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Kinks in the Frenkel-Kontorova model with long-range interparticle interactions
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We study a nonlocal Frenkel-Kontorova model that describes a one-dimensional chain of atoms
moving in a periodic external potential and repulsing one another according to a long-range law,
e.g., the power law -x ". The investigation is carried out both numerically and analytically in ap-
proximations of a weak or strong bond between atoms. Static characteristics of kinks (topological
solitons) such as the effective mass, shape, and amplitude of the Peierls potential, the interaction en-

ergy of kinks, and the creation energy of kink-antikink pairs are calculated for different (exponential
and power with n=1 and 3) laws of the interparticle interaction and various concentrations of
atoms, i.e., ratio between the external potential period and the average spacing of atoms in the
chain. The anharmonicity of the interaction potential between atoms is shown to result in

differences between kink and antikink parameters, which are proportional to the value of the anhar-
monicity that rises with increasing exponent n of the interaction potential as well as at a changeover
from a complex to a simpler unit cell. It is noted that at a power law of the interparticle repulsion
this law describes also the asymptotics of the kink shape as well as the interaction energy of the
kinks. Because of this, the dependence of, e.g. , the amplitude of the Peierls potential versus the
atom concentration, is similar to the "devil's staircase. " The applicability of the extended Frenkel-
Kontorova model for describing diffusion characteristics of a quasi-one-dimensional layer adsorbed
on a crystal surface is discussed.

I. INTRODUCTION

The study of nonlinear phenomena in layers adsorbed
on crystal surfaces is of a great interest from both funda-
mental and applied viewpoints. ' In some cases ad-
sorbed layers may be treated as quasi-one-dimensional
systems. For example, at adsorption of atoms on steplike
(vicinal) surfaces of semiconductors atoms are predom-
inantly adsorbed along steps where they have a higher
bond energy since surface atoms of the semiconductor
substrate have excessive ("broken") bonds on the step. A
second example refers to adsorption on "furrowed" metal
faces' [such as the (112) face of a bcc crystal], where the
substrate potential in one direction is much less than in a
direction perpendicular to it so that adsorbed atoms (ada-
toms) situated in one "furrow" can be approximately re-
garded as a quasiindependent chain of adatoms.

For studying the nonlinear dynamics of atoms in the
one-dimensional systems the Frenkel-Kontorova (FK)
model, which describes the behavior of a harmonic atom-
ic chain in a periodic external potential, has been success-
fully used (see, e.g., Ref. 4); for the system of adatoms the
periodic potential is the substrate potential. In the long-
wave limit, excitations of the Frenkel-Kontorova model
are described by a nonlinear differential equation, such as
the sine-Gordon (SG) equation (see, e.g., Ref. 5). Note
that quite a number of physical objects allowing a model
description with the aid of the SG equation are known:
dislocations in solids, ' domain walls in magnetic materi-
als (see, e.g., Ref. 7), vortices in long Josephson junc-
tions, charge-density waves in quasi-one-dimen-
sional conductors (see e.g., Ref. 8), etc.

For the SG system, as well as any nonlinear system for
which the density of the potential energy has, at least,
two equivalent vacuum states (i.e., states corresponding
to a minimum of the system energy), there exist solutions
(the so-called kinks) which describe transitions between
the states. For adsystems, a homogeneous vacuum solu-
tion of the SG equation describes a commensurate struc-
ture when all adatoms lie in the minima of the substrate
potential, while a kink- (antikink-) type solution describes
the dynamics of an excessive adatom (adatom vacancy) in
the commensurate structure (see, e.g., Ref. 9). The
motion of such excessive adatoms along the chain corre-
sponds to the motion of kinks, and, therefore, analyzing
the motion of kinks is important in the investigation of
the surface diffusion and drift of adatorns. '

The exactly integrable SG equation has the following
property. Any state of the system can be represented as a
set of noninteracting quasiparticles: "phonons" (linear
excitations), breathers (dynamical solitons), and kinks (to-
pological solitons) (see, e.g. , Ref. 11). Note that mass is
transferred only by motion of kinks.

Within the scope of the SG equation, kinks move freely
and their collisions are elastic. '" For real physical sys-
tems, the account of various disturbances and of a more
complex character of atomic interactions breaks the ex-
act integrability of the initial SG equation, leaving the
possibility for describing the system dynamics in terms of
the same quasiparticles which, however, now interact
with one another. This interaction, which is due to the
departure from a complete integrability, results in the fol-
lowing effects. (a) The Kolmogorov-Sinai entropy be-
comes nonzero, and the Fourier spectrum of excited
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(where 8 is the equilibrium distance between particles and
parameter l characterizes the magnitude of interaction
between adatoms), is assumed for the pair potential of in-
teraction, v (x).

However, in real adsorption systems interaction be-
tween particles is more complicated (see Ref. 23). In par-
ticular, if adatoms are charged, then the Coulomb repul-
sion u (x)=e /x (Ref. 24) (e is the adatomic charge} acts
between them at distances x (a * (where a ' is the screen-
ing radius, which is equal to the Debye screening radius
for a semiconductor substrate and to the inverse
Thomas-Fermi momentum for a metallic substrate). For
a semiconductor substrate the value of a * is large
enough, and the law v (x)-x ' is the main one. For ad-
sorption on a metallic substrate the value of screening ra-
dius a' is of the order of the lattice constant; at distances
x ~ a ' the interaction of adatoms has of a dipole-dipole
character: u (x)=2p„ /x, ' p„being the dipole mo-
ment of an adatom. If adatoms are neutral, then the
overlap of their electronic shells results in a "direct" in-
teraction, exponentially decreasing with distance: u(x)
-exp( —Px). More complex interaction laws are possi-
ble as well, such as for the so-called "indirect" mecha-
nism of adatom interaction.

An exponential interaction between the nearest atoms
is described by the potential

v(x)= Voexp[ —P[( x/)a—1]I, (1.2)

states of the system becomes continuous (see, e.g. , Ref.
12). However, there remain peaks in this spectrum
caused by the dynamics of breathers and kinks. (b)
Corrections to characteristics of quasi-particles (their
shape, effective mass, excitation energy, etc.} appear. (c)
Motion of the quasiparticles is accompanied by a loss of
their kinetic energy, with the result that a moving kink is
slowed down right up to a full stop and the amplitude of
breather oscillations decreases right up to its vanishing
(see, e.g., Ref. 5). (d) Collisions of the quasiparticles be-
come inelastic. This effect is especially substantial for the
collision of a kink and an antikink, since it may result in
the formation of their coupled breatherlike state with a
subsequent vanishing of the latter (see, e.g. , Refs. 13—15).

The following perturbations are most important for ad-
systems.

(1) Discreteness of adatomic chain In. the discrete
atomic chain a free motion of a kink corresponding to a
continuum SG equation is substituted with its motion in
a periodic Peierls potential whose amplitude e. is always
less than the amplitude of the substrate potential, c~.
Parameters of a kink moving in the Peierls potential
change periodically, which results in radiation of pho-
nons (radiation braking of the kink motion), followed by
its pinning. These effects were first described in Ref. 16,
and then studied in detail both numerically' ' and
analytically by the perturbation theory.

(2) Long range -character of adatom interactions The.
standard Frenkel-Kontorova model only takes into ac-
count interactions of nearest neighbors; the harmonic ap-
proximation,

where Vo is the energy of interaction of atoms occupying
nearest adsorption sites; a, is the period of the substrate
potential, and parameter P characterizes the anharmoni-

city of the potential. In the absence of a substrate poten-
tial (e„=0), interaction (1.2) results in the well-known

equation for the Toda chain where only dynamical soli-
tons can exist. The combination of the Toda-chain equa-
tion and the SG equation is a nonintegrable system; static
characteristics of such a system were studied in Refs. 28
and 29. The anharmonicity of interaction (1.2) breaks the
kink-antikink symmetry of the SG equation; the
difference between kink and antikink parameters is deter-
mined by the value of the parameter P.

A long-range interaction between adatoms, e.g. , of type

u (x)= Vo/~x /a, ~", (1.3)

(1—r) [1—c os(2m. x/ a, )]
u, (x)=-,'e„

1+r +2r cos(2+x/a, )
(1.4)

where ~r~ (1. At r =0 the potential u, (x) has a
sinusoidal shape, at r & 0, a shape of broad wells separat-
ed by narrow barriers, and at r (0, a shape of deep nar-
row wells separated by broad gently sloping barriers (see
Fig. 1). the parameter r of this potential is related to fre-
quency coo of oscillations of an isolated adatom at the
minimum of the substrate potential:

r =(1—rr)/(1+re),

a.:rvo(a, /2rr)(2m—„/e „)'
(1.5)

where m& is the adatom mass. The potential U, (x) is
produced by the interaction of an adatom with substrate
atoms and can, in principle, be calculated from the first
principles. However, it is more reliable to determine
parameter r directly from experimental data with the
help of the equation (1.5) using the measured values of
c„,the activation energy for diffusion of an isolated ada-
tom, ' and ~0, the frequency of adatom oscillations paral-
lel to the surface. Estimates for, e.g., a H/W adsystem

where n is an integer (n ) 1) and Vo is the energy of
repulsion of adatoms occupying adsorption sites ( Vv )0),
leads to nonlocal perturbations in the SG equation. The
Frenkel-Kontorova model with interaction (1.3) at n =1
was studied numerically in Ref. 30, where height c. of
the Peierls potential for some particular cases was found.
If the substrate potential is high (e„~co ), then the FK
model reduces to a one-dimensional long-range Ising
model, first studied in Ref. 31 (see, also, Ref. 32). The
ground state of the latter system at temperature T =0 is
described by the so-called "devil's staircase": for every
rational coverage of the substrate with adatoms, ez=p/q
(p and q are integers), there exists a commensurate struc-
ture of adatoms; when the coverage e increases, the
structures replace one another through an infinite se-
quence of phase transitions (see also Ref. 9).

