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The theory of magnetism in transition metals is often expressed in terms of a Stoner exchange pa-
rameter I. Results for I are presented from electronic-structure calculations with correlations for a
d-band-only Hubbard type of Hamiltonian. The main effects are: (a) Due to correlation, I depends
substantially on the volume via the bandwidth. (b) There are analogous corrections to lattice con-
stants calculated with the local-density approximation (LDA). (c) I also depends on magnetization,
band filling, and crystal structure. (d) In Ni the reduction of charge and spin fluctuations almost
eliminates the contribution to I of exchange between different orbitals. (e) I computed in the LDA
is usually overestimated by 10%%uo —20%%uo because the LDA largely neglects spin correlations.

I. INTRODUCTION

In the theory of magnetism in transition metals and
their alloys it is common to involve a "Stoner parameter"
I (Refs. 1 and 2) to represent the exchange interaction be-
tween d electrons. The band structures of the simple fer-
romagnetic transition metals have been calculated many
times, for example with the local spin-density approxi-
mation (LDA) (Refs. 7-10) for exchange and correlation.
It is well known that, except for small deviations in the
case of Ni, the bands can be fitted quite wel1 by a tight-
binding (TB) model with a more or less constant ex-

change splitting of the d bands by an amount

5=IM,
where M is the magnetic moment in Bohr magnetons per
atom. '" This defines I.

An alternative definitio of I is to separate the LDA
ground state energy into the following contributions:

M
E(MO)=E(0)+ —,

' J D(M)dM ,'IMO, ——

where E(0) is the energy of the nonmagnetic state and the
second term describes the increase in kinetic energy due
to occupying progressively higher band states within the
majority band. The last term describes the gain in in-

teraction energy due to the (ferro)magnetic order. Ex-
perience shows that the LDA in such calculations does
not lead to any sizable dependence of I on the degree of
magnetic polarization M. ' ' The largest deviation
found so far to our knowledge occurred in the case of fcc
Fe, where I decreased by 4% with the magnetization ris-

ing to the maximal value. ' Since the ground state mag-
netic moment comes out well in LDA, the value of I as
obtained by LDA compares almost perfectly with I as
defined in (1.1). Moreover, I is essentially independent of
the nature of the magnetic order, ferro- and antiferro-
magnetic calculations giving very similar values of I. '

Since the d-electron density is rather small at the edge of
the Wigner-Seitz cell, it is supposed from the spirit of the
calculations that I is an intra-atomic constant, always the

same for the given element in any alloy or magnetic
configuration. Furthermore, I does not show any sizable
volume dependence. These findings naturally suggest
treating all magnetic problems in itinerant magnetism
within a conventional one-particle tight-binding picture
with the additional exchange energy

E„,= —
—,'IM (1.3)

where I is usually taken as the LDA value but need not
be. This Hamiltonian, although formally equivalent to a
Hubbard model, is to be treated strictly within the one-
particle approximation and all correlation effects are as-
sumed to be included in the effective parameter I. That
maps it onto the philosophy of spin density functional
theory, applied within a tight-binding framework. We
believe this is the most general and modern way to view
the status of the conventional one-electron Stoner picture
with a constant parameter I. For more details about
these theories we refer to Refs. 16—18.

Two broad questions now arise:
(a) Can different magnetic properties all be fitted by a

single constant I (for a given element) in different crystal
structures, magnetic configurations, and alloys?

(b) How good is the I obtained from the LDA?
We have done calculations on a Hubbard-type Hamil-

tonian, which threw light on both these questions. The
model is restricted for simplicity to five d bands only with
an overall bandwidth W, with a so-called on-site
Coulomb interaction U, and exchange interactions J and
AJ. As usual, we suppose that U and J are screened in-
teractions, screened by the s and p electrons and by corre-
lations at shorter than atomic distances with high virtual
excitation energies. We assume that all these screening
effects are independent of the environment, confining our-
selves to modest changes of volume. We obtained the
correlated ground state of this Hamiltonian by starting
from the self-consistent (SCF) ground state and including
correlation effects variationally within the local an-
satz, ' ' which for this model system can be seen as a
generalized Gutzwiller ansatz. Thus our model investi-
gates the effect of the correlations and screening originat-

41 7028 1990 The American Physical Society



41 STONER EXCHANGE INTERACTION IN TRANSITION METALS 7029

ing in the d band itself. We further restrict ourselves to
those correlations described by operators on single atoms
only. These we call atomic correlations in the following.
Details will be given in Sec. II.

We restrict our calculation to the nonmagnetic state
and to states (also correlated) originating from ferromag-
netic SCF states with a given moment M obtained within
a rigid-band model. The basic output of the calculations
in the energy of the correlated ground states Eo(M). The
effective Stoner parameter I is extracted from our calcu-
lation in a similar way to what was done for the LDA in
(1.2). The total energy is again separated into three parts,

M M

Eo(MO)=EO(0)+ —,
' f D(M)dM' ,' J——I(M)dM',

(1.4)

1.2

bcc

where Eo(0) is the energy of the correlated nonmagnetic
state. The second part describes the increase in kinetic
energy of the uncorrelated magnetic state and is exactly
the same as in the LDA expression before (1.2). The final
term includes all interaction and correlation effects. This
Stoner parameter is introduced and discussed in detail in
Sec. III.

Equation (1.4) defines I(M) as a function of M which is
extracted in practice by numerically differentiating
Eo(M). We find that I(M) does indeed vary with M, in

contrast to the situation with the LDA when taking I as
a constant in (1.2) was a good approximation. It should
be noted that the middle term in (1.4) is purely the one-
electron band energy: Additional kinetic energy is need-
ed to produce correlations, as is clear from the uncertain-
ty principle, and this is all incorporated in I(M). The
bandwidth W is taken from LDA calculations and the ra-
tio U/W is so chosen that the ground state has the prop-
er magnetic moment Mo. This fixes I (Mo) so that it is by
definition equal to the value one would use in a d-band
model derived from LDA.

Our main conclusion regarding question (a) above is
that I is indeed dependent on volume. This volume
dependence does not show up directly here but arises
through the dependence of I on the bandwidth W.
Without correlations I would be independent of W: For
a fivefold d-band system in a certain degeneracy limit
(Sec. II) we have that IscF =Io with (ignoring b,J)

Io =
—,'( U+ 6J) . (1.5)

However, correlations change this substantially. As al-
ready mentioned, I(M) contains the change of kinetic en-

ergy due to correlations and I(M) therefore has to de-
pend on W. This can be seen from Fig. 1. It is con-
venient to express I (M) dimensionlessly in terms of

I(M)=I (M)/Io . (1.6)

Figure 1 plots I(0) as a function of band occupation for
bcc and fcc d bands for different ratios U/W. As can be
seen, I(0) decreases considerably with increasing U/8:
The narrower the band, the easier it is for electrons to
correlate and hence the more screened is the exchange in-
teraction. Incidentally, the fact that I(0) in Fig. 1 de-
pends on the band filling for U/W=O contrary to (1.5)

0.8

O

fcc
0 2 4 6

co Ni

8 10

FIG. 1. Normalized Stoner parameter I(0) for canonical bcc
and fcc densities of states for U/8'=0 (i.e., in SCF approxima-

tion), 0.2 and 0.6.

results from anisotropic occupations of the e and t2g
partial states and might be to some extent caused by the
rigid-band ansatz made in the one-electron part of our
calculation.

