
PHYSICAL REVIEW B VOLUME 41, NUMBER 10 1 APRIL 1990

One-dimensional generalized Fibonacci tilings
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Polynomial (nonsingular) dynamical trace maps of generalized Fibonacci tiling s
(A,B~A B",A) are derived for arbitrary values of m and n. It is shown that these sequences can
be grouped into two distinct classes. The sequences in class I correspond to n =1 and arbitrary rn.

They are shown to have volume-preserving and invertible trace maps with an invariant the same as
that of the golden-mean sequence. The class-II sequences correspond to n & 1 and arbitrary m and
are shown to be associated with volume-nonpreserving and noninvertible trace maps with a com-
mon pseudoinvariant which is of the form of the invariant of class-I maps. Furthermore, it is shown

for the class-II case that if n =m +1 the trace maps are two dimensional.

I. INTRODUCTION

In recent years, much theoretical effort has been devot-
ed to the study of one-dimensional quasiperiodic (QP)
crystals. These studies were stimulated both by experi-
mental indication that there might exist in nature struc-
tures intermediate between the periodic and random
ones, and by the recently developed experimental tech-
niques to manufacture arbitrarily ordered layered struc-
tures. Quasicrystals are nonperiodic systems with well-
defined long-range positional order such that their
Fourier transforms contain 5 peaks (unlike in periodic
crystals, these peaks should lie at all possible integer
combinations of at least two intervals whose ratio is irra-
tional). All other nonperiodic systems with long-range
positional order whose Fourier transforms do not contain
5 peaks are usually called aperiodic and are deemed to
constitute a link between quasiperiodic and random sys-
tems.

Kohmoto et al. introduced a dynamical-systems-
theory approach in which the investigation of the QP Fi-
bonacci model is reduced to studying a volume-
preserving map. This approach has been successful in ex-
plaining the energy spectrum and some of the scaling
properties of the system. The Fibonacci (golden-mean)
lattice is quasiperiodic and has become by far the most
studied one-dimensional nonperiodic system with well-
defined order. Nevertheless, there have also been several
attempts to investigate other lattices in an effort to shed
some light on the problem of the properties of all possible
intermediate structures between periodic and random
ones. Among others, Gumbs and Ali ' have introduced
a class of generalized Fibonacci sequences (GFS), derived
the dynamical trace maps of several of them, and have
studied electronic tight-binding models in which the in-
teraction follows the GFS. It was found that in some of
these sequences the dynamical trace maps are volume
nonpreserving (dissipative) and noninvertible. In our ear-
lier work, we have studied the spectra of magnetic exci-
tations in generalized Fibonacci superlattices with dissi-
pative maps. The study of the general properties of such
dissipative maps themselves has provided a good under-

standing of the electronic and magnetic spectra. One of
the important results of these studies is that the spectra
seem to be mixed, containing both critical and extended
states. That is similar to the results of Riklund et al. for
the electronic spectrum of the Thue-Morse lattice. On
this basis, the GFS with dissipative maps investigated in
Refs. 4-6 have been classified as in between periodic and
QP sequences. However, the preliminary study of their
Fourier transforms suggest that they are aperiodic, i.e., in
between QP and random. This apparent contradiction is
one of the reasons why further investigation of these lat-
tices is important.

GFS are defined ' by the following inflation scheme:

SL+)—Sl SL

where So=—8, S&
—= A, m and n are integers, and SL

represents m adjacent repetitions of the string SI. The
inflation scheme of Eq. (1) is equivalent to the substitu-
tion rule A~A 8", 8~A, where A represents a
string of m A' s. The total number of A's and 8's in SL is
equal to the generalized Fibonacci number FL given by
the recurrence relation FL =mFI, +nFL z, FO=F, =1.
The ratio of A's to 8's for L~~ of these lattices is
~=0/n, where

cr= lim FL/FL &= —,'[m+(m +4n)' ] .
L~ oo

(The integer value of "incommensurability" r n for-
n =m +1 does not mean that we have periodic lattices in
this special case. But they are probably not quasiperiodic
either. ) Setting m =n =1 gives the standard Fibonacci
sequence with the golden mean, o =o =

—,'(1+&5);
m =2, n =1 gives the sequence with the siluer mean,
o, = 1+&2; m =3, n = 1 the sequence with the bronze
mean, crab= —,'(3+&13); m =1,n =2 the sequence with
the copper mean o, =2; and m =1,n =3 the sequence
with the nickel mean o.„=—,'(1+&'13).~ 6 The n =1 case
is identical with one of the three classes of generalizations
of the Fibonacci lattice introduced recently by Holzer '
who calls these "precious means" (PM) lattices. For this
special PM case Holzer derived polynomial trace maps
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that all have the same polynomial invariant as the origi-
nal Fibonacci (n =m =1) case. The main purpose of this
paper is to present polynomial maps for all values of n

and m, and show that all the cases with n & 1 belong to
the same class of volume nonpreserving noninvertible
maps.