(3) Disturbance of sinusoidal shape of substrate periodic
potential. A convenient expression for the substrate po-
tential v, (x), well describing a real adsystern situation,
was suggested in Ref. 13:



7120 O. M. BRAUN, YU. S. KIVSHAR, AND I. I. ZEI.ENSKAYA 41

tions in Ref. 13, the height of the Peierls potential rises
drastically at rWO. An approximate dependence e~(r)
was derived analytically in Ref. 36, at r )0,

0.3

-0.3

~p &r (1+v'r )-exp ml
E [s~] 1+r

and at r (0,

(1.8a)

FIG. 1. Substrate potential U, (x) at different values of the pa-

rameter r.

msG

tanh '[(ll —co I)' ], r )0,
(ll ~tl)~~2 tan '[( 1 —cool)' ], r &0 .X '

(1.7)

The m/mso ratio as a function of the parameter r is
shown in Fig. 2. Thirdly, as shown by numerical calcula-

0 -0.5 0.5

FIG. 2. EfFective kink mass as function on parameter r deter-
mining the shape of the substrate potential [according to Eq.
(1.3) from Ref. 13].

(hydrogen atoms adsorbed on a tungsten surface), yield
r = —0.3."

A departure of a shape of potential U, (x) from a
sinusoidal one results, first of all, in a change of the kink
form. ' The form of a kink is described by shifts of the
atoms from the minima of the substrate potential, u, j
being the number of the atom, or by the function u (x),
x =ja, in the continuum approximation (see Sec. IV).
The asymptotics of the function u (x } have the form for a
kink with a size d,

I u (x)—u (x =+ ao )
I
=(4/coo)exp[ —

( lxl /d)coo],

x ~+~, (1.6)

so that lul) Iuso for r &0 and lul & Iusol for r &0, at
lxl )&d. A change in the asymptotics should result in a
change in the interaction between kinks (see Sec. VI).
The function u„(x), which is proportional to the density
of excess adatoms, becomes more "triangular" (as com-
pared with the solution of the SG equation) for the case
of r )0 (coo & 1), and more "rectangular" for the case of
r &0 (coo& 1) (see Ref. 13). Secondly, the kink mass also
changes

v'
I
r

I i I
r

I-cos 2nl, , exp 2ml, , (1.8b)

It is interesting that in the case of r (0, at some values of
parameter I, the function s (I} has local minima. It
should also be noted that inelastic effects at collisions of
kinks were studied in Refs. 15 and 14.

(4) Interaction between nearest adatomic chains which
form a quasi-one-dimensional layer of adatoms. The ex-
istence of interaction between the chains results in in-
teraction between kinks in neighbor chains; for a weak lo-
cal interaction this effect was studied in Ref. 37. The in-
teraction of chains completely changes the phase diagram
of the adsystem: for a one-dimensional chain at TAO a
long-range order in a system is impossible, but at the ex-
istence of even a weak interaction between the chains a
structure with a long-range order can exist, and a "melt-
ing" (an "order-disorder" phase transition) of such a
two-dimensional structure will proceed through an inter-
mediate phase with a quasi-long-range order. Note that a
"solitonic" diffusion of adatoms in the case of a strong at-
traction between neighboring chains was dealt with in
Refs. 38 and 10.

The present paper aims to investigate the static charac-
teristics of kinks in a one-dimensional discrete chain of
atoms interacting according to short-range, i.e., exponen-
tial (1.2), or long-range [e.g. , power (1.3)] laws and placed
into a substrate periodic potential (1.4) at arbitrary con-
centration eo of adatoms. In Sec. II of this paper we de-
scribe the Frenkel-Kontorova model with a long-range
interaction between atoms and give definitions of the
quantities characterizing a kink (effective mass, potential
energy, and height of the Peierls potential, energy of in-

teraction between kinks, and energy of a kink-antikink
pair creation). Section III presents the procedure of nu-

merical calculations and the results of calculating the
kink characteristics depending on the magnitude of in-
teraction between adatoms, both for the case of interac-
tion of only the nearest neighbors and for a long-range
(Coulomb and dipole) interaction of atotns at different
coverages eo=p/q with a simple or a complex unit cell.
We show that a departure from a standard FK model
caused by an anharmonicity of the interaction between
adatoms leads to the difference in antikink and kink pa-
rameters, the difference between the parameters decreas-
ing both with increasing integers p and q, determining the
unit cell, and with decreasing exponent n for a power po-
tential of interaction (1.3). In this section we also report
a study of the effect of the form of the substrate periodic
relief (1.4} on the kink characteristics. The next section
(Sec. IV) presents the explanation of the dependences de-
rived by a numerical calculation and gives analytical ex-
pressions for the kink characteristics in the weak cou-
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pling limit ( Vo « E „) and in the long-wave limit

( Vo »s „)for the case of a short-range potential of ada-
tom interaction. In the case of a long-range adatom in-
teraction, the motion equation in the continuum approxi-
mation reduces to an integro-differential equation, which
is derived in Sec. V. This equation makes it possible to
find the asymptotics of the kink shape at x ~+~ and to
determine the law of the kink interaction. This law,
which for the power potential of interaction between ada-
toms is as well a power one, is examined in more detail in
Sec. VI. In this section we present also the results of cal-
culation of the dependences of kink parameters on the
adatom concentration 8 at a constant value of atom in-
teraction parameter Vo, and show that these dependences
at a long-range mechanism of adatom interaction are
similar to the "devil's staircase. " In Sec. VII we
discusses the limitations of the model as well as the possi-
bility of using the Langevin equation to describe the kink
motion at a surface diffusion of adsorbates. Finally, the
last section (Sec. VIII) presents the conclusions and
discusses possible further generalizations of the studied
model.

II. MODEL

We will use a Frenkel-Kontorova-type model with a
Hamiltonian

(2.1)

K=—'m
2 A

k

Xk

dt
(2.2)

V=X.U, (xk)+T X [U(xk+k

+U(xk Xk —k')1 (2.3)

where xk is the position of the kth adatom. The quantity
E in (2.1) is the kinetic energy of the system, while the
quantity V describes the potential energy of adatom in-
teraction with the substrate (1.4), as well as the energy of
a pairwise interaction of type of (1.2) or (1.3) of adatoms
between themselves. As a vacuum state we take a com-
mensurate structure of adatoms, characterized by cover-
age 80=@/q (p, q are integers) and having a period
a =qa„and a unit cell contains p adatoms so that an
average distance between them is a ~

=a /p =a, /80.
Coordinates of adatoms in the commensurate structure
can be represented as

~(0)—~(0) g +Jak (ij) i (2.4)

where j =0,+1, . . . corresponds to the numbers of unit
cells, and i =1, . . . ,p, numerates atoms in the cell. The
values of 6, should be found from the condition of the
minimum of vacuum-state energy Eo, determined by the
expression

(b)

FIG. 3. Structure of the kink (a) and antikink (c) on the back-
ground of commensurate structure (b) for the coverage parame-
ter 60= 5. A solid arrow shows the kink coordinate before, and

a dashed arrow, after displacement of indicated particle to the
right.

Eo = g v, (b; )+—,
' g [U(xk+k —xk ')

k k'&1

(0)
~k +k +k

such that

(2.6)

QI J+Q)JQQOag
i=1

(2.7)

Let us consider now an adiabatically slow kink motion.
To extract kink coordinate X, we will use the method
proposed in Refs. 39 and 21. Quantities u, can be
represented as u;, =f;(ja —X), and therefore, accurate
to within an additive constant, we can define the kink
coordinate as

X =q g u„+const.
k

(2.8)

We will select the additive constant so that the point
X =0 corresponds to the minimum of the kink potential
energy, which is given by

It is obvious that b, ; =0 for a simple unit cell (p =1).
We define a kink (antikink) with a topological charge

cr =+1 (0 = —1) as the minimally possible contraction
(extension) of the commensurate structure when in
infinity, i.e., for k~+~, the arrangement of adatoms
relative to the minima of the substrate potential coincides
with their arrangement in the vacuum state. Owing to
boundary conditions, such excitations are topologically
stable. For coverage eo=p the kink structure is trivial
(an excess adatom corresponds to a kink, and a vacancy,
to an antikink), but at arbitrary coverage 8o=p/q with

q%1 it is more complex. As an example, Fig. 3(a) [3(c)]
shows a kink (antikink) on the background of a com-
mensurate structure with coverage 80= —', [Fig. 3(b)].
The arrow in Fig. 3(a) [3(c)] indicates an atom, whose dis-
placement to the right in the nearest minimum of the
substrate potential results in a displacement of the kink
to the right (antikink, to the left) by structure period a.
Similarly, a displacement to the right of the indicated
atom in the commensurate structure [Fig. 3(b)] results in
the creation of an antikink-kink pair in the system. Note
that, as compared with the initial commensurate struc-
ture, a kink contains a /q excess adatoms.

The kink shape is conveniently characterized by quan-
tities
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E(X)= g Ua(xk )+
2 g [V(xk+k xk )+U (xk xk k )] Eo (2.9)

Periodic function E(X)=E (X)—E (0) describes the
Peierls potential for the kink motion; it has the period a
and the amplitude c. . In addition, by analogy with ex-
pression (1.4) it is convenient to introduce quantity r
characterizing the shape of the Peierls potential.

