q, co) we had to
deconvolute the resolution functions. We therefore fitted
our data with a Gaussian or Lorentzian line shape convo-
luted with our Fourier transformed resolution functions.
This procedure is well established in the analysis of ex-
perimental neutron scattering data, where the resolution
function of the spectrometer has to be taken into ac-
count. ' We fitted the expression

(q' —q)S(q, co) = exp2n5t5r

(a)' —co)
Xexp

25t2

Xp (q', co')dq'den', (6)

X exp[ —
—,
' (r5r ) ], (4) where

X exp[ —
—,
'

( t 5t) ]dt (5)

which was discretized for the actual numerical calcula-
tion. The temporal cutoff parameter 5t was chosen in-
dependently and we found 5t =0.02J to be a good value.
We have extensively tested the algorithm to insure that it
works properly. A simple check such as monitoring the
constants of motion is a necessary, but not sufficient, test.
Results for different time integration intervals 6 were
compared to insure that the correlations did not depend
significantly on h. As a further test we integrated the
equations of motion out to t,„=looiJ with b, =0. loiJ;
we then negated the time increment to 6= —0.01/J and
integrated back to t„„,=0 using the same number of in-
tegration steps. If the algorithm is working correctly, the
starting configuration should be reproduced. The corre-
lation of the starting configuration with the reproduced
starting configuration should be one and any deviation
from one is a sensitive measure of the quality. We find
the deviation from one to be in the range from 3.8 X 10
to 2.7 X 10, and the length of an individual spin

where the sum over r runs typically over r,„=200
neighbors. The spatial cutoff parameter 5r was chosen
carefully to eliminate wiggles due to taking the Fourier
transform of a function with a step (i.e., at r,„)and also
to avoid excessive broadening of any structure. W' e
found 5r=0.015 to be a good compromise. After the
space Fourier transform the time Fourier transform was
determined by the integral

1/2

Sk(q, co) = — 1 cos(cut) & S( —
q, o)S (q, t) )

0

IL r.
p(q', ')=

(q' +a ) (a)' —tel ) +I i

in the case of a Lorentzian line shape and

(7a)

v'in2IG
p (q', cu') =

&7rcr

t 2

exp —ln2
0'~

(7b)

III. THEORY

Excitations in magnetic chains in a field have been
studied by Mikeska who mapped the anisotropic Heisen-
berg chain onto the classical sine-Gordon model in an at-
ternpt to understand the magnetic excitations. The clas-
sical sine-Gordon system is described by the Hamiltonian

+(rnc) t(1 —cos[$(x)]], (8)

where m is the mass and c the characteristic velocity of

in case of a Gaussian line shape. Here I „and o „are the
half-width of the peaks and IL and IG are the intensities
of the peaks; ~ is the inverse correlation length of the
spin-spin correlation function. In (7a) we used a linear-
ized version of the dispersion relation

q ~qo +~slope( q 'qo ) .

In the case of S (q, to) we fitted the sum of a Lorentzian
and a Gaussian line shape (the sum was taken after the
convolution) to the data points.
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the solitons. The integration is along the chain of length
L and a defines the length scale (lattice constant) and the
subscripts denote partial derivatives. This model was
studied extensively including additional correction
terms. The simplest excitations in this system are the fol-
lowing.

(i) Solitons (or antisolitons): localized excitations with
a rest energy 8mc and a width of 2m ', moving rela-
tivistically with a velocity U & c.

(ii) Spin waves: plane-wave solutions with a wave vec-
tor q and a dispersion co(q).

The existence of spin solitons was demonstrated by
directly looking at plots of the phase of the spins in the
xy plane. ' ' In the lowest order these excitations do not
interact and it is possible to calculate the neutron scatter-
ing law S(q, co) in this approximation. Allroth and
Mikeska also calculated higher-order contributions espe-
cially the spin-wave-spin-wave interaction. Summariz-
ing the different results one finds the following contribu-
tions to the scattering law.

(1) S„(q,co): A central non-interacting-soliton peak
S„'(q,co) and the sum and difference two-spin-wave pro-

I

cesses S„'" (q, co) and S„' (q, co), respectively.
(2) S»(q, co): A central non-interacting-soliton peak

S"'(q, co) and a single spin-wave peak S» (q, co).
(3) S,(q, co): The sine-Gordon theory restricts spins to

the xy plane, but on general grounds we expect to see
fluctuations out of plane which at least give rise to a sin-
gle spin-wave peak S, (q, co).