Furthermore, it will be shown that I depends on the
magnetization M, too. This arises from a specific part of
the correlations, namely what we call the Hund's rule or
spin correlations on individual atoms. ' ' These are im-
portant in the nonmagnetic case, but are dramatically
changed in going to the magnetic states, particularly the
saturated state (M =M, ) with majority band completely
full. The latter takes no part in the atomic correlations,
so that there are only correlations within the minority
carriers and one automatically has full Hund*s-rule cou-
pling. This reduces I(0) by typically 20%%uo relative to
I (Ms ).

Let us now turn to part (b) of our question. It is not
obvious why our work has anything to say about LDA.
The LDA works with approximations which are com-
pletely different from the ones used here. However, the
dependence of I on M and on V which we obtained could
be explained quite simply. A next natural step is there-
fore to find a reason why these dependences are lacking
in the LDA, and, furthermore, to give quantitative esti-
mates for these shortcomings of the LDA. As mentioned
above, the dependence of I on M originates from atomic
spin correlations and we know, from calculations on
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atoms and small molecules, that such spin correlations
are not well treated in LDA. For a spin-unpolarized
atomic calculation one obtains only the weighted average
energy over all possible spin configurations for a given
electron density. It is only by explicitly breaking the spin
symmetry that one can include the Hund's-rule effect. A
spin-unpolarized LDA calculation for a solid is therefore
expected to have no spin correlations included either.
We will elaborate on this in more detail below. This de-
fect of LDA can be simulated within our computations
by switching off spin correlations. Without such correla-
tions, the dependence of I on M in our calculations is in
fact strongly reduced. We believe the same effect ex-
plains the constancy of I(M) in LDA, which points to
the lack of spin correlations as a specific defect of LDA.
We will discuss the magnetization dependence of I and
the corresponding LDA results in Sec. IV,

We turn now to the volume dependence of I which in
our calculations comes via the atomic correlations which
in turn involve the kinetic energies within a rather nar-
row d band, as already discussed. However, these corre-
lations are in LDA approximated by those of the homo-
geneous electron gas with the high 3d-electron density.
Moreover, they are relatively independent of volume be-
cause the d-electron density depends little on volume.
The correlation hole within a homogeneous system of the
d-orbital density is so small that within this approxima-
tion the d-orbital fluctuations are almost completely
screened within the atom itself, ' making atomic correla-
tions useless. Thus, LDA underestimates atomic correla-
tions, but we know that these are strong from full
ab initio many-body calculations on other materials with
nonuniform electron density, namely semiconductors.
There, it turned out that even for not too inhomogeneous
systems atomic correlations really are of considerable irn-

portance and are not sizably decreased by shorter range
correlations. Thus we are able to make statements about
the deficiencies of LDA from including and excluding the
various effects of our correlation treatment within our
model Hamiltonian and even to make some semiquantita-
tive estimates of the corrections. The volume dependence
of I is treated in Sec. V.

The volume dependence of I contributes directly to the
magnetic pressure and hence to the magneto volume
effect. While in LDA the magnetic pressure arises
predominantly from the kinetic energy of the one-
electron d states, here the volume dependence of I due to
correlation corrections to the kinetic energy contributes
to the magnetic pressure as well. As can be seen from
Fig. 1, these contributions are not negligible. Various as-
pects of the magnetovolume effect will be discussed in
Sec. VI as well as the corrections to equilibrium atomic
volumes calculated by LDA.

Within this paper we will restrict ourselves to the fer-
romagnetic Stoner parameter IF. We expect that an anti-
ferromagnetic Stoner parameter IA„behaves similarly.
'The situation for a disordered local moment state is more
complicated but will not be covered in this paper.

Finally it should be mentioned that the present study
into the nature of I, starting from a Hamiltonian with
on-site interactions, follows a long tradition. Such work

started with Wohlfarth, who even already discussed the
magnetization dependences of I within the SCF approxi-
mation. Later, Kanamori and Edwards included
many-body corrections for Hubbard models. In particu-
lar, the dependence of I on M (Ref. 27) and on V (Refs. 28
and 29) due to these many-body effects were treated. Pre-
liminary results of our own investigations have been pub-
lished before. A comparison of our many-body
treatment with other methods, ' that have been
developed before but cannot be applied here for various
reasons, is given elsewhere.

II. THE MODEL AND ITS TREATMENT

Although ab initio correlation calculations for solids
are feasible, ' performing such computations for the
transition metals is still some way into the future. At
present we will restrict ourselves to a model Hamiltonian
which describes the dominant features of the electronic
states within 3d transition metals. It is a generalized
Hubbard Hamiltonian, which gives a qualitatively satisfy-
ing description of the delocalized d electrons, as well as
their atomic interaction in the transition metals. It con-
sists of two parts,

H =Ho+H~,

Ho= g e„(k)n„(k),
vok

H, =
—,
' g [ U, a, (1)a, (1)a (1)a; (I)

lij

(2. l)

(2.2)

+J; [a; (1)a (1)a; (1)a (1)

+a, (l)a, , (l)a, (1)a (1)]) . (2.3)

Here Ho describes the one-particle or band behavior of
the d electrons and we refer to it loosely as the kinetic en-

ergy. The E,,(k) denote the canonical d-band energies
and n„(k) the corresponding electron number operators
for the relevant crystal structure (i.e., bcc or fcc). The to-
tal bandwidth 8' is the only adjustable parameter in Ho,
with the values 5.43, 4.84, and 4.35 eV for Fe, Co, and
Ni, respectively. The E„(k) denote energies with respect
to the center of the bands, so that our "kinetic" energy is
always negative. Our H~ describes the atomic interac-
tions between local states i and j on atom l which are of
t2g and eg symmetry, with corresponding creation opera-
tors a, (1). The interaction matrix elements U," and J,
are expressed in terms of U, J, b,J (Ref. 37) as shown in
Table I of Ref. 20. The dominant terms come from the
Coulomb interaction U with further contributions from
the exchange term J and its anisotropy AJ. The anisotro-

py is fixed at its atomic ratio, b J =0.15J, while for J/U
we take a constant ratio of 0.2 for most of our calcula-
tions. We will discuss below whether our results depend
crucially on this ratio. By fixing the ratios hJ/J and
J/U we have reduced H, to only one adjustable parame-
ter U. Note that hybridization effects with s electrons are
neglected. Within this model they just lead to noninteger
band occupation and a strongly screened effective U.
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Typically we have that 8'=5 eV and U &0.88'. ' ' ' As
specific values for Fe, Co, and Ni, we take the LDA
values of %=5.43, 4.84, and 4.35 eV, respectively.

The one-particle ground state ~$0) of Ho is the usual
Slater determinant easily computed from e„(k). Correla-
tions are then included within the local ansatz for the
correlated wave function ~$0). ' Here they are re-
stricted to local operators 0„(l) which act on one site 1

only. The correlated state ~fo) has the form

~Po) =exp(S)~go) =exp —g r1„0„(l) ~$0) . (2.4)
l, n

The q„are variational parameters which are obtained by
a minimization of the ground state energy

(2.5)

Three different forms have been chosen for the local
operators 0„(1),namely

[Eqs. (2.4) and (2.5)]. For specific ferromagnetic metals,
the interaction parameters U are chosen so that the
ground state is the state with the experimental magnetic
moment M, . For Fe, Co, and Ni it turns out that the
outcoming interaction is in very good agreement with
effective interactions derived from gas phase spectrosco-
py. For a detailed discussion, we refer to Appendix A.
This agreement indicates that the model Hamiltonian
chosen here offers a fair description of the d electrons.