%'hen the kink moves along the chain, then
dxk/dt =(Bxk /re)(dX/dt), and the system's kinetic en-

ergy (2.2) takes the form '

2
dXK =

—,'m (2. 10)

where the effective mass of the kink is

m =—m „g( r) uk /BX)
k

(2.11)

Since the kink contains an excess number of adatoms, in-
teraction between kinks at the long-range law (1.3) of in-
teraction between adatoms should as well be of the long-
range character:

U iat (x ) a ]+2 Vo /I x /a I" (2.12)

Vo = Vo/q (2.15)

Subtracting the trivial interaction energy (2.12), it is con-
venient to determine the energy of a kink lattice per a
kink as

E (Q)=E(0)—E „, , (2.16)

where the summation over k in (2.9) and (2.5) should be

where x is the distance between kinks. It is obvious that
for a simple unit cell (q =1), Vo= Vo. In the case of a
Coulomb interaction of atoms in a chain (n =1) the rela-
tion between parameters Vo and Vo can be derived from
the following simple consideration (the general case is
dealt with in Sec. V). For a commensurate lattice of
kinks separated by distance x =Qa the kink interaction
energy per a kink is

r

Vo/Q . (2.13)
j=l

However, the same lattice of kinks can be considered as a
system of excess atoms separated by the distance
x'=qx =qQa:—q Qa, . According to (1.3), the energy of
interaction of excess atoms per an atom is

E„',=—,
' 2g j ' Vo/(q Q). (2.14)

j=l

Taking into account that one excess atom corresponds to
q kinks, we obtain from the condition qE „,=E,'„',

limited to atoms occupying a length Qa. At Q~~ we
obtain with the use of (2.16) the energy of creation of a
pair of kink-antikink s, separated by an infinite distance,
in the initial commensurate structure:

epair
= (2.17)

It will be convenient to use further a system of units
where m„=1, a, =2m, and c.„=2. Thus, the proposed
model has the following independent parameters: (1)
concentration of initial coverage Bo=p/q, on whose
background the motion of kinks is studied; (2) amplitude
Vo and law [exponential or power (with n =1 or 3)] of in-

teraction between adatoms; (3) when studying interaction
between kinks, quantity Q, which determines distance x
between kinks (x =2nqQ); a.nd (4) parameter r, which
characterizes the shape of the substrate periodic poten-
tial.

III. CALCULATION PROCEDURE AND RESULTS

+k+N +k (3.1)

on the chain ends. The N and M values should be select-
ed so that a chain with the length 2~M contains one kink
on the background of a commensurate structure
Bo=p/q. To attain this, the N and M values should
satisfy the integer equation

qN=pM+0 . (3.2)

The obtained commensurate structure of kinks is charac-
terized by the average coverage

B=N/M =Bo+o /(Mq), (3.3)

and the distance between kinks is equal to 2m.M, so that
Q =M/q. The selection of N in the numerical calcula-
tions was governed by a limited computer time and
amounted to N ~ 20.

Adiabatic characteristics of the described system were
calculated with the use of a computer program whose
kernel was the solution of the equations of motion, fol-
lowing from Hamiltonian (2.1):

In numerical calculations, instead of the consideration
of the motion of an isolated kink in an infinite chain on
the background of some commensurate structure of ada-
toms with coverage Bo, it is more convenient to consider
a simultaneous motion of an infinite periodic structure of
kinks (the so-called knoidal wave). Let the period of the
commensurate structure of kinks be 2aM. Then for cal-
culations it is sufficient to place a chain with finite num-
ber N of atoms into a periodic substrate potential with M
minima and to impose periodic boundary conditions

d xk N dXk
+Ua(xk )+ g [V (xk xk —k') U xk+k' xk )]+ 7

—0 r
dt k'=1 dt

(3.4)
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where k =1, . . . , N, and U'(x)=du(x)/dx. Equa-
tion (3.4) also incorporates the friction force F„
= —

gm dxk /dt, which acts as a damping of the atom
motion. The number of nearest neighbors, N', interac-
tion with which should be taken into account, is selected
so that the calculation results do not change at a further
increase of the N* value; in fact, for the used calculation
parameters, N'-2N. The procedure of compute simula-
tion can be described by the following stages.

(a) As the initial state we take the values

x"""'=2~k/e .k (3.5)

In cases when the initial state (3.5) results in a "sticking"
of the system in a metastable state, the condition (3.5) is
substituted by xl(,'""'=2m k /6+ rr/N.

(b) The motion equations (3.4) with the initial condi-
tions (3.5) are being solved during some time t, needed
for the system to "stop" in the ground state, correspond-
ing to the minimum of the potential energy (2.16). The
value of t is determined so that at t ~ t the condition

N 1/2

g (Axl, ) (e
k=1

N

E&=MBo g u(ja) .
j=1

(3.6)

tern state after the displacement of the atom j„is topo-
logically equivalent to the initial state. The configuration
shown in Fig. 4(a) generally corresponds to the ground
state of the system (see, however, later the results for the
case of r (0); in this case, b x =2(m —uj' "').

st

(d) The j„atom is displaced by the distance —,b,x in

some steps h (h =b,x/20). Motion equations (3.4) are
solved again at every step, but with the di6'erence that the
coordinate of the j„atom is now artificially kept un-

changed. At every step of displacement of the j„atom
the following characteristics were also calculated: the
kink coordinate x (2.8}, the efFective mass m (2.11), and
the kink potential energy E (2.9};i.e., the characteristics
of the system at a coordinated motion of the entire lattice
of kinks as a whole are determined. Note that the sum-
mation over k in formulas (2.8), (2.9), and (2.11) is carried
out within the range of 1 to N, and in formula (2.5), of 1

to No =Meo, so that, e.g., for a simple unit cell (p = 1),

is fulfilled, where 4xk is the change of coordinates in
some time region ht (b,t= 10m) and the e value deter-
mines the calculation accuracy (it was selected as
e=5X10 ). Note than in the case of V&&))E„ the cal-
culations must be conducted with a higher accuracy than
in the opposite case of Vo &&c.„.Naturally, the time t
depends on the friction coeScient g; the shortest comput-
er calculation time is achieved at g =coo.

(c) The atom j„ is found whose displacement by some
distance bx (on the condition that the remaining N —1

atoms adiabatically follow the atom) results in a kink dis-
placement by period a (see Figs. 3 and 4), so that the sys-

(a)

kink antikink

(a)

(b)

(d)

FIG. 4. Adiabatic motion of kink and antikink on the back-
ground of the commensurate structure with eo= 1. (a)—(e) illus-
trate successive displacements of a kink at artificial motion of
the j„particle (indicated by the arrow). (a) and (e) are initial
and final (after kink shift by the period a =2m. ) ground states of
the system; (c) is the unstable configuration corresponding to
the maximum of the kink potential energy.

10

FIG. 5. The Peierls potential height c~ (a) and the effective
mass m (b) for kink and antikink as functions of the parameter I

for the case of interaction of nearest neighbors only (N* = 1) for
exponential law (1.2) at various values of the anharmonicity pa-
rameter P: P~O (harmonic potential), P=&12, and @=&30.
(b) shows effective masses calculated at the minimum X=0
(solid lines) as well as at the maximum X =~ (dash-dotted line)
of the Peierls potential. In addition, dashed lines show calcula-
tions for weak-bond [(4.1), (4.3), and (4.11)—(4.13)] and continu-
um [(4.35) and (4.36)] approximations. Numerical simulation
parameters: 80=1, M =20, r =0.
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The calculation results are thus as follows: (1) the
Peierls potential c,(X) and its characterizing parameters

and r; (2) effective kink mass m (X); (3) pair creation
energy E~„„' and (4) kink interaction energy, determined
from dependence E (Q) [see (2.16)].

It should be emphasized that the parameters calculated
with the described computer technique correspond to the
kink motion on the background of a commensurate struc-
ture with coverage eo and not with e. The distortion of
kink characteristics due to interaction between kinks in
the periodic structure of kinks at the selected calculation
parameters (M~20) is negligible (see Sec. VI). Note,
however, that the proposed method for calculating the
kink mass m and parameter r of the Peierls potential is
not rigorous because these characteristics are found from
trajectory of the kink state which connects the saddle
and the minimum points of energy surface (2.3),
E = V(x„x2, . . . , xz), along a line whose points are
determined from the solution of a set of N —1 algebraic
equations:

&pair

10

FIG. 7. Kink-antikink pair creation energy as a function of
the parameter 1 for the Coulomb (n = 1) mechanism of interac-
tion at 80=1 and for the dipole (n =3) mechanism with cover-
ages 60=1 (solid line) and eo= —,

' (dash-dotted line). Dashed

lines show results of calculations in the weak-bond approxima-
tion. Calculation parameters are the same as for Figs. 6 and 8.

Vi, V=O, kWj, , (3 7) tion of a set of N differential equations

For a rigorous calculation of the above-specified parame-
ters, a "saddle" trajectory should be calculated which
connects the saddle and the minimum points along the
line of most rapid descent and is determined by the solu-

dXk
k V. (3.&)

The principal results of the numerical simulations are
shown in Figs. 5—11, where dependences of the preceding

(a)

(a)

1.0 1,0

qm
2

QS—

0
10 0.1

FIG. 6. Dependences c~(1) (a) and m (1) (b) for a kink and an-

tikink for Coulomb and dipole mechanisms of particle interac-
tion. Dash-dotted lines in (b) correspond to the effective mass at
X =a. Dashed lines in (a) show results of calculations in the
weak-bond approximation. Calculation parameters: eo I,
M =20, r =0, N =1.7N.

FIG. 8. Peierls potential height (a) and effective mass at
X =0 (b) for a kink and antikink as functions of parameter 1 for
the dipole interaction of adatoms at various coverages co=1/q
(q =2, 3, 5, and 10). Curves are enumerated by index q.
Dashed lines designate the weak-bond approximation. (b)
shows dependences for q m to reduce m (1) curves to the same
scale.
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kink characteristics on the magnitude of interaction be-
tween adatoms are presented. For convenience, the
dependences are presented as functions of parameter I, in-
troduced by analogy with the SG equation:

(a)

I =m[v "(a„)]'i (3.9)

so that for the exponential potential of adatom interac-
tion, (1.2), we have

l =(P/2)Vo exp[ —(P/2)(a„/a, —1)],
and for the power law (1.3),

I =—'eo + [Von(n+1)]i
2

(3.10)

(3.11)
1.0

Note also that a logarithmic scale on the abscissa axis is
used in Figs. 5-11.