Allroth and Mikeska discussed the different line
shapes within the sine-Gordon approximation of the xy
model. The single spin-wave peak is a simple 5 function

k~T
S» (q, co) =

2
5(co coq )—,

4n(m +q )

where m is the rest mass of the solitons. Due to spin-
wave interactions, the 5 function becomes Lorentzian,
I.e.,

5(co co& )~ r
~ (co —co ) +I

The central soliton peak has a Gaussian line shape

k~TS"'(q,co) = 1—
2m

m +q1—
12m

32

cqvrm ~ m'k& T

1/2
4m co

n exp — f (q),
k, Zc'q' (10)

where the function f (q) is given by
'2

f„(q)=
2m sinh(m. q/2m)

'2

(1 la)

f»(q) = mq

2m cosh(nq/2m)
(1 lb)

n =4m

and n is the density of solitons, which is given by
1/2

m —8m
exp

m.k~ T k~T
(12)

These two line shapes are simple enough so that one can readily fit the numerical data with these predictions. We did
this just using the predicted form for the line shape but not constraining the parameters. The two-spin-wave processes
contribute much more complicated line shapes to the scattering law. The sum process shows a square-root singularity
when co=2coq/z is approached from above:

(cjca T) e(l I

—2~, /2)S„'" (q, co)=
coQ —q/2coQ+q/2 coQ —q/2(Q+q/2)+coQ+q/2(Q —q/2)

and the difference process produces an almost steplike central peak with the step at co =cq:

Sd&F(
(cks T) e(cq —

l col )

g1T coQ —q/2coQ+q/2 coQ —q/2(Q +q/2) —
coQ+ /2(Q

—q/2)

(13a)

(13b)

where

and

1/2
lcol 4m'c'
2c c2q2 —~2

(14)

0 for x&0,
1 for x ~0. (15)

The expressions for these two strange line shapes are val-
id only within the approximation used by Allroth and
Mikeska so it is not possible to improve the agreement
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Allroth and Mikeska do not derive an explicit line shape
of the single spin-wave peak but merely give values for
I sw and Isw

The connection between the sine-Gordon system with
the parameters c and m and the xy spin-system with the
parameters J and h is made by the two relations

FIG. 1. S,(q, co) as a function of m for different values of the
wave vector. The temperature k&T=0. 1J and the magnetic
field h =0.1J. The lines are best fits of Lorentzian line shapes
(convoluted with the Gaussian resolution function) to the data.

I cp=eq .diff (16b)

The HWHM of the single spin-wave peak is given explic-
itly in Ref. 9:

I-sw 4n mc
N

m q N
q

3
1 cq

2&Pm''
(16c)

For the integrated intensities we obtain

32 —8m ~( )
(~ k Tm)'~

kB T m2+q2
X 1— 1—

2m 12m
(17a)

between the prediction and the numerical results by sim-

ply using better dispersion relations co (e.g. , the relation
resulting from the simulation) in Eq. (13).

The different contributions to the central peak in
S(q, co) show characteristically different T and q depen-
dences of the integrated intensity Icp and the half-width
at half maximum (HWHM) I cp. The corresponding for-
mulas can be derived from Eqs. (9) and (10). For the
HWHM we get

' 1/2

+apl cq ln2
CP B

m =+h/J, (18)

IV. RESULTS

The neutron scattering law with polarization along the
chain axis S,(q, co) is expected to show single spin-wave
excitations, and indeed the results of the simulation show
a clear, narrow single peak for each q value. In Fig. 1 we
have plotted the peaks for four different q vectors parallel
to the chain axis for ksT=0. 1J. All data points are
averages over two simulations (each of which themselves
represented averages over ten chains), and the scatter be-
tween different runs provides estimates for the error of
the data points. The solid lines in Fig. 1 are fits to the
data using a Lorentzian line shape convoluted with the
Gaussian "instrumental" resolution function. ' From
the positions of the maxima the dispersion relation was
accurately determined and we could also follow the
softening of the entire dispersion relation with increasing
temperature. The peak for q=o has essentially zero in-
trinsic width and the entire observed width is due to the