III. THE STONER PARAMETER

Having defined the Hamiltonian and the ground states
for different magnetization M, it is straightforward to
define the Stoner parameter I (M) from the energy Eo(M)
of the correlated ground state, as given by Eq. (1.4). The
Stoner criterion for ferromagnetism is written as

0 "(1)=n; &( l )n; ~ ( I),
0, '(1)= g n; (l)n, (1), (2.6)

D (0) ~ I (0),
where

D(0)=1/n(EF) .

(3.1)

(3.2)

where i and j are the basis orbitals. The first kind
reduces charge fluctuations within an orbital i and the
second between different orbitals i and j. The third kind
allows for Hund's-rule coupling of the delocalized elec-
trons, i.e., it describes spin correlations between elec-
trons, when they occupy the same site. Actually, this
variational calculation is not performed exactly. Instead
a variational expansion of the correlation energy up to
second order in g„ is made. The restriction of the corre-
lations to atomic operators leads to deviation from the
exact treatment of (2.1) by typically 5%. For the ratio
U/W considered here, the errors due to the variational
expansion are of the order of one up to a few percent. '

For further details of the calculations, see Refs. 19 and
21.

The ansatz (2.4) is generalized to ferromagnetic states
in the following way. In a ferromagnetic case, a one-
particle state ~po(M) ) is constructed in the normal way
with the eigenstates of Hp for the majority spin corn-
ponent bands filled up to the energy EF+A~, while those
in the minority band are only filled up to the energy
EF—b,2, where EF stands for the Fermi energy in the
nonmagnetic case. This means that a rigid-band approxi-
mation is made, i.e., it is assumed that the one-particle
band structure s„(k) in (2.2) for each band does not
change with magnetization. We then have

EF+~, Mf n (E)dE =f n (E)dE=, (2.7)E EF 2

where n (E) is the total density of states per spin corre-
sponding to s„(k). This ferromagnetic state ~go(M)) is
then correlated in the same way (2.4) as the nonmagnetic
state ~$0). ' ' The total energy Eo(M) of the correlated
ferromagnetic state with moment M is computed in the
same fashion as that of the nonmagnetic state before

The magnetic ground state and its moment Mp are then
given by the equilibrium condition

D (Mo) =I(MO), (3.3)

when there is a free Fermi level in both the majority and

minority bands, which we shall refer to as the case of
"weak" ferromagnetism. The function D(M) with our
rigid-band ansatz (2.1) is directly obtained as a function
of n (E):

D(M)= [b, ,(M)+62(M)],1
(3.4)

with b,
&

and 62 defined by Eq. (2.7). Note that D (M) is a
constant for a constant density of states. In fact it is only
the second derivative of n (E) which leads to an explicit
dependence of D(M) on M. The function I(M) cannot
be given analytically but is obtained by a numerical cal-
culation of Eo(M) for different M as described in Ref. 21
and a subsequent separation via Eq. (1.8). This function
needs to be calculated for different numbers of d electrons
and for specific ratios of U/8'. In the case of "strong"
magnetism the majority band is completely filled, the mo-
ment M, is fixed by the number of electrons, and we can
only say that I(M, ) is greater than some minimum value
needed to fill the majority band completely [which is
D(M, )]. Incidently, the I(M) can be given a physical
meaning even for M not equal to the equilibrium value
Mo, because one can imagine a (very large) magnetic field

applied such as to stabilize M at any given value.
Next, we investigate the question to what extent I does

indeed depend on band occupation, on details of the
different interactions, and finally on the magnetic mo-
ment due to our complete treatment of correlation and
exchange. In the next sections we will investigate first
the effects of exchange and then the dependence on band
filling and on different interaction parameters.



7032 GERNOT STOLLHOFF, ANDRZEJ M. OLES, AND VOLKER HEINE

A. Analytic calculations mthin one-particle approximation

E;„,=(U+2J) g n;&n;&+(U+2J) g n;nj

—3g JJ(n;&nJ&+n;&nJt)
IJ

—2 g J; (n;&n &+n;&n &),
i (j

(3.5)

where n; are the expectation values for the occupation
of orbital i with spin cr and n; =n; &+n, &.

For simplicity we ignore below the terms proportional
to hJ. Then it follows that

While the computation of I(M) for the correlated
ground state is performed numerically, analytic computa-
tions may be performed on the one-particle (Hartree-
Fock) level. By them, it may be demonstrated explicitly
how the Stoner parameter depends on details of band
filling. The Stoner parameter Iscp in Hartree-Fock (HF)
approximation is derived simply from the expectation
value of the interaction part of the model Hamiltonian,
when assuming the rigid-band approximation. It is given
as

with the degree of band polarization. Allowing for the
density of states to vary with E at the Fermi energy leads
to additional corrections EI if and only if the partial oc-
cupancies of the different orbitals n; are different. They
are proportional to both these modifications

Bnj(E)
EIscp(0) = g a

lJ

with

7E=EF
(3.10a)

hn; =n; —n, (3.10b)

where n is the average occupation per orbital of each site.
The corrections are different for the term proportional to
J in Eq. (3.7) as compared with those in the term ( U+ J).
This form of hI guarantees that in the case hn, =0, i.e.,
in the degenerate band limit, the details of the density of
states do not enter the Stoner parameter which then is of
the form (3.5). Neither the terms a; nor the corrections
due to correlations will be discussed analytically. All
these discussions already indicate that in general even the
interaction contributions to I(M) alone already cause it
to be a general function of magnetization as written in
(1.4).

Iscp(0) =—[( U +2J)+ ( m —1 )J]=1
m

(3.6a) B. Detailed results for I(0)

Iscp(0) =a( U +J)+J,
with

(3.7a)

a= g n;(E )p/ n(Ep}, (3.7b)

where the n, (E) are the m partial densities of states.
In our specific application we have m=5 and that the

density of states is always split into a two-dimensional e
and a three-dimensional t2g contribution, so that the
smallest value of a equals —,', the largest —,'. %hen includ-

ing hJ and writing for the two types of orbitals

n, (Ep) = ,'n (Ep)(1 —2—s),
2g

n, (Ep ) = ,
' n (Ep )( 1+—3s),

(3.8)

we obtain

Iscp(0) =
—,'( U+J—4b J)+J +—', ( U+ J +—', b J)s . (3.9)

Thus without orbital asymmetry (s=0), b J reduces
Isc„(0}by —0.12J or roughly 10' if we take b,J =0.15J.
Assuming constant and equal partial densities of states at
the Fermi level leads to this isotropic value of Iscp(0) as a
lower limit for the Stoner parameter, and any unequal oc-
cupation (sAO) of the different orbitals increases it. This
leads to a variation of the Stoner parameter I(M) as a
function of magnetization since s will in general vary

Iscp(0)= ( U+ J)+J=1
m

when the density of states at the Fermi energy is constant
and splits equally among m different orbitals. If the total
density of states is not equally split, then we have instead

Next, we discuss the dependence of I (0) on band filling
(i.e., number of electrons N per atom) and different ratios
U/W and I/U, and different crystal structures. More-
over, by switching off some or all of the correlation
operators in (2.6} and varying the parameters in H, (2.3)
we can get insight into the origin of some of the effects
found.