The present study investigates only the case of a repul-
sive interaction of atoms in a chain, when the function
v (x) and the atomic interaction forces decrease monoton-
ically with the distance between atoms. The latter breaks
the symmetry between a kink and an antikink, inherent
in the classical FK model with a harmonic interaction
potential (1.1). Namely, effective interaction forces for a
kink (in a region of a local contraction) should exceed
those for an antikink (in the region of a local extension of
an atomic chain). Because of this, at the same value of
parameter Vo (or I), a kink, as compared with an an-

tikink, should be characterized by lower values of the
effective mass and Peierls potential height. These qualita-

(a)

Tn
as= 0.3

0.1 10

FIG. 10. Dependences c~(1) (a) and m(1) (b) at coverage
80=1 (M =20, N =1.7N) at the dipole interaction of atoms
for the nonsinusoidal substrate potential (1.4) with parameter
r =+0.3. For comparison, dash-dotted lines show kink charac-
teristics for the sinusoidal potential (r =0). The dashed lines
show results of the weak-bond approximation.

tive considerations are substantiated by Fig. 5 presenting
the results of calculation of dependences ez(l) and m (I)
for the FK model when interaction only between nearest
atoms is taken into account, but at the same time, in con-
trast to the classical FK model, the interaction follows
exponential law (1.2). It is seen that the splitting of
curves in Fig. 5 is growing with the value of P.

Figure 6 shows dependences e (l) and m(l) for the

2

o.s =

03=

0.1 l

0.1

FIG. 9. Dependences c (1) (a) and m (1) (b) for dipole interac-
tion of atoms for the complex unit cell with coverage Oo=p/5
(p =2, 3, 4, and 6). Curves are enumerated with index p; other
designations are similar to Figs. 7 and 8.

FIG. 11. Parameter r~, characterizing the shape of kink po-
tential relief c(X), as a function of parameter 1 for various
shapes of substrate potential relief, r =+0.3 (n =3), 60=1,
M =20, N*=1.7N).
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long-range mechanisms [Coulomb (n = 1) and dipole
( n = 3 ) ] of adatom interaction. As can be seen, the
dependences are qualitatively similar to those in Fig. 5.
The difference between the parameters c and m for a
kink and an antikink at the same value of the parameter 1

for the dipole interaction, is much greater than for the
Coulomb one, which is accounted for by a higher value of
the anharmonicity of the dipole potential (see Sec. IV).
No peculiar qualitative features are exhibited also by
dependences e~„„(l)(Fig. 7).

Figure 8 shows dependences of kink and antikink pa-
rameters for a dipole interaction of atoms at different
coverages 8O= 1/q (q =2, 3, 5, and 10) having a simple
unit cell. As seen, the difference between kink and an-
tikink parameters decreases with increasing q (right down
to zero at q ~ ~ ); this behavior can be explained by a
corresponding decrease in the value of anharmonicity of
the atomic interaction potential (see Sec. IV).

The next figure (Fig. 9) presents the same kink prame-
ters for complex unit cells with coverage eo=p/q, p ) 1.
It is seen that as the number of atoms in the unit cell, p,
increases, the separation of dependences E (1) and m (I),
corresponding to a kink and an antikink, diminishes so
that, e.g. , for 80=—', (p =6) it becomes negligible. Such a
behavior of plots in Fig. 9 is due to that, as will be shown
in Sec. IV, interaction between adjacent unit cells rather
than between adjacent atoms in one cell is responsible for
the splitting of kink and antikink characteristics. There-
fore, e.g. , while the difference between kink and antikink
parameters for coverage eo = 1 is due to an anharmonici-
ty of interaction potential at a characteristic distance
a, =2m. , the difference for coverage co=1.2 is caused by
an anharmonicity of interaction at distance 5a, =10m,
which obviously is much weaker.

Finally, Figs. 10 and 11 present the results of calcula-
tions for the case of a nonsinusoidal substrate potential
(1.4). It is, first of all, seen from Fig. 10(b) that, as for the
standard FK model' (see Fig. 2), a departure of the sub-
strate potential shape from a sinusoidal one changes the
effective kink mass: it increases at r (0 and decreases at
r )0. Naturally, potential energy of the kink E(X)
changes as well. Function E(X) has generally a minimum
for the arrangement of atoms, shown in Fig. 4(a), and a
maximum for the configuration in Fig. 4(c). We will con-
ventionally call this situation the case of N (i.e., normal)
relief. For the N relief it is convenient to approximate
roughly the function e(X) by the Peyrard-Remoissenet
function (1.4) (Ref. 13) with some parameters E and r .
It is obvious that r ~ r at Vo ~0; calculations demon-
strate (see Fig. 11) that as the Vo value increases, parame-
ter r approaches zero. The case of r )0 always corre-
sponds to the N relief; in this case the c. values for both a
kink and an antikink exceed corresponding c. values for
a sinusoidal relief (r =0) [see Fig. 10(a)]. The case of
r &0, when the potential v, (x) has the shape of narrow
wells separated by broad gently sloping barriers, is more
difficult. Apart from the N relief, an I (i.e., inverse) relief,
where the configuration of Fig. 4(a) corresponds to a
maximum, and of Fig. 4(c), to a minimum of function
c(X), can also occur at certain parameter values in this

case. As the energy of interaction of atoms in the chain
increases, the cases of the N and the I relief become alter-
nating [see Fig. 10(a)], and dependence E~(1), similarly to
the standard FK model, ' ' becomes nonmonotonic. In
addition, between N- and I-relief regions there exist inter-
mediate regions [in Fig. 10(a} the X- and I-relief regions
are marked by letters N and 1] where the two
configurations of Figs. 4(a) and 4(c) correspond to local
maxima of function e(X), while its minimum occurs at
some intermediate configuration [Fig. 4(b)] with
0 & X & n. ' Dependence e (1) in the intermediate re-
gions has pronounced local minima [see Fig. 10(a)]. The
described features of function e (I) may substantially
affect dynamical characteristics of the FK model (see Sec.
VII).

IV. LOCAL MODEL

Firstly, we consider the cases ~here it suSces to take
into account interaction of nearest neighboring atoms
only.

A. Weak-bond approximation

It is most simple to consider a case where interaction
between atoms is small ( Vo «c,„),so that all atoms are
situated near corresponding minima of the substrate po-
tential. For instance, at a coverage eo(1, when not
more than one atom is at one adsorption well, small dis-
placements of atoms form their positions corresponding
to minima of the potential v, (x) can be neglected in the
first approximation with respect to Vo. Then for the
motion of kinks or antikinks on the background of the
coverage 80=p/q lying within the interval (1+s)
&8O&s ' [including a kink on the background of the

coverage of (1+s) ' and an antikink on the background
of s '], where s=int(8O ') is an integer, from simple
geometric considerations (see Figs. 3 and 4) we obtain
(a, =2m }:

=2+2u (2ms +~} v(2ms) —u—(2~s +2m. ) . (4.1)

It is important to note that in the same approximation
the effective kink mass m (2.11), the kink-antikink pair
creation energy c, „„and the difference of Peierls poten-
tial amplitudes for a kink and an antikink, 5e~, depend
only on the size of the unit cell a:

m =1/q (4.2)

e,;,=[v(a —2n) —u(a)]+[v(a+2') u(a)], (4—.3)

6E =[2v(a +sr) —v(a) —u(a +2')]
—[2u(a —~)—u(a —2~) —u(a)] . (4.4)

For a harmonic potential of interaction between atoms
it follows from (4.3) and (4.4) (Ref. 18) that for an arbi-
trary adatom concentration 60,

Ep,.„-—412 cp
——2 —12 5cp 0 (4.5)

At a weak anharmonicity of the adatom interaction po-
tential, P « 1, where



41 KINKS IN THE FRENKEL-KONTOROVA MODEL WITH LONG-. . . 7127

P—:—a, v"'(a)/v "(a), (4.6) with

expanding the potential v (x) into a Taylor series, we ob-
tain from (4.3) and (4.4)

and

E „.,=E(0) (4.12)

2
~pair I (4.7)

E =2 E—(0) . (4.13)
5e =@pl (4.8)

cvox+v'(2x) =0 . (4.9)

For the power-law potential (1.3), it follows from (4.9}
that

where p—:v "(a)/v "(a„)and 1 =m[v "(a„)]'c according
to the definition (3.9). For a simple unit cell p= 1, while
for a complex one p decreases rapidly with increasing
number p of atoms in the unit cell:

p =exp[ —(P/eo)(p —1)]

for the exponential (1.2) and p=p '"+ ' for the power-
law (1.3) potential. Hence, dependence of the Peierls po-
tential amplitude on the coverage 80 is similar to the
"devil's staircase" (see Ref. 32 and Sec. VI): it exhibits
jumps of 5e in size at each rational coverage 80=p/q.
Note that for the power-law potential (1.3), the para-
menter P=(n +2)/q describing the anharmonicity of the
potential diminishes with decreasing of the coverage
e,= 1/q.

The case of a coverage 80& 1 is somewhat more com-
plex. Thus, in the ground state, for a kink on the back-
ground of 80=1 two atoms with coordinates x& and x2
are situated in one well of the substrate potential (see Fig.
4} and their coordinates are x, 2=+x, where the value
x &(1 is determined from the solution of the linearized
equation of motion:

It is obvious that in the first approximation the ampli-
tude of the Peierls potential is constant for kinks and an-
tikinks on the background of any coverage 80 within a
range of 1(80&—,'.

The limit of applicability of the weak-bond approxima-
tion can be determined with the help of Figs. 5—10, where
corresponding approximate dependences are plotted by
dashed lines; the limit amounts to 1(0.2 for kinks and
I (2 for antikinks.

B. Continuum approximation

Let us now consider the case where interaction of ada-
toms along a chain is strong as compared with the sub-
strate potential ( Vo ))e„). Relative displacements of
adatoms of the chain are then small [u„-=(ul+|—uj )/
a ((1] so that the continuum approximation can be
used.