where we already used the fact that
~
S

~

= 1. The anisotro-

py of the XY model is larger than the anisotropy of the
easy-plane Heisenberg model thus yielding smaller out-
of-plane fluctuations. Therefore, the agreement between
the sine-Gordon approximation and the XYmodel should
be better than between the sine-Gordon approximation
and the one-dimensional easy-plane Heisenberg system,
which is used to describe CsNiF3. (The XY model corre-
sponds roughly to an easy-plane Heisenberg system with
anisotropy parameter A =J, whereas in CsNiF3
A =0.2J.)
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FIG. 2. S,(q, co) as a function of co for different temperatures kz T as indicated. The wave vector qa =m. /8 and the magnetic field
h =0.1J. The curve is the fitted intensity obtained by convoluting a Lorentzian and the Gaussian resolution function.
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instrumental resolution function. The peaks broaden
with increasing value of q. The uncertainty in the data
points is of the order of the symbol size. At higher tem-
peratures the peaks in S,(q, co) broaden noticeably and
become slightly asymmetric for intermediate q values.
Calculations by Reiter for the easy-plane Heisenberg
system indicate that this asymmetry might have its origin
in a singularity in the three spin-wave density of states.

Figure 2 shows S,(q, co) as a function of co for qa =n /8,
h =0.1J and different temperatures as indicated. The
solid line for kz T=O. 1J shows a best fit with an intrinsic
line shape which is Lorentzian. %ith increasing tempera-
ture the peak position shifts to lower co and the peak
broadens. At the same time the peak becomes asym-
metric and it is impossible to make any descent fit with a
Lorentzian line shape. This peak remains quite visible
even at the highest temperature studied.

The scattering function with the polarization perpen-
dicular to both the chain axis and the magnetic field
S (q, co) is expected to show a purely soliton-induced
central peak in addition to a single-spin-wave peak. In
Fig. 3 we show a typical result for S (q, co) for ka T=0.4J
where the soliton contribution is substantial. The spin-
wave peak is at the frequency co=0.525J. Unlike the
spin-wave peak, which is quite smooth, the central peak
still possesses remnants of the oscillations produced by
the finite time cutoff of the time integration. (Without
the resolution function these oscillations are pro-
nounced. ) We fitted the data with a Gaussian line shape
for the central peak and a Lorentzian for the one-spin-
wave peak (dashed lines in Fig. 3) both of which are reso-
lution broadened. The sum of the two contributions
(solid line in Fig. 3) reproduces the data very well. In
Fig. 4 we show S~(q, co) for qa =m/8, h =0.1J and

sy (q, ~)
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FIG. 3. S~(q, co) as a function of co. The value of the wave
vector qa =m./8. The temperature kz T =0.4J and the magnet-
ic field h =0.1J. The dashed lines are best fits of a resolution
broadened Gaussian central peak and a resolution broadened
Lorentzian line shape to the data. The solid lines is the sum of
the two contributions. Error bars are shown at some represen-
tative points.

FIG. 4. S~(q, co) as a function of co for different temperatures
k&T as indicated. The wave vector qa =m/8 and the magnetic
field h =0.1J. The solid curves are fitted intensities represent-
ing the sum of resolution broadened Gaussian central peaks and
Lorentzian spin-wave peaks.
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dispersion relation. The dispersion for k~T=0.2J and
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(solid curve) and the dispersion of spin waves in the sine-
Gordon system (dashed curve). The spin-dynamics data
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In Fig. 10 we make a direct comparison between our
simulation results and the prediction from Allroth and
Mikeska. To compare our results with the analytical
predictions, we multiplied their formulas with (2~ )'~ to
take into account different conventions for the Fourier
transforms in our Eqs. (4) and (5) and in Eq. (1.13) in Ref.
9. The difference between two theoretical curves is the
use of different dispersion relations: for the solid curve
we used the harmonic approximation result, and for the
dashed curve we used the sine-Gordon result. Both
curves represented intrinsic shapes convoluted with the
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FIG. 7. S„(q,cu) as a function of co for different temperatures
k~ T as indicated. The wave vector qa =m/8 and the magnetic
Geld h =0.1J.

FIG. 8. S„(q,co) as a function of co for different magnetic
fields as indicated. The wave vector qa =m/8 and the tempera-
ture k~ T =0.4J.
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FIG. 9. The dispersion relation co vs q for temperature
k&T=0.2J and magnetic field h =0.1J. The data points are
from the spin-dynamics simulation, the dashed line is the result
for the dispersion from the sine-Gordon model, and the solid
line is a harmonic approximation (k& T =0) for the XYchain.