The Lth generalized Fibonacci generation SL can be
considered as a unit ceil of a periodic lattice that becomes
the Lth periodic approximant of the respective infinite
generalized Fibonacci sequence. As in the previous stud-
ies, ' we will limit ourselves to the class of physical
properties that can be studied in terms of 2 X 2 transfer
matrices of unit determinant. Denoting the whole
transfer matrix of SL as JKL, the matrix equivalent of Eq.
(1) is

~L+1 ~L —]A™L (2)

where Afoand , At& are the transfer matrices of the two
basic building blocks 8 and A, respectively. The allowed
energies for frequencies are then given by the condition

where xL =Tr(Atz ) is the trace of AIL. It is to be noted
that, unlike in Refs. 3-7, 9, and 10, here we have
dropped the factor of —,

' from the definition of xL to sim-

plify the formulas involved.

II. SOME PROPERTIES
OF THE UNIMODULAR MATRICES

Our task is to express xL+, in terms of the previous
three traces xL, xL, , and xz 2. It will be shown in the
next section that for all m and n, at most, three previous
traces are sufficient to determine the next one. Thus, the
recursion relation for the traces can always be cast in the
form of, at most, three-dimensional maps.

Because of the form of Eq. (2), we will need formulas
for the traces of powers and products of unimodular ma-
trices. Let us present the relevant relations for conveni-
ence in the derivation of the trace maps and their proper-
ties. Let a be a 2 X 2 matrix such that deta = 1. Then it is
straightforward to prove that a =xa —I where x=Tra
and I is a unit matrix. Applying this formula repeatedly,
one gets the relation

a"=dk(x)a —dk ](x)I,
where dk(x) is a polynomial in x such that

dk ~](x) xdk(x) dk —](x)

do(x):—0,
d, (x):—1,

and k is an arbitrary integer (positive or negative). Thus,
d2(x)=x, d3(x)=x —1, d4(x)=x —2x, etc. For posi-
ti,ve k, we have

can derive from Eq. (5), the following relations which
hold for arbitrary k and 1:

dj, dI —]
—

dI, —,d, =d,

dzdI+I —dz —,dl =dr+I, ~

d2k =d„(dk+, —dk 1),

1+k
—dl k =dk(dl+1 —dl, ),

d/+k +dl —k d/(dk +1 dk 1)

2 2
dk + /dk —I dk dl

dk+1+dk =dl +dkdk+l(dl „,—dl, ),
d„+,d„+, , =dk+, d„dld—,

dI, +,dI,
—didi —]+d„—I+,d

(6)

d
(dk+, —d„, ) =kd„.

dx

dk dk —/+1(d /—+1 d l 1)—0—,

Tr(a "b )=Tr( ba "
) = dk (x )Tr(ab ) —dk 1(x)Trb (8)

where x =Tra." Note that for positive k,
Tr(a")=Ck(x)=2Tk(x/2), where T (g) and C (() are
another set of Chebyshev polynomials of the first and
second kind.

III. THE TRACE MAPS

Let us now proceed with the derivation of the recur-
sion relations for the traces. In this section we will

present three types of trace maps of the GFS. We assume
that we know xL 2= Tr(AIL 2) and xz ]

=Tr(AL ]).
Then from Eq. (2) we have

xz =Tr(AL)=Tr(Atz 2AIL ]) .

Using Eq. (8) with a =JUL ], b =JUL 2, and k =m, we

get

xz =d (xz, )Tr( JELL ]At& z) —d 1(xi ] )Tr( JKL 2 )

Using again Eqs. (8) and (7) for the calculation of the two
traces occurring on the right-hand side of the last equa-
tion, we get

xI =d (xi ])[d„(xL 2)Tr(Atz ]AIL 2)

All the d polynomials in Eq. (6) have identical argument.
As a test for the validity of these formulas one can show
that they are in agreement with the identity d„(2)=n.
Using Eq. (4), one can immediately get the following two
relations:

Tr(a ")=xdk (x )
—2dk, (x )

=dk+1(x) —dk, (x)

and

dk(x) =Sk,(x)= Uk, (x /2),

where S,.(g) and U. (g) are Chebyshev polynomials of the
first and second kind. Using mathematical induction, one

—1(XL —2)XL —1]

—d 1(xz, )[d„+1(xz q)
—d„](xI 2)] . (10)
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Substituting in Eq. (10) L+ 1 for L, one gets

xL+, =d (xL)[d„(xt ])Tr(Jltlt Jttlt ])

—d„,(xL, )xL ]

—d, (xL)[d„+,(xL ])—d„,(xL ])] .