If interaction v(x) between adatoms decreases rapidly
with the distance x at x )a [e.g. , according to the ex-
ponential law (1.2) with P»1], then it suffices to take
into account interaction only between the nearest neigh-
bors. For a simple unit cell (p =1), when b, =0, equa-
tions of motion

d2
u +sinu +v'(a+uj —

uj &)
—v'(a+u~+, —uj)=0

dt

(4.14)

x =m[(2nVD)/(2ncoo) ]' '"+ ' .

so that the ground-state energy is

2 V
n+

E (0)= 1+—(mcvo)
2 2

" 0

(2ncoo)

(4.10)

(4.11)
v'(a +u) =v'(a)+ v "(a)u + —,

' v"'(a)u

we obtain from (4.14) [in general case v'"(a)%0],

(4.15)

follow from the Hamiltonian (2.1). Expanding the poten-
tial v(x) into a Taylor series,

d . „v'"(a)
u +sin(u ) —v "(a)(u +, —2ul+ui, ) 1+ „(u~+1—u &) =0 . (4.16)

Converting to a continuous variable j—+x =ja, u, ~u (x),

u, +, —u, =2au„(x),

u +, —2u, +u, , =a u„„(x)+—,'a u„„„(x),
we obtain

(4.17)

(4.18)

u«+sinu —d u„„ 1+ „u„+(a /12)u„„„„2 av"'(a)
v "(a) =0, (4.19}

where

d =a[v "(a}]'" (4.20)

I

the previously introduced parameter 1 =m[v "(a„)]' for
the coverage 80= 1/q by

determines the kink "width. " Note that d is related to d =a (I/7r)=2lq . (4.21)
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Using a substitution E'„,'= 16(d/a) = 16(l jm ) . (4.28)

x =xd, u (x)=u(x ),
we obtain the equation in a canonical form:

(4.22) At small a and h, the solution of Eq. (4.23) can be ob-
tained with the aid of the perturbation theory (see, e.g. ,
Ref. 40):

u«+sinu —u [1—au ]—hu „~=0, (4.23) u(x ) =uso+u«+u/,

u = (4a/3 coshz )tan '(sinhz),

(4.29)

(4.30)

a = —[aU"'(a)]/[du "(a)]=//21 (4.24)

where the following designations are introduced [see also
(4.6)]: I

(z —3 tanhz) .
coshz

(4.31)

and

h =g /12d =7/ /12I (4.25)

uso(x )=4 tan 'exp( —crz), z =x —X/d . (4.26)

This solution describes an excitation which is character-
ized by the effective mass

m so =8/ad =2/( n q I), (4.27)

and corresponds to the following kink-antikink pair
creation energy:

The parameter h characterizes the effect of discreteness
of the chain on the dynamics of the FK model; the term
-h exists also in the case of harmonic interaction poten-
tial u(x) (1.1). The parameter a describes a weak depar-
ture of the potential v (x) from the harmonic form (1.1).

If a=0 and h =0, then the static kink-type solution of
Eq. (4.23) has the well-known form (see, e.g. , Ref. 5):

A simple analysis shows that discreteness effects de-
scribed by the parameter h (h & 0) result in a kink nar-
rowing since d~d, s=d(1 —h/2); later we will neglect
this effect. The anharmonicity of interaction between
adatoms (i.e., the term -a) violates the symmetry be-
tween a kink and an antikink since, according to (4.30),
the correction u is independent of 0.. This means that
the effective kink width changes by an amount of
&ra(nd/3), i.e., at a&0 the effective width of the kink
(cr =+1) increases, and of the antikink (o = —1), de-
creases. This leads to the corresponding difference in
other parameters characterizing the kink and antikink.

Substituting the function

u, =u [(mjl)[j —(X/a)]j (4.32)

into formulas (2.9), (2.11), and (2.17) and using, similarly
to Ref. 21, the Poisson summation rule, we obtain, ap-
proximately,

e „,= g Q I(1—cosu )+ —,'(I jm) (u +, —u ) [1—(al/3n)(u +~
—u )]I

cr= —1 j

[so] 4a 2

pair 1 (4.33)

m (X)=m +—,'(b, m)cos(X/q), (4.34)

m =
—,'mso f "dx[u„(x)] =mso 1 ——era (4.35)

+ oo

b m =
—,
' m so f dx [u„(x)] cos(2lx )

4msGl

sinh(n I)
16acr n(41 +1) +If + dz

&(
.

h )
.

(2l )
3 4 cosh(m. l) — cosh2z

=8 mso — n(m+2)l le ", I~. ce .
ao —vrl

3
(4.36)

e(X)=f dX = fdX g u„u„„„„(l—au„)= —,'eicos(X/q),dE
12dl'

(4.37)

+ oo

dx u„u„„„„[1—au„]sin(2lx )P 6I2

1+ = —36(n.l) exp( —n.l) .8 (~l) 1

3 sinh(m. l)
(4.38)



41 KINKS IN THE FRENKEL-KONTOROVA MODEL WITH LONG-. . . 7129

Figure 5 presents a comparison of the results of numer-
ical simulations for the case where only the nearest neigh-
bors interact according to exponential law (1.2) with ap-
proximate expressions (4.34}—(4.38}. As can be seen, at
IR5 the continuum approximation agrees fairly well
with the numerical results. Note that for the power-law
potential (1.3) at a coverage co= 1/q the parameters d
and a are

n (n +1)Vo

q"
a=(n+2)/d . (4.40)

Hence, for the fixed parameter I, the anharmonicity pa-
rameter a (and, therefore, the difference between antikink
and kink characteristics) descreases with both decreasing
exponent n and increasing unit cell size q, which is
confirmed by numerical calculation results (see Sec. III}.

As distinct from the case of a simple unit cell, the case
of p ~ 2 is essentially more complicated. For example, at

p =2 the continuum approximation leads to the so-called
double SG equation (see details in Appendix A and Ref.
41}. For example, to calculate the values of sz„, and 5ez
in this case the interaction between p nearest neighbors
should be taken into account as minimum.

Taking into account the interaction of all atoms in the
l

Thus, with identical parameters of the system, because of
the anharmonicity of interaction potential, the kink is
characterized by a greater (as against the antikink)
effective width [see (4.30)], and hence by lower values of
the Peierls potential and effective mass, the correspond-
ing difference being proportional to the anharmonicity
parameter a; e.g., for the mass,

b, m =m (cr = —1)—m (o'=+ I) =msGam/3 . (4.39)
P

V. NON-LOCAL MODEL

When not only the nearest neighbors interact with one
another, but the potential v (x) remains short range (e.g. ,
exponential), the equations of motion in the continuum
limit reduce again to a SG-type local equation with the
kink parameter (p =1)

1l2

d ~d,&=a g j v "(ja)
j=1

(5 1)

However, for a long-range interaction potential, such
as a power-law one (1.3), the continuum limit results in
an integro-differential equation (see Ref. 44). To derive
the equation for the case of a simple unit cell (eo= 1/q),
we use a continuous variable j ~y =ja, g~~ Jdy/a
Next, we change the variable: y ~x =y + u (y), so that
approximately,

dx =[1+u (y)]dy =[1+u,(x)]dy,

dy =[1—u„(x)]dx .

Then the adatom interaction energy takes the form

(5.2)

chain (not only between the neighboring ones) for the ex-
ponential law (1.2) leads to the local SG equation (4.23)
also. However, as it is shown in Appendix B with the
help of the method of Refs. 42 and 43, the parameters of
this equation are modified:

d ~d, s.=d (1+S+S/J)' (1—S) )d

and

a~a,s=a(d/d, tr) (a,
where J—= (d /2m ) (1—S) ' and S:—exp( —P).

H;„,= —,
' g u(x —x')~ —,

' f f [1—u, (x)][1—u„(x')]u(x —x') .
dx dx'

j+J
(5.3)

Discarding insignificant constant terms, we obtain

Hl~t=2 2 Q~ X Qz~X V X X
dx dx

a

P X dX =or!q .

(5.4)
For a local potential of atomic interactions,

(5.6)

Expression (5.4) has a simple physical meaning, since the
value

u (x)=a5(x)d2, (5.7)

p(x)= —u (x)/a (5.5)

is the density of the excess (with respect to the initial
commensurate structure) adatoms, so that

expression (5.4) takes the form corresponding to the SG
equation. For the nonlocal power-law potential (1.3) the
integral (5.4) diverges at x —x'~0, and, therefore, the
integration should be cut off at some distance a *:

Hint= 2 Qx X Q~ X+X V X
8X GfX

a a
T

/

+~ ~ X * V X ~ X+X +

(5.8a)

Gf
—,
' f [u„(x}]d + —,

' Vo(2m)" f u„(x)f, [u (x +x')+u„(x —x')] .
a a a' a (x')"

Introducing the dimensionless variables by the substitution x =xd, we obtain the nonlocal Hamiltonian

(5.8b)
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H = —fdx —[u, (x)] +[1—cosu(x)]+ —,'[u„(x)] + —,'Au„(x) f, dx'(x') "[u„(x+x')+u„(x—x')] . ,
a /d

I

(5.9)

where

Vp a
(2~)2qn+2

' n+1

(5.10)

l

proximation. To find the kink-type static solution, the
solution of the equation of motion (5.13) at u«=0 with

asymptotics

u (x ~+ 00 )
—u (x ~ —~ ) = 2n o—

If the potential u(x) were short-range, then, without the
second term in equation (5.8b}, the expression for the en-

ergy would take the form of the corresponding expression
of the SG system, for which, according to (4.20),

d = Van (n +1)/q" . (5.11)

We use this relation to reduce the quantity of indepen-
dent variables and express the parameter Vp of the poten-
tial (1.3) in terms of the parameter d. As a result,

A =a" '/n(n+1), a=a/d =m/I . (5.12)

It is also natural to take a'=a; and the Hamiltonian
(5.9) will be a function of only two parameters, a and n.

The motion equation corresponding to the Hamiltoni-
an (5.9}is

u„—u „+sinu

~x X +X +lynxa

(5.13)

which describes the dynamics of a chain with a nonlocal
interaction having an amplitude A in the continuum ap-

is to be determined. It is readily understood that such a
solution does always exist, but its asymptotic, which is
determined by the last term of (5.13), substantially diff'ers

from that of the SG kink and is a power-law one. Indeed,
linearizing the equation (5.13) near the kink "tail"
u = u ( ~x

~

~~ ) and integrating it by parts, we obtain ap-
proximately (see also Ref. 44),

(5.14)

To calculate the other characteristics of the kink in the
nonlocal model, its shape should be numerically deter-
mined first.