Gordon model is a continuous one) the singularity is even
more smeared out.

In Fig. 11(a) we show the integrated intensity of the
central soliton peak. The data are for the y polarization
only because the data for the x polarization have quite
large error bars; the decomposition into soliton contribu-
tion and the two-spin-wave difference process is difficult.
Comparing our data with the first-order (dashed line) and
second-order (solid line) approximation (17a) one clearly
sees the need for higher-order theoretical corrections.
Up to k~T =0.5J our points actually agree much better
with the first-order than with the second-order theory.

The behavior of the HWHM given by Eq. (16) has been
extracted from neutron scattering experiments by Steiner
et a/. ' Depending on the main contribution to the cen-
tral peak, the dominant width can either be the soliton
contribution or the two-spin-wave difference process. In
Fig. 7 we can clearly see a change from a dominant two-
spin-wave contribution (kz T=0. 1J and k~ T =0.2J) to a
dominant soliton contribution. Figure 11(b) shows a plot
of the two HWHM as a function of temperature. The y
polarization shows a clear soliton contribution, whereas
the x polarization shows a crossover from a two-spin-
wave process (at low temperatures) to a soliton process
(at higher temperatures). The value for the two-spin-

resulted from the simulation) is shown by an arrow. The
position of this arrow clearly indicates that the incorrect
position of the two theoretical curves stems from the use
of the wrong dispersion relation. Nonetheless the total
qualitative agreement between the theoretical prediction
and the simulation results is reasonable. Due to finite
temperature and a discrete lattice model (the sine-
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FIG. 10. S (q, co) as a function of ~ for temperature
kz T =0.2J, magnetic field h =0.1J, and wave vector qa =~/8.
The data points ("stars") are from the simulation, the solid
curve gives the prediction from the sine-Gordon model, and the
dashed curve uses the dispersion relation from the harmonic ap-
proximation.

FIG. 11. (a) Integrated intensity of the central peak in

S~(q, co) as a function of temperature. The dashed line is only
the leading term from Eq. (17a) whereas the solid line is the full

Eq. (17a). (b) The half-width at half maximum of the central
peak for S„(q,co) ( X ) and S~(q, co) (~) as a function of tempera-
ture. The solid lines are the results for the two-spin-wave
difference process (16b) and for the central soliton peak (16a).
The magnetic field h =0.1Jand the wave vector qa =m/8.
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wave process given in this figure is not actually deter-
mined from Eq. (16b), because cq is the cutoff value and
not the HWHM. We obtained the value of the HWHM
numerically, using not the value of S '

(q, co=0) for the
maximum but the real maximum at ~ & 0. The error bars
were estimated by comparing the fitted curves with the
data points. For k~T=0. 1J we could not estimate a
HWHM for the y polarization, because it is not possible
to separate the soliton peak from the spin-wave peak,
which should occur around r0=0. 3J (see Fig. 4).

Comparing our Fig. 11 with Fig. (13a) of Steiner
et al. , we conclude that the experimental measurements
were made at too high temperature to show the two-
spin-wave process alone; the crossover from pure two-
spin-wave behavior to pure soliton behavior should occur
just below 4.5 K.

In Fig. 12 we show the same quantities as in Fig. 11,
but as a function of magnetic field. (Note the different
abscissas in Fig. 12.) In the upper part only one theoreti-
cal curve is given, because the ratio f„If is close to uni-

ty for h &0.15J. Within the error bars the data follow
the prediction. The HWHM shows clear soliton behavior
although the data points are systematically too low.
From comparison with Fig. 11(b) we see that at
k&T =0.4J, the soliton part already dominates the two-
spin-wave part.

Figure 13 shows the same properties for the y polariza-
tion as a function of wave vector. The measured integrat-
ed intensity is clearly higher as the predicted one. A
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FIG. 13. (a) Integrated intensity of the central peak in

Sy(q, co) as a function of wave vector. (b) The half-width at half
maximum of the central peak for Sy(q, co) as a function of wave
vector. The temperature k&T=0.4J and the magnetic field
h =0.1J. Other parameters as in Fig. 11.
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FIG. 12. (a) Integrated intensity of the central peak in

S„(q,co) (~ ) and Sy(q, co) ( X ) as a function of magnetic field.
(b) The half-width at half maximum of the central peak for
S„(q,~) (~) and Sy(q, co) (X) as a function of magnetic field.
The temperature k& T =0.4J. Other parameters as in Fig. 11.