We start by varying the ratio U/W and the degree of
band filling N with constant J/U=0. 2 and b J/J=0. 15.
The normalized I(0) (1.6) is shown in Fig. 1 for the bcc
and the fcc structures as a function of X for several
values of U/W. The limit U/W~O corresponds to the
uncorrelated HF state and is calculated with finite U but
switching off all correlation in (2.4). We note first that
I(0) is a decreasing (in fact monotonically decreasing)
function of U/W. This is because correlation keeps elec-
trons apart and hence reduces ("screens") their exchange
interaction. Another perspective is to note that the elec-
trons have the greatest freedom to correlate between up
and down spin bands in the unmagnetized state, which
gets reduced in a magnetized state and disappears in the
limit of a full majority band. (In that limit the only
remaining correlation is among minority spin electrons. }

Thus the energy of the magnetized state is higher relative
to the unmagnetized one with correlations than without,
which translates according to (1.4) into a smaller I(M).
Secondly, we note in the upper part of Fig. 1 considerable
variation of I(0) with N. Most of this variation is already
present for U/8 =0 and originates from unequal occu-
pation of the orbitals, as discussed in connection with
(3.6)—(3.8). Typically, I(0) for U=O is above 0.9, the
value obtained, when all orbitals have the same partial
densities of states at Ep [Eqs. (3.6) and (3.9)]. This is

most evident for X~ 10 in both structures and generally
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TABLE I. Normalized Stoner parameter in the HF approximation [5Isc„(0)/(U+6J)] and with
correlations involved [5I(0)/( U+ 6J)], the values of I(0)/I(MO) and the ratio I&(0)/I(0) explained in

the text) for bcc Fe (%=7.4) for dift'erent pairs of ( U, J) which give the same I(M0).

J/U

0.1

0.15
0.2
0.25
0.3
0.4

U/8'

0.606
0.496
0.420
0.363
0.320
0.257

5I„„(0)(U+6J)

1.089
1.073
1.060
1.049
1.041
1.030

5I(0)/( U+6J)

0.659
0.656
0.656
0.660
0.666
0.678

I(0)/I(MO)

1.110
1.074
1.055
1.043
1.037
1.031

Iq{0)/I(0)

1.091
1.113
1.126
1.133
1.136
1.138

plays a bigger role for bcc than for fcc. However, there
are also additional sharp structures, especially for bcc,
where I(0) is reduced substantially below the so-called
"lower limit" mentioned above. These are due to strong
asymmetries of occupation in (3.10) and large values of
r)n;(E)IBE at E =EF found at the edges of the subbands
of s„(k). The addition of correlation modifies these struc-
tures slowly and adds a few new broader features (Fig. 1).
Part of the correlation corrections will be discussed
below. Thus Fig. 1 indicates that I(0) should indeed de-
pend on structure and species. Of course, varying the de-
gree of band filling is not a very physical operation, but to
some degree it can represent the effect of alloying, and
also the variations seen would be comparable to those in
changing from one crystal structure to another. Inciden-
tally it should be noted that all our calculations are per-
formed with the rigid-band approximation in (2.7). Addi-
tional degrees of freedom related to changes in the partial
densities of states might modify some of the trends noted
above. Similarly, we have not allowed any net redistribu-
tion of charge between the e and t2 orbitals due to
correlations.

It is interesting to consider next the variation of the ra-
tio J/U, particularly for different band fillings. We take
our model for Fe with n=7.4 electrons and Mp=2. 2
magnetons. The bandwidth is fixed. This implies from
(3.10) that I(Mo) is fixed (0.624 eV). Some pairs of
values ( U, J) were determined which are consistent with
the fixed W, Mo and I(Mo). Since I(MO) is fixed, it is
useful to look again at the other limit I(0). The results
are shown in Table I. As can be seen, IscF(0) is roughly
equal to Io(1.5) indicating as expected from (3.6) that ex-
change interaction between all pairs of orbitals plays a
role. The small deviations of IscF(0) from Io and espe-
cially its scaling with U +7J are due to the hJ and due to
band structure effects as discussed in connection with

(3.5) to (3.10). The most significant part of Table I is that
I(0) is roughly proportional to U+6J, which implies that
even in the correlated state all five eg and t2g states and
their interactions are roughly equally available for ex-
change. We note again the reduction of I(0) from the
value Io (1.5) for the reasons already discussed in connec-
tion with Fig. 1. We also note from Table I the variation
of I(M) as shown by the extreme values I(0) and I(Mo).

Tables II and III show similar results for fcc Ni
(%=9.4, Mo=0.6) and fcc Co (N=8.4, MD=1.6). They
are both "strong" cases in the sense of Sec. II and we
have fixed I(MO) (0.911 eV for Ni, 0.939 eV for Co) at
slightly above the value needed to fill the majority band
completely. In each case Isc„(0) is again nearly equal to
Io (1.5). But now for Ni we have that I(0) is proportional
to U+2J. Roughly speaking, this arises because there is
little chance of having more than one hole on any Ni
atom at one time so that the hole effectively correlates
with its own subband, leaving just the interaction U+2J.
However, the story is more complicated in detail as is
shown by the different scaling of I2 (defined below),
which does not include spin correlation effects given in
Table II: Exchange interactions between different orbit-
als are relevant, but even in the nonmagnetic state of Ni,
the spin correlations in (2.4) are already nearly perfect so
that spin alignment by magnetization cannot do any
better. The mechanism driving the magnetism in this
limit of few holes is therefore the direct Coulomb interac-
tion in (2.3). Incidentally a similar argument makes it
surprising that Isc„(0) for Ni (Table II) scales with
(U+6J), i.e., with (3.6a) with m=5. The density of
states at the Fermi energy consists mostly of t2 states so
that we might expect nt, s =3 in (3.6a) or s = —

—,
' in (3.9)

which gives IscF(0) scaling with U+4J. Corrections
come from eg contributions and from the other terms
(3.10). In Co (Table III) IscF(0) again follows U+6J,

TABLE II. The same as in Table I for fcc Ni (N=9.4), showing also the proportionality of I(0) to
{U+2J).

J/U

0.1

0.15
0.2
0.25
0.3
0.4

U/8'

0.887
0.813
0.750
0.697
0.651
0.575

5IscF(0) /{ U +6J

1.010
0.994
0.982
0.974
0.967
0.957

5I(0)/( U+2J)

0.831
0.832
0.834
0.837
0.840
0.848

I(0)/I(MO)

0.845
0.840
0.837
0.836
0.836
0.839

I (0)/I(0)

1.067
1.101
1.133
1.164
1.194
1.247
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TABLE III. The same as in Table I, but for fcc Co (%=8.4). The Stoner parameter I(0) is found to
be approximately proportional to ( U+ 3J).