Using Eq. (2), one can write

Tr(Jkft, AtL ])=Tr(flat +]]Jktq 2) .

Comparing this result with Eq. (9), one can see that it is
sufficient to substitute m +1 for m in Eq. (10) to get the
following expression for Tr(AtLJRt ]):

Tr(Jut JKt ] ) =d + ](XL ] )[d„(XL 2)Tr(JRL ]JR' 2) —d„](xt 2)XL ]]

d~(x—L ])[d„+](xL 2) d„—](xL 2)] . (12)

Finally, from Eq. (10) it is easy to express
Tr(AfL ]JUL z) in terms of xL z, xL „and xz, which
is used in Eq. (12). The result is then substituted into Eq.
(11), and Eqs. (5) and (6) are used to simplify the final ex-
pression to obtain

d (xt )d„(xL ])
xL+] d

[xLd +](xL —]) d +](xL —p)
m xL —1

are interested in here because the original six-dimensional
matrix map of Eq. (2) is regular. Thus, it should be possi-
ble to find regular, polynomial maps for all m and n.
Equation (10) suggests how to achieve that. As it gives
xL as a polynomial in xL 2, xL ], and Tr(s@ I A]f t2),
let us define a new "coordinate system" in the following
way:

X =x =XL
+d„](xt 2)]

—d +](xL )d„](xt ])—d, (xL)d„+](xL,) .

y =y:—xg

z =Tr(JH, L ]JUL 2) .

(15)

(13}

Equation (13) is our a&st trace map of the GFS. It is clear
from Eq. (13) that xt +] has been expressed as a function
of xL, xL, , and xL 2 only. Defining

r =(x,y, z) —= (xL z, xt ],xL )

and

r'=(x', y', z')=(XL „xt,xt +]),

Then Eq. (12) immediately gives us the recursion relation
for the new z coordinate, z, and Eq. (10) gives the relation
between the old and new z coordinates that can be substi-
tuted into the second formula of Eq. (14) to get the recur-
sion relation for the new y coordinate. Using Eq. (6), our
second trace map can be written in the form

x'=y,
y'=d (g)[d„(x )z —d„,(x )y]

we have a Kohmoto-type three-dimensional map in the
space of the three consecutive traces:

x'=y,

—d, (y )[d„+,(x ) —d„,(x )],
z'=d +,(y )[d„(x )z —d„,(x )y]

—d (y)[d„+,(x)—d„,(x)] .

(16)

y'=z,
(14}

d (z)d„(y)
z = [zd +](y)—d„+](x)+d„](x)]

dm y

—d +](z)d„,(y) —d ](z)d„+,(y) .

For n =1, Eq. (14) reduces correctly to Eq. (6) of Ref. 10.
Equations (14) or (13) give a polynomial map only for
m =n, or m =1 and n arbitrary. Thus, for m =n =2 we
get the "mixed-case" map as given by Eq. (33) of Ref. 5
(there is a misprint in Ref. 5, the first x& ] in Eq. (33)
should be replaced by xI). For m =1 and n =2, Eq. (14)
gives the three-dimensional version of the copper-mean
map as given by Eq. (2) of Ref. 7.

For general m and n, the map given by Eq. (14) can be
singular for some initial conditions. This situation can
never happen for the initial conditions (those correspond-
ing to the traces of the first three transfer matrices) we

The complete relations between the new and old coordi-
nates are

X=X

1

d„(x)
z+d, (y)[d„+](x)—d„,(x)]

d (y)

+d„,(x)y

Again, for n =1, Eq. (16) reduces to Eq. (16) of Ref. 10.
For m =2 and n =1, Eq. (16) gives the silver-mean map
as given by Eq. 11 of Ref. 5, and for m =3 and n =1, the
bronze-mean map of Eq. (18) of the same reference pro-
vided that the roles of x and y are exchanged which is a
trivial transformation of coordinates.
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Neither Eq. (14) nor Eq. (16) gives the nickel-mean
map as investigated in Refs. 5 —7. This can be obtained
after transformation to yet other coordinates in which
the obtained map has an especially simple form for all m

and n. This transformation reads as

x =1„+,(x ) —d„,(x ),

and

I=x +y +z —xyz —4,
respectively (four times Kohmoto's invariant for the
golden-mean case ). Using Eq. (6), one can show that

I'=d„(x ) I,
and

z =d„+&(X }g—d„(x }z . I'=K/„(37) I . (21)

x'=d„+, (y ) —d„,(y ),
y'=d +,(y)x —d (y)z,

z'=d„(y)z —d„,(y)x .