FIG. 14. (a) Integrated intensity of the spin-wave peak in

Sy ( q, m ) ( X ) and S,( q, co ) (~) as a function of temperature. The
dashed line indicates the leading term in Eq. (17c) and the solid
line is the fu11 Eq. (17c). (b) The half-width at half maximum of
the spin-wave peak for Sy(q, co) (X) and S,(q, co) (~ ) as a func-
tion of temperature. The magnetic field h =0.1J and the wave
vector qa =m/8.
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0.5 1.0

of the z polarization. Then it increases until it almost
"reaches" the theoretical prediction at h =0.25J. For
larger h it lies systematically below the theoretical predic-
tion.

The HWHM does not agree with the theoretical pre-
diction; neither the functional dependence from tempera-
ture or field nor the quantitative values agree. The treat-
ment of spin waves in the sine-Gordon picture is simply
inadequate. The peaks have a much larger width than
predicted. The difference in the HWHM for the two po-
larizations for smail h for Fig. 15(b) has its origin in an
overlap between the central soliton peak and the spin-
wave peak. For h~0 the peak position also goes to-
wards zero.

0 ] qw I) II

0
0 0,5

x Qy

Sz

k~T =0.4 J

h /J &. 0

FIG. 15. (a) Integrated intensity of the spin-wave peak in

S„(q,co) ( X ) and S,(q, co) (~ ) as a function of magnetic field. (b)
The half-width at half maximum of the spin-wave peak for
S~(q, co) ( X ) and S,(q, co) (~ ) as a function of magnetic field.
The temperature k& T =0.4J. Other parameters as in Fig. 14.

statement about the functional dependence with wave
vector cannot be made. The HWHM clearly follows the
predicted linear behavior. It is much easier to measure
the HWHM with some given accuracy then the integrat-
ed intensity.

The integrated intensity and the HWHM of the single-
spin-wave contribution are shown in Fig. 14 as a function
of temperature and in Fig. 15 as a function of magnetic
field. The first surprising fact is a qualitative difference
between the integrated intensity, where the y and z polar-
izations differ substantially, and the HWHM, where both
polarizations are on top of each other. The interaction of
the spin waves with the solitons seems to increase the in-
tensity but does not change the line shape of the single-
spin-wave contribution. Therefore, we see no effect in the
HWHM but a dramatically increased integrated intensity
in the y polarization. (This interaction cannot be seen in
the z polarization. ) This interpretation is supported by
the fact that the effect is maximal for the field-
temperature range where we have the maximum soliton
contribution.

The integrated intensity of the y polarization follows
the theoretical prediction for k~T 0.2J. For higher
temperatures it shows qualitatively similar behavior as
the second-order approximation (solid line), but the quan-
titative differences might come from missing higher-order
corrections. The field dependence of the integrated inten-
sity of the y polarization for zero field is identical to that

V. CONCLUSIONS

Using an ultrafast vectorized program on a CDC
Cyber 205, we have calculated S(q, co) for XY chains in
an external magnetic field along the x axis. We believe
that we have demonstrated that the spin-dynamics
method has been developed to the point that it is a pre-
cise tool to study excitations in spin systems. This ap-
proach can also be used to study spin systems at high
temperatures and is clearly better than other similar
methods.

We compared our results with theoretical predictions
in order to test the theory and we found excellent qualita-
tive agreement with the predicted single-spin-wave, two-
spin-wave, and soliton contributions to S(q, co). The ob-
served quantitative differences between the results from
the simulation and the theoretical predictions show clear-
ly that quantum corrections alone cannot account for the
differences between theory and experiments.

The sine-Gordon mapping ' is an excellent tool to
classify the different contributions of the different excita-
tions in S(q, co). Without it, the interpretation of the re-
sults (from experiments and from simulations) would
have been much more diScult. Nevertheless the quanti-
tative agreement is not satisfactory, and further theoreti-
cal development is needed.

Our results also suggest that experimentally a clear
separation of two-spin-wave and soliton contributions to
the central peak can only be made with the benefit of
lower temperature data. The eventual three-dimensional
ordering places restrictions on the minimum useful tem-
perature, and thus other systems with weaker interchain
coupling will be needed for further experimental pro-
gress.
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