J/U

0.1

0.15
0.2
0.25
0.3
0.4

U/8'

0.817
0,716
0.640
0.579
0.530
0.456

5IscF(0)( U +6J)

0.931
0.928
0.925
0.925
0.925
0.921

5I(0)/( U+3J)

0.741
0.746
0.749
0.752
0.754
0.756

I(0)/I(MO)

0.812
0.798
0.791
0.786
0.783
0.782

I2(0)/I(0)

1.122
1 ~ 174
1.221
1.262
1.298
1.358

whereas I(0) is proportional to U+3J. We interpret the
latter result in a similar way to that for Ni: The interor-
bital term (m —1)J in (3.6a) is strongly reduced (in fact
reduced from 4J to about J) by correlations, relative to
the intraorbital term U+2J in (3.6a). Incidentally there
is no significance to be attached to the absolute values of
I(0) for the specific metals in Tables I—III because they
are determined by the parameters of the model, which in
turn are fixed by the observed momenta and the band-
width determined by conventional band structure calcu-
lations with the LDA.

Another conclusion from these calculations is that al-
though the ratio U/J has been widely changed, only very
small variations in J and in I(0) arise. The large variation
of U apparently does not influence the magnetic proper-
ties much. We will therefore in the following always
stick to a ratio J/U=0. 2.

As mentioned before, the values of U and J, as we have
obtained them, compare well with the values obtained
from gas phase multiplet splittings. As discussed in Ap-
pendix A, a perfect agreement may be reached for Ni and
Co, while for Fe, the interaction parameters used here are
10% smaller than those obtained from experiments. We
performed the calculations with a smaller ratio JjU than
found in experiments. This guarantees that the interac-
tion effects as they will be discussed in the following are
underestimated rather than overestimated.

As a conclusion, we obtain a strong variation of I with
band filling and a sensitive dependence on details of the
interaction. All these dependencies are well understood.

IV. MAGNETIZATION DEPENDENCE
OF THE STONER PARAMETER

Of special interest is the variation of l(M) with the de-
gree of polarization M for fixed band fillings. Such a dis-
cussion will give some insight into how the correlation
effects work in detail. The results are given in Figs. 2 —4
for Fe, Co, and Ni, respectively, and compared with the
function D(M) which gives the differential loss of kinetic
energy in Eq. (1.4). In Fe the Mo is determined by the
crossing of the two curves (Fig. 2), whereas Co and Ni are
"strong" ferromagnets in the sense of Sec. I so that the
majority band saturates before the condition (3.1) is
reached. In all three cases I {M) shows significant varia-
tion. In Fe (Fig. 2) this variation is rather complex. This
is due to a changing mixture of e and tz orbitals in the
moment as discussed in (3.6)—(3.9), responsible particu-
larly for the drop in I (M) beyond M = 1.0. We can verify

this explanation by a small trick. The computations ac-
tually employ the partial density of states for each orbital
rather than the wave function explicitly. Thus by averag-
ing over the e and tz partial densities of state we can
simulate a more isotropic system in which correlations
can occur equally between all five orbitals, though the
overall variation in the total density of states remains un-
changed. Such a calculation results in the smooth curve
I (M) in Fig. 2, of similar shape to l(M) in Co and Ni.

In Co and Ni the situation is simpler. The l(M) (Figs.
3 and 4) [and similarly I'(M) for Fe (Fig. 2)] increase
steadily with M, which can be understood in terms of
spin-dependent correlations. As we have already
remarked above, such correlations serve to depress l(M)
for small M but get progressively eliminated as M in-
creases to saturation. This is demonstrated clearly by the
calculations of I2(M) defined by excluding from the wave
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FIG. 2. Stoner parameter I and loss of kinetic energy D(M)
for different values of the ground state magnetization M for bcc
Fe (%=7.4, U/&=0. 42, J/U=0. 2), normalized by D(0). The
curves I2 and I3 correspond to the calculations which neglect
spin correlations (I, ) and neglect all correlation effects due to
exchange interaction {I&),respectively. I' is the Stoner parame-
ter obtained from an average isotropic change distribution.
D„D„gives the loss of kinetic energy as obtained from the exact
density of states within LDA for nonmagnetic Fe (Ref. 48), nor-
malized in such a way that D (Mo) =DLDA(Mo).
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FIG. 3. Stoner parameter I and loss of kinetic energy D {M)
for different values of the ground state magnetization M for fcc
Co (N=8.4, U/%=0. 64, J/U=0. 2), normalized by D(0). The
meaning of I2 and I3 as in Fig. 2.
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FICx. 4. Stoner parameter I and loss of kinetic energy D(M}
for different values of the ground state magnetization M for fcc
Ni (N=9.4, U/&=0. 75, J/U=0. 2), normalized by D(0). The
meaning of I2 and I3 as in Fig. 2.

function (2.4) all the spin-spin correlations in (2.6). Fig-
ures 2 —4 show that Iz(M) is larger than I(M) and that
the two become equal for a saturated majority band.
This completely explains the 20% rise in I (M) for Ni and
Co while for Fe the effect of orbital anisotropy remains
and is in fact more clearly seen in I2(M) without the

masking effect of the spin correlations. We can calculate
a fictitious isotropic I2(M) analogous to I'(M), which
turns out to be practically a constant (not shown in Fig.
2) with Iz(0)—I'(0) being nearly equal to Iz(0}—I(0), thus
verifying our picture.

Having discussed so far how correlation effects enter
the Stoner parameter, we must compare these results
with those obtained within the LDA. The latter is the
standard approximation scheme for the treatment of elec-
tronic properties in solids, including transition metals.
As discussed in Secs. I and III, the Stoner parameter I
obtained in LDA is rather a constant without much
dependence on magnetizations or band filling. ' "
However, our I(M) depends noticeably on all of these,
and we need to understand how such effects are left out
of the LDA. The dependence of I(0) on band filling arises
even in a proper HF theory from the varying admixture
of e and t2 at EF as shown in Eqs. (3.6)—(3.9) and car-
ries over into the correlated calculations. While we have
not properly optimized these anisotropy dependencies
within our rigid-band treatment, the variation of I with
M goes to the heart of the magnetic effects in LDA. Con-
trary to our findings that there is always a contribution to
I which leads to a sizable increase with rising M, in LDA
usually no M dependence' ' or even a small decrease
with rising 3f was found. ' In this context it is important
to discuss the atomic limit first. As already mentioned in
connection with Eq. (1.4), when calculating the ground
state of atoms, LDA needs to be applied to a wave func-
tion with a broken spin symmetry. The ground state ac-
cording to Hund's rule is then obtained. When not
breaking spin symmetry, i.e., staying strictly within den-
sity functional theory and LDA, it has been found empir-
ically that one obtains a state whose energy is the average
over all possible magnetic configurations. The Hund's-
rule spin ordering and its effect on the energy are there-
fore obtained only by an additional breaking of spin sym-
metry. This finding is not disturbing, because in atoms
the symmetry is always broken. But when we switch to a
molecule consisting of two atoms at very large distances
we know that in this case the ground state is always a
singlet state, with no broken symmetry. So a proper den-
sity functional should give the ground state energy of the
Hund's-rule ordered atoms coupled weakly antiferromag-
netically. However, LDA without broken symmetry
gives an energy which is the sum of two atomic energies
averaged again over all Hund's-rule states. Thus the
I.DA does not include any of the Hund's-rule corrections
when they are to be included as spin correlations.