If the system contains two kinks having topological
charges 0

&
and o2 and separated by some long distance

xu (xo~ ~ ), then in the zero approximation the solution
of equation (5.13) can be represented as a superposition of
two SG kinks (4.26):

u(x, t)=uso(x —
—,'xo(t))+u so(X +'xu(t)) . (5.15)

Within the framework of the adiabatic perturbation
theory the dependence of the relative coordinate xp on
the time t is given by the following equations:

Xp
=U

du + dz dx' sinh(z+x') sinh(z —x')
0' )0'2 c4 +

cosh(z+xo) «(x')" cosh (z+x') cosh (z —x') (5.16)

u;„,(x ) =(2n ) A o,o2/x o . (5.18)

Returning to dimensional variables (x =xd, u;„,=—u;„, /
a ), we obtain that the kink interaction is in the zero ap-
proximation described by expression (2.12) with

V =V /q"+ (5.19)

which at n = 1 coincides with previously derived relation
(2.15}. The next corrections to the law (2.12), caused by a
power-law character of the shape of the kink "tails"
(5.14), are as well power-law ones (see the next section).

The equation of motion (5.17) at o, = —o 2 can be used
for approximately describing the behavior of a large-

At xp ~ ~ this system leads to the equation

d Xp
=(2m') n Ao~o2/xo+' = —Bu;„,(xo)/Bxo, (5.17)

dt2

from which it follows that

I

amplitude breather. The first integral of equation (5.17)
is trivial:

2

dXp
eb& + u t(xo ) =const

dt
(5.20)

(5.21)

where x,„ is the amplitude of the breather oscillations:

where ~Eb, ~
is the energy of coupling of the kink-antikink

pair in the breather (Eb, (0). The breather oscillation
period T and its frequency co are determined by the fol-
lowing expressions:

dX 1
—n —n )1/2

g —1/2( ( 1+n /2)
nX max 7
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x,„=[(217)A/~sb ~]' "-rv

From equations (5.21}and (5.22} it follows that

~

—(C ro)2" /(" +2)j(4+A )2/("+2)
~br

(5.22)

(5.23)

It should be remembered that relations x,„—~lnru~ and

~ eb, ~

-ro hold in the local FK model, which formally cor-
responds to the limit n ~ Oo for the nonlocal FK model.

05

VI. INTERACTION OF KINKS.
RKNORMALIZATION 2 4

v';„,'(x) = Vo/~x/a~", Vo = Vo/q"+ (6.1)

Expression (6.1), however, does not take into account
that kinks are "soft" (deformable} quasiparticles. The
mutual influence of kinks on one another changes their
shapes and leads to the contribution to the system ener-

gy, which can be interpreted as an additional interaction
v;„,(x) between kinks. It is obvious that at long distances
the behavior of this interaction u;„,(x) will be governed
by the asymptotics of the kink shape:

It was shown earlier [see (2.12} and (5.19)] that for a
long-range interaction between adatoms with the power
law (1.3), interaction of kinks should also be described by
the similar law,

suit of their pair interaction:

&E (Q)=E (Q) —E (00)=—,
' g' v;„,(jaQ) .
J= 00

(6.6)

The calculation results are presented in Fig. 13. As can

FIG. 12. The ratio A/Aso [Aso =32(l jn.}]and the parame-
ter y which determines, according to (6.4), kink interaction in
the FK model, as functions of parameter l. The numerical data
are taken from Ref. 18.

v;„,(x)—u„(x) (6.2)

[it will be recalled that u„(x) is proportional to the densi-

ty of "excess" adatoms, see (5.5)]. For example, for the
SG equation it was derived in Ref. 45 that

u „, '(x)= exp( —x/d) .
32l

(6.3)
10

From the kink asymptotics (1.6) for a nonsinusoidal po-
tential of the substrate it follows that vjgt P v jan)

' at r )0,
and for r &0, v;„,

The effect of chain discreteness on the interaction be-
tween kinks for the standard FK model was numerically
studied in Ref. 18, where the exponential law of kink in-
teraction

10

10

10

v;'„", '(x) = A exp( —yx ld) (6.4)
15 20

was shown to be valid at x ~ 3a and at any values of the
parameter l, although the coeScients 3 and y at I » 5 de-
pend on 1 (see Fig. 12); in particular, at 1~0, A (1)=41 .

Using relation (6.2), it is easy to predict the change in
the kink interaction asymptotics in the case of a short-
range interaction of atoms because of anharmonicity of
the interaction potential (see Sec. IV) and departure of
the substrate potential relief shape from the sinusoidal
shape (see Sec. I}. For the long-range interaction poten-
tial (1.3) the relation (6.2) and asymptotics (5.14) predict
the following dependence:

-10
0

(b)

v,„,(x}-x '"+" . (6.5)

For a numerical study of the function u;„,(x), the ener-

gy (2.16) of a kink lattice per one kink should be calculat-
ed. The change in the kink energy, hE (Q), with the dis-
tance between kinks, x =Qa, can be interpreted as the re-

FIG. 13. The interaction energy of kinks as a function of the
distance between them atomic for the dipole (n =3) (a) and the
Coulomb (n =1) (b) mechanisms of atomic interaction in the
chain. Results for the kink indicated by crosses, and for the an-
tikink, by circles. Calculation parameters: I =+/2, co=1,
r =0.
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be seen, within the studied range of variation of the dis-

tance x, interaction of kinks at a dipole interaction poten-
tial (n =3) is governed by the law bEO (Q)-Q, which
agrees with the predicted expression (6.5). For the
Coulomb potential (n =1), the calculation for the short-
range region results in the dependence bE (q)
——exp( —yQ) which resembles the law (6.4) for the SG
equation, but differs from it both by the sign and by nu-
merical coefficients. In the long-range region (at Q ~ 15),
where reaching the asymptotics b,E —Q can be expect-
ed, numerical calculations could not be conducted due to
the restriction on the chain length (N -20) caused by the
limited computer time.

It is obvious that interaction between kinks, changing
the kink shape, also changes its characteristics (the
effective mass, the amplitude of the Peierls potential, etc.)

for a simultaneous motion of the kink lattice. However,
the calculation results demonstrate that the changes are
small and can be fully neglected for distances Q R 3-5.

The latter fact makes it possible to interpret complex
structures of quasi-one-dimensional adsorbed layers with
the help of a "renormalization" procedure. Namely,
suppose we needed to find characteristics of a kink on the
background of some complex structure with a coverage
8,=p, /q, and an interaction Vo (so that parameter
R = Vo/e „=Vo/2), when near the coverage 8i there ex-
ists a simpler structure with a coverage 8p pp/q, &8,.
With fixed 80 and R, we first find from corresponding
formulas or graphs (see Figs. 6-11 and Sec. IV) the
effective kink mass m' ' and Peierls energy cp '. Then, in

accordance with (3.3), we treat the adatom structure with
the coverage 8& as a kink lattice on the background of
the structure with the coverage eo:

subject to the "renormalization:" r ~rp ~ ~rp
(mI

p p
Numerical calculations accompanied by the "renor-

malization" procedure allow us to obtain the dependence
of the amplitude of the Peierls potential e on the adatom
concentration 8 at a constant parameter Vo of the power
law of adatom interaction. The results of the c calcula-
tion for the dipole interaction law (n =3) at various
values of the parameter Vo are presented in Fig. 14. As
can be seen, the function ez(8) undergoes jumps at every
rational coverage 8. The curve 8(e } is similar to the
devil's staircase3 (see also Sec. IV}. From the results of
the numerical calculation (Sec. III} as well as of an ap-
proximate analysis (Sec. IV), it follows that the jumps
have the maximum amplitude at I —= 1, where, according
to (3.11),

1 = ,' [n (—n +1)V 8"+ ]'

The relative value of a jump decreases with both increas-
ing period of the structure q and increasing number p of
atoms in the unit cell.

The value of e coincides with the diffusion activation
energy (see Sec. VII), and, therefore, the devil's staircase
should be directly observed in diffusion experiments.

« 0 ~ ~ Ot ~ ti t«I«l«NQ

~ I~1~ 0~ 1 \ ~ ~ 0 ~ ~ ~ ~ ~I ~ ~ ~ I~ 04 ~ P OO«
/

Le«ouse og
~ ~ ~I~ Ore ~ Io«a ~ ~ ~ ~ ~ ee ~/ I ~ 0 ~ 0««««

p -".l
I

~ ~

~ t ~«L

~ ~ \ ~ 1

Po 1 1 +1Po+
q, q. 'Mq. q, +M ' (6.7}

for which the distance between kinks is

Ma, =Qa =Qqoa, . (6.8)

m =m' 'm'" e =e (e' '/2)(E"'/2)
p A p P (6.9)

When needed, the "renormalization" procedure can be
repeated by the required number of times. It is, however,
clear that the procedure provides an adequate accuracy
only at great enough values of Q (i.e., at 8& —80 «80),
when the corrections U;„,(x) to the kink interaction law
(6.1) can be neglected. Note also that at a nonsinusoidal
shape of the substrate potential, the parameter r is also

Thus, we obtain a commensurate lattice of quasiparticles
whose masses are m' ', characterized by a coverage
80=1/Q and placed into a periodic potential with an

amplitude e' ' and a period a =qa„ interaction between
the quasiparticles being determined by the law (6.1) with
the parameter Vo= Vo/qo+ . Next, with given values of
80 and R—:Vo/s' ', we find once again the kink ("super-
kink") parameters m"' and e~". Returning to the initial
units, we obtain that the kink motion on the background
of the structure with the coverage e, has the following
parameters:

0 4 ~ I I

Laky
I I I oeos~ ~

~ ~ «««e ao~ ~ os«o ~ ~ rq
/
BH0 ~OW F««O ~ ~ 0 ~ 0~0

~«tt+
~ 4«o othe o«ey ~00000«1~ C «I «0 « ~ ~ ~~ ~

I4.~ ~ oeg -L...
tb)

I

qm
05

'1
~t«

~ t ~ r«o

«««og "L.. ~ t «OIW

.R

&o765& T 3

.-. R=G)

e

FIG. 14. Peierls energy c~ (a) and the value mq (b) as func-
tions of coverage 6 for dipole interaction of atoms (n =3) at
various values of the parameter R:—Vo/c„(R =0.1, 1, 10, and
100).
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G (x) -exp( —x /L) . (6.10)

By analogy with the one-dimensional Ising model (see,
e.g., Ref. 47), the correlation length L can be determined
as the average distance between kinks and antikinks in
the given structure:

L =a, /8 „„, 8~„,= —exp( —s~„„/T),
1

pair (6.11)

so that

L (8, T)=2~q exp[ s~„,(8 ) /T] . (6.12)

For simple structures (8=1/q), in accordance with
(4.28) and (3.11), s~„,-l -8'+"~, so that the correlation
length decreases with decreasing concentration e. The
results obtained in the framework of the weak bond and
the continuum approximations (Sec. IV) demonstrate that
s „„for complex structures (p )2) is much less than for
simple ones; due to this, the short-range order in complex
structures gets destroyed at lower temperatures.