(19)

This third map gives the nickel-mean map as given by
Eq. (28) of Ref. 5 provided that another trivial coordinate
transformation is applied: x and y coordinates exchanged
and z replaced by —z. We note that, unlike the previous-
ly discussed maps, all the d polynomials occurring in Eq.
(19) have the same argument, y. The beauty of this map
consists in its simplicity and certain symmetry of the
three equations.

IV. DISCUSSION

It is immediately obvious that for all lattices with an
integer ratio ~ (those with n =m + 1) the trace map of Eq.
(19) reduces to a two-dimensional map as the last line of
Eq. (19) reduces to z'=z. Thus, for n =m + 1, z becomes
an invariant. Using Eqs. (18) and (17), one can immedi-
ately express it in terms of the traces xo, x, , and x2 of the
first three transfer matrices:

d„,(x, )
z=[d„+,(xo) —d„,(xo)] x, —

~n —i(xi

x2

d„,(x, )

For the copper-mean case (n =2), this gives an expres-
sion identical to that for —2y [cf. Eq. (3) of Ref. 7].
Thus, z directly plays the role of the y parameter of the
two-dimensional copper-mean map as discussed in Refs.
4—7.

A very important feature of the maps of Eqs. (16) and
(19) is the manner of transformation of the expression

I=X +y +z xgz 4——

Note that unlike Eq. (17), Eq. (18) does not represent a
one-to-one transformation of coordinates because of the
way x is transformed into x. It is obvious from Eq. (15}
that x has still the meaning of the trace of the transfer
matrix JALAP. , Then according to Eq. (7), x is the trace of
the nth power of JHL2,. The condition (3) for the al-
lowed bands remains valid in all three coordinate systems
discussed above because if the modulus of trace of an uni-
modular matrix is bounded by two, the same is true for
the trace of its arbitrary power. Using Eq. (6), we obtain
our third trace map in the form

Thus, I is'identical to the next iteration of I. There is no
contradiction in the two seemingly different recursion
formulas of Eqs. (20) and (21), remember that y =x'. For
comparison, the Jacobian of the coordinate transforma-
tion of Eq. (18) is equal to —nd„(x ) .

The above division into two classes is somewhat
surprising in the light of the probable division of the GFS
into quasiperiodic and aperiodic sequences. The
number-theoretic results of Bombieri and Taylor' indi-
cate that the Fourier spectrum (structure factor) of a
GFS is only composed of 5 peaks if

1+m)n . (22}

Thus, only those GFS satisfying Eq. (22) can be quasi-
periodic. All others are aperiodic, i.e., the lattices which
do not satisfy Eq. (22) are somewhere between QP and
random. Equations (20) and (21) show that the trace

This implies that all GFS are divided into two classes.
Class I corresponds to n =1 and arbitrary m. As
d„(x ) = 1, both I and I are true invariants as in the case
of the golden mean. The same result was obtained previ-
ously by Holzer. ' Both maps of Eqs. (16) and (19) are
volume preserving and invertible for this case. Class II
consists of all other cases (n &1, m arbitrary). Both I
and I behave as pseudoinvariants ' (their sign is con-
served in the sense that nonnegative I remains nonnega-
tive, and nonpositive I remains nonpositive). If d„(x ) =0
[d„(y)=0], I=0 (I=0) in all future interactions. Thus,
the surface I=0 (I=O) plays the role of an attractor as
discussed in Ref. 7 for the copper- and nickel-mean cases.
Eqs. (20) and (21) indicate that all cases with n & 1 behave
essentially in the same way as the copper- and nickel-
mean cases. This is further supported by the fact that for
n & 1 both maps of Eqs. (16) and (19) are volume
nonpreserving and noninvertible. Namely, the Jacobians
of the maps of Eqs. (16) and (19) are nd„(x) a—nd

nd„(y —), respectively. The only difference from Ref. 7
is that the Lissajous curves (copper-mean map attractors)
of Ref. 7 would become simpler ellipses (sections through
the Kohmoto's surface I=O) in the coordinate system
(18). It could very well be that the above division (n = 1:
map is volume preserving, invertible, has invariant; n ) 1:
volume nonpreserving, noninvertible, has only pseudoin-
variant) will be preserved under an arbitrary coordinate
transformation that conserves the polynomial form of the
map. However, a proof remains to be found. The two
pseudoinvariants of Eqs. (20) and (21) are related in the
following way:

I=1„(x)I .
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maps behave in the same way for all lattices with the
same n, irrespective of the fact whether there are quasi-
periodic (m ) n —1) or aperiodic (m n —1) according
to Eq. (22). Originally we had hoped that our division
into classes I and II would correspond to the division into
quasiperiodic and aperiodic lattices. However, there are
exceptions to the validity of the Bornbieri-Taylor cri-

terion and further work is required to clarify this ques-
tion.
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