When atoms are connected to form a solid, then a corn-
putation in LDA will never obtain these spin correlations
unless again the spin symmetry is broken. However,
these correlations which are generalizations of Hund's-
rule effects are present in a solid whether there is global
magnetic order or not. LDA has to be considered, there-
fore, as a mean field theory with respect to Hund's rule or
spin correlations. It can include those corrections only
by breaking symmetry globally (in a magnetic ground
state) or locally (for instance, in representations of the
paramagnetic state with the coherent potential approxi-
mation}.
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with

,'gD (0)Mo—, — (4.1)

(=I (0)/D (0)—1 . (4.2)

This follows from rewriting (1.4) for small Mo. The
relevance of (4.2) to the Stoner criterion (3.1) is obvious,
but note that the energy of magnetization is also propor-
tional to g. Clearly errors in I(0) translate into much
larger percentage errors in g, especially near the Stoner
threshold for magnetization /=0. Table IV shows that g
changes by up to a factor of 3 for the metals Fe, Co, and
Ni.

TABLE IV. The LDA values of the Stoner parameter I and
the relative energy gain per magnetization g as taken from Refs.
11 and 12, and compared with the correlated values of g (gl
upper, gz lower limit).

kLDA

Fe
Co
Np

0.92
0.99
1.01

0.43
0.6
1.03

0.26
0.31
0.81

0.14
0.08
0.32

To estimate the importance of the errors in the LDA,
we can simulate the effect of neglecting Hund's-rule
effects in our calculations. To some extent we have al-
ready done this in our calculations of I2 in Figs. 2 —4. It
shows that neglect of spin-dependent correlations of type
0,.' ' enhances I(0) artificially by 10%—20%, which we be-
lieve is a lower limit to the errors in LDA. We can set an
upper limit on the effect by another calculation, I3 in

Figs. 2—4, obtained as follows. We assume that not only
the spin correlations are omitted but that all terms in the
Hamiltonian which are of the same nature as those lead-
ing to spin correlations are covered in LDA in one parti-
cle approximation only. These are all terms proportional
to J and b,J in (2.3). Therefore, we first calculate a corre-
lated ground state, omitting all these exchange terms
from the Hamiltonian. One effect of this is to eliminate
automatically any spin-dependent correlations in (2.6).
We then reintroduce these terms of Hl (2.3) by adding to
the energy their expectation value with respect to the un-
correlated wave function. This upper limit is by another
10%—20% higher than I2(M). By combining these
lower and upper limits we can say that I(0) is overes-
timated by 12%—22% for Fe, by 18%—33% for Co, and
by 10%—40% for Ni. Table IV contains some LDA
values for the Stoner parameter I and in addition the
corrected values as obtained by such a renormalization.
A direct comparison of our values of I with those of
LDA computations is hampered because our model
Hamiltonian is too limited, omitting as it does the sp hy-
bridizations and relaxation effects correcting the rigid-
band approximation.

The major point about this discussion is that for the
theory of magnetism the relevant quantity is not I(0) but
rather the energy gain due to magnetization

E (M )
—E (0)= —,

' [D (0)—I (0)]M2

Our suggested corrections to LDA are therefore of vi-
tal importance to any thermodynamic theory, for exam-
ple to estimate the transition temperature T~. Consider
the simplest case, the Stoner mean field theory. ' When
applied to Fe with the LDA value of I (Table IV) it gives
a T~ (Stoner) of 4400 K, ' but when correcting the ILL&
then a T~ (Stoner) is obtained in the range 3400—2300
K. ' This is still much higher than the observed T~ of
1000 K, indicating that this transition can be understood
only by including spin fluctuations. Using a magnetic en-

ergy reduced from LDA computations by a similar
amount as the one found here, Mohn and Wohlfarth
managed to explain this magnetic transition in terms of
such spin wave fluctuations with a theory which was
based on the idea of Lonzarich.

If there are such sizable corrections to I(0) and even
more to g, how does LDA give the equilibrium moments
Mo so well? Indeed this was one of the first important
successes of LDA. However, for Fe, Co, and Ni some
rather gross features of the energy bands suSce to ex-
plain the moments. ' As is well known, the band ener-

gy Eir(M) increases rapidly with M when n(E) is low,
and this stops further growth of M. Thus in the fcc met-
als Co and Ni the Mo is determined by the filling of the
majority spin band. Since in bcc Fe, the majority d band
is not completely filled, it seems worthwhile to cover this
case in more detail. Here Mo is determined by the dip in

n(E&) in the middle of the band. In Fig. 2 we see
indeed the rapid rise of D (M) around Mo, and this is not
very different in our five-band model from the D„~~ cal-
culated from a full LDA band structure. The steepness
of the curve ensures that Mo does not depend too sensi-
tively on the value of I (M) one chooses (within reason).

The errors in I(M) from spin correlations are less for
M near saturation than for M=O, as we have seen. Nev-
ertheless, the difference between using I(M) and I2(M)
or I&(M) amounts to a change of 4%—12% using our
D (M) or to a somewhat smaller change of 2%—8% using
D„o~(M). This explains the fact that the LDA moments
calculated at the measured lattice constant are 2% —5%
too high.

V. VOLUME DEPENDENCE OF
THE STONER PARAMETER

We next discuss the dependence of I on volume V. The
volume enters the model Hamiltonian only indirectly
through the bandwidth 8' which is a strong function of
V, and possibly some volume dependence of U. It has
been discussed above that the Stoner parameter I(0) de-
pends strongly on U/W. The numerical results obtained
for Fe, Co, and Ni are displayed in Figs. 5(a)—5(c). The
figures show that I(0) at first decreases rapidly with
U/8'~0. 1 as can be verified by perturbation theory.
For larger values of U/W, the decrease of I(0) with in-
creasing U/8'is weaker due to higher order terms which
mostly describe the mutual screening of the correlated d
electrons among tkemselves.

Note that the effects shown in Figs. 5(a)—5(c) are on
the whole larger than the other variations of I(0) which
we have discussed so far. Moreover, the monotonic de-
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05 TABLE V. Stoner parameter and its kinetic energy contribu-
tions for Fe, Co, Ni in units of the respective bandwidth 8'.
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D{0)
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0.159
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are presented in Table V. As can be seen when compar-
ing Ir(0) and Isc„(0), correlations screen more than 50%
of the interaction contributions to I~(0}. The corrections
due to the decrease of kinetic energy which enter I(0}
compensate less than 30% of these losses in the final
value of I(0). As can be seen further when comparing
D(0) and D'(0), correlation corrections of the kinetic en-
ergy terms are in between 40% (Co) and 50% (Fe,Ni).
The fact that D'(0) is negative is at first surprising. The
loss of kinetic energy Ek;„(M) is of course positive, but it
turns out to decrease with M. It is just a consequence of
the fact that correlation effects are largest in the nonmag-
netic state.