It is obvious that as long as for a given structure the
kink's width is less than the correlation length
[d(8) «L (8;T)], a jump of the function s~(8) is ap-
proximately temperature independent and equal to the
corresponding jump at T=O. When the temperature is
increased above T, (8), determined from the condition

d(8)=L(8 T, ), (6.13)

the amplitude of the jump starts decreasing right up to its
disappearance. The temperature T, (8) may be interpret-
ed as a "melting" temperature of the structure with cov-
erage e. Thus, the devil's staircase will smoothen with
increasing temperature since only jumps at the coverages
corresponding to simple commensurate structures (8=1,
—,', etc. ) will "survive. "

It is clear that a similar structure is also exhibited by
the dependence q m (8) [see Fig. 14(b)].

VII. ON DIFFUSION IN ONE-DIMENSIONAL
ADSYSTEMS

However, at the system temperature TWO, the long-
range order in a one-dimensional chain is impossible, and
the correlation function

G(i —j)=&u, u, &
—&u, &&u, &

decreases exponentially:

When the system parameters change, c. and mq change
"in step" (see Figs. 5, 6, 8, 9, and 14), and, therefore, ai

should in this case change insigni6cantly near the value
of co —1.

P
The above-calculated kink characteristics correspond

to its adiabatic (i.e., infinitely slow) motion. Naturally, at
a kink motion with a nonzero velocity the characteristics
may some~hat di6'er from the calculated ones. In addi-
tion, as pointed out in the Introduction, a departure from
an exact integrability results in radiative losses of the ki-
netic energy of the kink at its motion; the latter e6'ect can
be approximately characterized by some "internal" fric-
tion coefficient g in Refs. 5 and 19—21.

The model considered in the present paper ignored the
important fact that the external periodic potential for
adatoms is formed by substrate atoms which are not sta-
tionary. The account of this fact leads to three conse-
quences. Firstly, substrate atoms can shift from their
equilibrium positions and "adapt" themselves to adatoms
("polaronic" effect). Secondly, oscillations of substrate
atoms at TWO result in "smoothening" of the substrate
potential (the Debye-Wailer effect). Note that these two
e6'ects lead to a renormalization of the system parameters
c.„and r and should be automatically taken into account
at their determination from experimental data (see Sec. I).
Thirdly, interaction between moving adatoms and sub-
strate atoms gives rise to an energy exchange between
them and hence to an additional mechanism of energy
loss ("external" friction) at a kink motion. Performing
the operation mqgk" „ for both sides of the equa-
tion of motion (3.4) and taking into account the definition
(2.8) of the kink coordinate X, one will readily see that
the coefficient of "external" friction for the kink motion
coincides with the coefficient of friction for an individual
adatom. The calculation of the rate of the energy ex-
change at oscillations of single adatoms with some fre-
quency coo yields the following values: '

g,„-10
at oscillations of light (as compared with the substrate
atom mass) and g,„&coo at motions of heavy adatoms.
The estimates of Ref. 37 indicate that it is the "external"
friction mechanism which is the main one for adsystems.

It would be natural to expect that with the account of
expressions (2.10) and (2.9) for the kinetic and the poten-
tial energy of the kink and also with allowance for fric-
tion forces (rt=g;„+rt,„) the kink motion at a nonzero
substrate temperature ( TWO) will be adequately de-
scribed be the I.angevin equation:

Thus, a kink in the considered system can be approxi-
mately treated as a quasiparticle of mass m, having the
coordinate X and placed into the e6'ective periodic poten-
tial

m +mr) +Bc(X)/BX=F(t),dX dX
dt

&F(t)F(0) & =2rtmT6(t) .

(7.3a)

(7.3b)

(1 r) [1—c—os(2vrX/a)]
E(X)= —,'s [1+r +2rzc so(2' X/a)]

(7.1)

This assumption is con5rmed by numerical experiments'
conducted by the molecular dynamics method. It follows
from (7.3) that for times t )g

' the kink motion should
be dift'usive with a dift'usion coefficient:

P P
1 —r

1+r 2~q2
(7.2)

small oscillations of the kink (X «a) near potential relief
minima being characterized by the frequency

1/2
D =Doexp( s /T), Do =K—ob—(7.4)

where at temperatures below "melting" temperature,
T & T,(8) [see Eq. (6.13)], the kink free path length b in
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Kp -—copcup /2n. g at g ~ co',

where

1+r
cop = [E /(2mq )]'~z .

P

(7.5)

It is interesting that for rarefied structures with 8=1/q
at a weak enough friction, rl %cod, it follows from (7.4)
that

Dp
—27TH g 8P (7.6)

i.e., both the diffusion activation energy and, owing to an
increase of the free path length, the preexponential factor
increase simultaneously with decreasing concentration
(the so-called compensation effect' ). Note, however,
that the value of T, (8) decreases simultaneously with 8,
so that structures with large enough periods will be de-
stroyed due to thermal fluctuations. It is obvious that the
usual relation Do = T/m g should hold true at high
enough temperatures, T ))c. . From the dependences
s~(8) and q m(8), determined in the preceding section
(see Fig. 14) it follows that the dependence D (8) should
have jumps similar to the devil's staircase: the value of D
should rise sharply whenever the concentration 8
exceeds the 8p value that characterizes a structure com-
mensurate with the substrate, having at a given T a corre-
lation length L that exceeds the kink width d.

Since the concentration of kinks in a chain is linearly
proportional to the concentration of adatoms, the
coefficient of diffusion of kinks coincides with the
coefficient of "chemical" diffusion of adatoms. ' For ad-
systems the parameter R = Vp/c~ is generally within
0.1—10. Namely, for the Coulomb repulsion of adatoms
(n =1), R =e Ro, where Ro=(a, s„) ' (taking a, =3 A
for a tungsten substrate and c. ~ =0.25 eV for hydrogen
adatoms, ' we obtain R0=20) and e is the effective
charge of the adatom (in electron charge units), which for
adsystems generally amounts to e =0.1-0.7. Similarly,
for the dipole repulsion of adatoms ( n =3 ),

Ro(dipole) =Ro(Coulomb)2(z/a, )

where z is the distance between the adatom and the crys-
tal surface. An experimental observation of the above-
described devil's staircase in studying the surface
diffusion on furrowed or vicinal surfaces would be a
direct proof of the solitonic mechanism of diffusion in ad-
systems. No such results are known at present, and only
observations indirectly evidencing in favor of existence of
this effect can be mentioned, such as a sharp rise of D
near the commensurate concentration at diffusion of ada-
toms on a metallic substrate' as well as a D increase with
increasing concentration of steps on a semiconductor sub-

the case of intermediate friction (g) 10 cg ) is to be
taken equal to the adatomic structure period a =qa„and
the rate Kp of the kink escape from a potential well is
given by the Kramers theory:

Kp-—co /2m at greco*,

and

strate. The authors of Ref. 54 observed a jumpwise de-
crease of the activation energy of the surface diffusion
along steps at a coverage consistent with a commensurate
structure (4X 2) for the Ag/Ge(111) adsystem. In a com-
parison with the experiment it should be taken into ac-
count that the FK model can be used to describe surface
diffusion as long as the motion of atoms proceeds along
one-dimensional channels. At high 8 and Vp values,
when the compression forces in the adatomic chain over-
come the forces "holding" the adatoms in a given chan-
nel, adatoms will start "creeping out" of the channel so
that their motion will become more complex and can be
described only in terms of a two- or three-dimensional
model. Moreover, it is also to be taken into account that
the parameter Vp may depend on 8 because of a mutual
"depolarization" of adatoms. Finally, note that the law
of the interaction between adatoms in adsystems may be
more complex than the power law (1.3). For example, the
interaction potential for an "indirect" mechanism of in-
teraction of adatoms has the form

U(x)-x ™sin(2kFx+P), (7.7)

VIII. CONCLUSIONS

Experimental studies of the surface diffusion' evidence
an important role of a collective motion of adatoms. The
Frenkel-Kontorova model is essentially a single model al-
lowing an accurate description of such a consistent

where m = 1 —5, (t) is a constant phase, and kF is the Fer-
mi momentum for substrate electrons. In this case an at-
traction (or an "effective" attraction) can exist between
adatoms at some distances, which in two-dimensional (as
in quasi-one-dimensional) systems will result in "conden-
sation" (first-order phase transition) of adatoms into "is-
lands" with some concentration 8*. The motion of
kinks on the background of 8* should not differ qualita-
tively from that described above. The difference between
the cases of attraction and repulsion of adatoms consists
in boundary conditions: a finite-length chain with free
ends (an "island" of the condensed phase) can exist in the
former case, while with repulsion such a state is metasta-
ble and can exist only owing to the presence of the Peierls
potential. A reflection of a kink from the chain free end
is therefore possible in the case of attraction, so that the
kink transforms into an antikink and moves in the re-
verse direction (see, e.g. , Ref. 56) right up to a stop or an-
nihilation with the next incoming kink. This effect can
increase the effective diffusion coefficient in determining
it, e.g. , from experiments on the "creeping apart" of a
step. '

To conclude, note that in the general case the substrate
potential relief is nonsinusoidal, the parameter r of the
potential (1.4) being usually negative. In this case the e
dependence on I is nonmonotonic and has deep local
minima at some values of the paraineter l =1 (see Fig.
10). Since, according to (3.11), the parameter I is propor-
tional to coverage 8, similar singularities of the depen-
dence s (8) can be expected, so that the diffusion
coefficient D will have local maxima at some concentra-
tions 8=8(l ).
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motion of particles, which is due to the closeness of this
model to the exactly integrable SG model in the continu-
um limit. A SG-type equation allows soliton solutions in
the form of kinks. It is the small values of the effective
kink mass (m «m„) and Peierls potential (c. «E„)
that cause the great contribution of kinks to diffusion and
drift of adatoms.