A convenient measure of these effects is the dimension-
less ratio

05'
02 0.4 0 6 0.8

U/W

t}lnI
t) ln( U/W)

(5.4)

FIG. 5. I(0) as depending on the ratio U/W for Fe (a), Co (b),
and Ni (c). In addition the logarithmic derivations
—[81nI /8 1n( U/ W) ] are given (dotted line).

crease of I(0) with U/W has a ready physical explana-
tion. It costs kinetic (band) energy to produce spatial
correlations. Thus the larger V, the smaller W, and the
more easily the electrons can correlate. Such correlation
describes a mutual screening of the interaction of the
electrons and therefore reduces I. However, the detailed
behavior of the kinetic energy is quite complicated. In
order to quantify it, we define below the part of kinetic
energy which is lost due to electron correlation. The to-
tal kinetic (band) energy may be written as follows:

t) lnI (0)D (0)
81nV

(5.5}

as discussed in more detail elsewhere. This quantity is
related to r via

f =g(1 —r),
where we introduced for convenience

(5.6)

shown in Figs. 5(a)—5(c) for Fe, Co, and Ni. It can be re-
lated to D'(0} as we might expect from our preceding dis-
cussion (for details see Appendix B}. We note [Figs.
5(a)—5(c)] that r rises steeply with U/Wand then reaches
a plateau of r =0.2.

The experimental data obtained from magnetization
experiments for nonmagnetic Ni and Pd alloys are usua1-
ly analyzed in terms of the dimensionless derivative

Ek)~ —= ( Ho ) =Ek(~ +E (~k (5.1) 8 lnD (0)
BlnV

(5.7)

where Ek;„ is the one-electron band energy for U =J=O,
and Ez;„ is the change of band energy due to correlation.
The derivative of the first part, Ek;„with magnetization,
was expressed by the second term in Eq. (1.4), as D(0).
The derivative of the loss of kinetic energy due to correla-
tion, Ek;„, is given accordingly in a similar way by

D'(0)= lim 4[Ek;„(M)—E„';„(0)]/M
M~O

(5.2)

I~(0}=—lim 4((Hq)~ —(H~)0)/M (5.3)

Both D'(0) and I~(0) contribute to I(0). Numerical results

Analogously, the change of the interaction energy due to
electron correlations has the form

The quantity g covers the volume dependence that comes
from the uncorrelated kinetic energy. The value r, there-
fore, is a measure of the correlation corrections.

While g is found to be between 1 and 2 (Ref. 4 and 49),
the measured values of f lie between 0.6 and 1. This
suggests that the value of r should be positive and close to
0.5, in agreement with the results of the present calcula-
tions (see Fig. 5). Thus, the available experimental data
support our result of a sizable volume dependence of I.

As discussed above, the principal origin of the volume
dependence of the Stoner parameter is the loss of kinetic
energy due to spatial correlations of electrons. This effect
is missing in LDA, where the small dependence of the
Stoner parameter on V enters only due to the volume
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dependence of exchange terms, but not for correlation
contributions. This is the only dependence if one as-
sumes, as in LDA, that the d electrons correlate like the
homogeneous electron gas with a high density. As stated
in the Introduction, Auctuations are completely screened
over distances shorter than the atomic separations, ' be-
cause strong correlations in the homogeneous electron
gas over distances corresponding to the atomic separa-
tions would cost too much kinetic energy there, contrary
to the real situation within the extreme tight-binding lim-
it. Therefore, the resulting relative corrections of the
volume dependence of the uncorrelated kinetic energy
found in LDA are typically less than 5%.'

VI. PRESSURE AND MAGNETOVOLUME
EFFECTS IN TRANSITION METALS

bR =a(AEk;„/g ), (6.1)

So far we have discussed correlation effects causing a
volume dependence of the Stoner parameter I (Sec. V).
In this section we will consider the consequences for the
magnetovolume effect, ' and more generally the analo-
gous corrections for nonmagnetic transition metals to the
equilibrium volumes calculated with the LDA. By mag-
netovolume effect we mean here the increase in equilibri-
um atomic (Wigner-Seitz) radius R due to the magnetiza-
tion, compared with a hypothetical nonmagnetic state, all
at T=0 K. Whereas in Sec. V we considered the
differential quantity I(M), the magnetovolume effect in-
volves the integral over M in the sense of Eq. (1.4).

The pressure can be formulated in terms of the elec-
tronic structure in various ways, the most useful ex-
pression being (in our model) its relation to Ek;„(M) [Eq.
(B4)]. Here it is assumed that U is independent of V.

Note that Eq. (B4) applies with or without correlation,
with or without magnetization. It can be interpreted as
saying that the pressure of the electrons at the boundary
of the Wigner-Seitz sphere is ultimately kinetic pressure
due to band energy, no matter how this band energy
arises. The derivative (BW/BV) in Eq. (B4) can be evalu-
ated by noting that 8 -R " where n = 5 for canonical
bands and is about 4.5 in more detailed band structure
calculations. We can convert changes in P into changes
AR in equilibrium values of R using the bulk modulus,
which is roughly proportional to 8'. Altogether, we can
write, therefore, an approximate relation

+ [EI,;„(Mp)—Ek;„(0)], (6.2)

where the first term is the one-electron energy and the
second the additional band energy coming from correla-
tion, corresponding to the terms in D(M) and I(M) in
the total energy (1.4), respectively. Let us consider the
results for Fe, being a typical example. One finds that the
second term in Eq. (6.2) ( —0.029W) is a 30% correction
to the first one (0.112M) (see Table VI), giving a measure
of how much the magnetovolume effect obtained in LDA
is to be reduced.

Our main interest lies in corrections to equilibrium
values of R. For this purpose, and incidentally to estab-
lish a convenient scale for a in (6.2), we must discuss
again the LDA. The pressure from the d band in LDA is
simply our E„;„. For the reasons already given (Sec. V),

where we shall take below a constant value of a across
the 3d transition series. hE;„stands here for the change
of kinetic energy due to electron correlations.

Table VI shows the relevant parts of the kinetic energy
as obtained from our calculations for the 3d transition
metals. Note that Ek;„ is negative because it is measured
from the center of the band, but an algebraic increase in
Ek;„corresponds correctly to an increase in pressure and
hence R (6.1). The values of U/8'are chosen arbitrarily
for the nonmagnetic metals Sc-Ti to be 0.3 and for Cr and
Mn to be 0.35. For Mn, an alternative computation was
made in addition. It is known that in LDA one finds a
stable ferromagnetic bcc state of Mn with M=2.75 mag-
netons. The parameter U within our computation
might be therefore obtained by looking for a ground state
having the same magnetization. However, it turned out
that it was impossible to get a stable magnetic moment of
this size for Mn. Only when spin correlations were
switched off could such a moment be stabilized for
U/W=0. 6, a surprisingly large value. Therefore we have
done a second computation for Mn with this value. In
LDA, the stable magnetic state is an antiferromagnetic
state with M=3.05 magnetons. Since we are not able to
compute kinetic energies of such a state at present, we
have determined the kinetic energies of the ferromagnetic
state with the same moment instead.

As in Sec. V, the change of kinetic energy due to mag-
netization can be split as follows,

Ekin(Mp) E k»( 0)=[Et»( Mp) E &„k( 0)]

TABLE VI. Kinetic energies of different states in units of the bandwidth 8'. Added are the struc-
ture, d band filling and ratio U/W used for the specific element.

Structure Nd U/W E k, „(0) E1„„(0)

Sc
Tl
V
Cr
Mn

Fe
Co
Ni

fcc
fcc
bcc
bcc
bcc
ferro
bcc
fcc
fcc

2.4
3.4
4.4
5.4

6.4

7.4
8.4
9.4

0.3
0.3
0.3
0.35
0.35

0.6
0.42
0.64
0.75

—0.800
—0.969
—1.048
—0.992

—0.859

—0.692
—0.529
—0.218

—0.569

—0.580
—0.437
—0.207

—0.755
—0.903
—0.973
—0.888
—0.776
—0.495
—0.617
—0.469
—0.201

—0.524
—0.42
—0.534
—0.386
—0.191
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the magnetic interaction —IMO/4 is almost independent

of volume in LDA and hence makes very little contribu-
tion to the magnetic pressure. Thus in a good approxi-
mation, the value of a may be determined from

[R (Mo) —R (0)]LD„=a[E„;„(Mo)—E„;„(0)]/W,
(6.3)

where on the left we use the LDA values from Ref. 6 and
the quantities from Table VI on the right. In this way,
we find a to be in fact nearly the same for Fe, Co, and Ni,
roughly equal to 0.5 a.u.

Let us consider first nonmagnetic 4d and 5d transition
metals. Atomic correlations are present in these systems,
similarly as in 3d materials. The respective correlation
energy depends on the bandwidth which in turn depends
strongly on the volume so that it generates an additional
positive pressure, largely omitted in LDA. We believe
that the d bonds in the 4d and 5d transition metals are
sufficiently wide that this effect is unimportant. Indeed,
the atomic radii calculated in LDA are in good agree-
ment with experiment for these metals. The main point
is not that they are in such remarkably good agreement
absolutely, but that the agreement is uniformly good
from Zr to Ag (Refs. 6 and 40) and from Hf to Au.

In contrast to this, the observed R for Sc to Ni are sys-
tematically larger than the nonmagnetic LDA values, as
shown in Fig. 6. This only partially improves when mag-
netic calculations are made. This is simply done for Fe to
Ni. For Mn, electronic pressures for different magnetic
states at the experimental equilibrium distance have been
published. We used these to obtain or guess for the an-
tiferromagnetic LDA equilibrium distance. The correc-
tions due to correlations were then simply obtained by
starting from Ek;„(M)—Ek;„(M) for the magnetic and
from Ez;„(0)—Ek;„(0) for the nonmagnetic systems. For
Mn, the ratio U/W=0. 6 has been chosen. As can be
seen from Fig. 6, the shift in lattice constants due to these
corrections is roughly half the original difference.

In conclusion, we can summarize our results in Fig. 6

Sc Ti V |r MnFe CON[
I t I I I I l I

-0.2

FIG. 6. Calculated values of the Wigner-Seitz atomic radii R
relative to the observed ones, for the 3d transition metals.
Dots —calculated by LDA for nonmagnetic state. Crosses—
calculated by LDA for the magnetic state (Ref. 6). Squares—
corrected from LDA values by our calculation.

by saying that our correlation corrections have brought
the calculated atomic radii into much better agreement
with experiment, both for the nonmagnetic and the mag-
netic 3d metals. Our corrections in all cases do not go
quite far enough but are in the right direction and of the
right order of magnitude to reduce the discrepancy be-
tween calculated and measured atomic radius.
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APPENDIX A: COULOMB AND EXCHANGE
PARAMETERS FROM SPECTROSCOPIC DATA

IN COMPARISON TO THE VALUES
USED IN THIS WORK

Information about the Coulomb ( U) and exchange (J)
parameters for 3d transition metals may be obtained by
analyzing the multiplet splittings of 3d elements, as dis-
cussed in detail by van der Marel and Sawatzky. The
experimental data suggest the use of semiempirical for-
mulas

U =1.5+0.21(Z —21),
J =—', [0.59+0.075(Z —21)],

(A 1)

(A2)

where the interaction parameters are given in eV. The
factor —', in Eq. (A2) has been inserted in comparison to
Ref. 43, because the exchange constant J as defined in
Eqs. (2.1)—(2.3) differs from the one used there. This
leads to U=2.55, 2.76, and 2.97 eV for Fe, Co, and Ni,
respectively, and to a ratio J/U= 0.27 independent of
substance.

It is of interest to compare the above values of U and J
for Fe, Co, and Ni, with the ones which we have ob-
tained. When taking the bandwidth 8'=5.43, 4.84, and
4.35 eV for Fe, Co, and Ni, respectively, then ratios
U/8'of 0.47, 0.57, and 0.68 are obtained. As can be seen
from Tables I—III, these values together with the ratio
J/U are reproduced for Co and Ni by a specific choice of
our interaction parameters. For Fe, however, our in-
teraction parameters are too small. When choosing the
same ratio U/J, then U/W is 25% too small while, when
choosing the same ratio U/W as obtained from Ref. 43,
then J/U is 33 Jo too small. Nevertheless, taking into ac-
count the qualitative nature of our model Hamiltonian
and the completely different origin of both sets of data,
there is surprising agreement, which strongly supports
our choice of the model Hamiltonian. It should be noted
that the direct experimental values give an even better
agreement with our parameters than the interpolated
values. There, the ratios U/8' were obtained as
U/%=0. 43, 0.55, and 0.74 for Fe, Co, and Ni.

Anyhow, the choice of parameters, made for our corn-
putations, represents in each case a lower bound for the



GERNOT STOLLHOFF, ANDRZEJ M. OLES, AND VOLKER HEINE 41

parameters U/W and J/W for the transition metals Fe,
Co, and Ni as compared with the gas phase spectroscopic
data. Interaction effects, as they are discussed here, are
therefore underestimated rather than overestimated.

Eo(M) = Wf k;„(ri)+ Uft(rl), (B1)

APPENDIX B: RELATIONS BETWEEN
r( U/W) AND D'(0)

An alternative expression for r(U/W) as defined in
(5.4) can be derived, so that it is given explicitly as a func-
tion of D'(0). In order to calculate r ( U/W) we first split
Eo(M) (1.4) into kinetic and interaction energy (for fixed
Pand M)

BW
w av

+ (B4)

Equation (B4) may be considered to be an exact result,
which holds for an exact wave function with a large num-
ber of parameters g, .

By taking the derivative of P(M) with respect to M /4
at M=O,

reexpress the second one, and drop the last term of Eq.
(B3) by assuming that U is independent of V. As a result,
we find an equation for the pressure of magnetic state,

BE (M) Ek, BWP(M) =
av w av

respectively, where g stands for the set of variational pa-
rameters rl; in the wave function (2.4) which depends on
U/W. Since the energy is a variational minimum we
have

B'Eo(M) [D(0)+D'(0)] BW
B(M'/4)BV =, W BV

' (B5)

BE (M) Bf„;„Bf
Ql 9i 1 I

(B2)

The derivative of Eo(M) with respect to volume Vis

BE,(M) BE,(M) B&,

BV 2 B BV fkin( 7)
BV

fl( 1) BV
IE

(B3)

BI(0) D (0) BW
av w av (B6)

Therefore the quantity r, as defined in Eq. (5.4), is rewrit-
ten in terms of the derivative of E„;„asfollows:

one finds that the result is determined by the quantities
D(0) and D'(0) introduced above. Independently, the
derivative (B5) can also be obtained from Eq. (1.4).

By comparing both expressions, one finds that

We use Eq. (B2) to eliminate the first term, Eq. (Bl) to r(U/W)= D'(0)/I(0—) . (B7)
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