The present study dealt with an adiabatic motion of
kinks in the generalized FK model. This model is
characterized by two new aspects: an anharmonic and a
long-range character of adatom interaction. The anhar-
monicity of interaction results in dissimilar kink and an-
tikink parameters, which gives rise to, e.g., a jump of
diffusion characteristics when adatomic concentration e
exceeds some eo value, corresponding to a commensurate
adatomic structure. On the other hand, the long-range
character of interaction between adatoms leads to an
infinite sequence of commensurate structures, changing
one another, with the result that dependences of the
characteristics on the coverage e take the form of the
devil's staircase.

It is clear that the proposed generalized FK model
dealt with in the present study is applicable for describing
not only the surface diffusion, but also quite a number of
other physical phenomena, listed brieAy in the Introduc-
tion,' the principal restriction on the use of this model is
its one-dimensional nature. Due to this, an allowance for
the possibility of a motion of adatoms in a direction per-
pendicular to the chain appears to be a natural develop-
ment of the model. Investigation of two-dimensional
(both anisotropic and isotropic} adatomic structures is
also of a great interest. Finally, it should be noted that in
the framework of the considered extended FK model, a
number of dynamical effects may be studied, in particu-
lar, to derive the equation of motion for the center of
mass of a discrete kink using a recently developed projec-
tion operator approach, as well as to study another
nonlinear excitation, the dynamical SG soliton or breath-
er, which may be treated in the framework of the contin-
uum nonlocal equation. Now these problems are in con-
sideration.
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APPENDIX A: CASE OF p =2

sinb, =cos( e/2) =u'(a „+e )
—u'(a „—e ),

az =a/2=@(2q'+1) . (A2)

In the case of Vo &&c„an approximate solution of equa-
tion (A2) has the form

E= —,'v "(a„) . (A3)

The further procedure of deriving a SG-type equation
is as follows. ' First, we introduce the new variables:

j u] j+u2 J

z —up u)
(A4)

and then substitute (Al) and (A4) into initial equations of
motion (3.4):

sill(x/, ) =u'(x/, + /
—

x/, ) —u'(x/, —x„ /),
k =2j,2j+ 1, (A5)

and linearize obtained equations in z . Thus, we obtain a
set of equations:

Let us examine, in the continuum approximation as
well, adiabatic characteristics for a more complex unit
cell with e&=2/q, q

—=2q'+ 1, q'=0, 1,2, . . . . We intro-
duce, according to (2.4) and (2.6), the displacements

x2 = —6+ja+u&

xz &
=5+ja+u2

Minimization of the energy (2.5) leads to the equation
for the vacuum displacement b, = —,

' [a z
—( —1 )~ e ],

sin(b, —
—,'y )+—,'z cos(h —

—,'y )=u'[(az+e)+ —,'(y —
y &)]

—u'(a„—e) —
u "(a„+e)—,'(z +z. l) —u "(a„—E)zj,

sin(h+ —,'y )+ —,'z cos(b, + —,'y )=v'[(a„+s)+—,'(y +, —y )]—v'(a„—s) —u "(a„+e)—,'(z +,+z )
—u"(a„—e)z

(A6)

Now we will use similarly to (4.17) and (4.18), the continuum approximation and use Eq. (4.15) for the potential v (x).
Taking into account that z —e, we linearize equation (A6) in e and neglect the terms -zE —E . As a result, we obtain

cos( —,'y) —1 —
—,'(E —z)sin( —,'y) = —v "(a„)(2z—

—,'az')+ —,'u "(a„)(ay'——,'a y")+ —,
' v"'(a~ )(ay' —

—,'a y")

cos( —,'y) —1+—,'(e —z)sin( —,'y) = —v "(a„)(2z+ —,'az')+ —,'u "(a„)(ay'+—,'a y")+—,'u"'(a„)(ay'+ —,'a y")

(A7a)

(A7b)

Adding equations (A7) together, we find the expression
for the function z (x):

z=e[l —cos( —,'y)+ —,'u "(a„)ay'+—,'u"'(az )(ay') ], (A8)

—,'u "(a„)ay" + —,'v"'(a„)a y'y"

=(E—z)sin( —,'y )+az'v "(a„) . (A9)

where expression (A3) for e is used. Then we subtract
equation (A7a) from equation (A7b):

Substituting expression (A8) into the right-hand side of
Eq. (A9), we obtain
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d =av"(a„}=2ql /m . (Al 1)

Using the substitution of (4.22), we transform Eq. (A10)
to the canonical form:

siny+ —,'a(y') sin{ —,'y ) =y "(1—ay'),

where

{A12)

siny —
—,
' v'"(a „}(ay') sin —,'y

v"'(a „)
=[v "(a„)]'ay" 1+ „ay' . (A10)

2v "(a„)
Thus, equation (A10) describes a kink with the width

APPENDIX 8: KXPONKNTIAI. INTERACTION
OF ATOMS

In the case of a long-range exponential interaction of
atoms, (1.2), the corresponding equations of motion for
the system as well, reduce in the continuum limit to a
SG-type local equation (see Refs. 42 and 43). For simpli-
city, we will consider only kinks on the background of a
coverage eo= l. When the interaction potential (1.2) is

expanded into a Taylor series with an accuracy to cubic
terms for interaction of the nearest neighbors and to
quadratic terms for interaction of more remote atoms,
the interaction energy of atoms will take the form

aav'"(az) ~ P
dv "(a„) 4

a, v"'(a„)
v "(a„)

The solution of Eq. (A12) at a « 1 has the form

(A13)

H;„,= —,
' g v(x; —x )

lWJ

=—y(u —u ) +J ys' '~(u —u ) .3 1 —S
l l 1 4S

l 14J

Here we introduce the following designations:

y(x )=uso(x )+y, , (A14)

The e6'ective kink mass at a =0 is

y = tan (sinhz)—4a ] . 4a
[1—ln(coshz)] .

3 coshz 3 coshz

(A15)
and

S=exp( —P),
A —= —a(d/2m. )

J=(d/2m ) (1—S)

(B3)

(B4)

m = g [(u', ) +(u2, )~]
J

=-,' g (y,')'
J

Jdx(y') =4/(ad)=1/(ql)1

2Qd
(A16)

while parameters d and a were introduced earlier [see
(4.20), (4.21), and (4.24)]. The equation of motion, which
corresponds to the Hamiltonians (2.1)—(2.3) and (Bl),
takes the form

, u, +sinu;+ —,
' A [(u; —u(, ) —(u(+, —u; ) ]

dt

Note that the second term in the right-hand side of (A15)
is even, and the first one, odd in z. This means that in
calculating corrections in a to the kink characteristics in
an approximation linear in a only the first term of (A15)
will give a contribution. In particular, the kink mass is

T

=J g S~~ '~(u —u ),
j (j wi)

which can be rewritten in the form

2

u;+ sinu, + —,
' A [(u; —u;, )

—(u;+, —u, ) ]
dt

(B5)

4 ao~ 2m= —1— +O(a ),
ad 6

(A17) +2Ju, =I.;, (B6)

i.e., the relative correction of the first order in the anhar-
monicity a is the same as at p = 1.

Unfortunately, when interaction of only the nearest
neighbors is taken into account, parameters c. „-, and 5c.
go to zero since they are determined by interaction be-
tween unit cells, so that their calculation needs the taking
into account of interaction of atoms at distances x )pa „.
To conclude, we note that for the power-law potential
(1.3) in the case ofp =2 the kink width is

where the quantity
+ oc

S'J'u, ,J= oo

(JXO)

is introduced, which satisfies the recurrence relation

1 1 —SS+—L,-=L, , +L,+J (u, , +u, ,
—2Su,-),

d = [n ( n + 1 ) Vo /m. ](2/q }" (A18a} (B8)

u = (n +2)/d . (A18b)

while the anharmonicity parameter is, as before, given by
the formula

just which allows the set of Eqs. (B6) and (B8) to be re-
duced to a local-type equation. Going over in Eqs. (B6)
and (B8) to the continuum limit and then substituting
(B6) into (B8), we obtain the equation with an accuracy to
terms -a:
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u«+sinu —d,ttu„„+ad3u„u„„=Saz(1 —S) zf (u),
(B9) and

a,tt=—a(d /d, tt) (B13)

where

f ( u )—:u «„„—( u„) sinu —u„„(1 —cosu ), (Blo)

5
S+J(1+S) (B14)

and

d, tt =d—( 1+S +S/J) /( 1 —S) (B1 1)

u«+sinu —u„„(1—a,tttt„) = sf (u),

where

(B12)

Using the substitution x =xd,z, we derive the equation

In the case of d &&a we have J&&1 and c (& 1; therefore,
the perturbation sf (u ) in Eq. (B12) in the continuum ap-
proximation can be neglected. Consequently, a long-
range exponential character of atomic interaction, as
compared with the above-considered short-range interac-
tions, results only in renormalization of the kink parame-
ters; the kink width increases (d ~d, tt & d), while its non-
linearity decreases (a~a,s(a).
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