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Holes in an Ising antiferromagnet give rise to quasiparticles with an internal structure associated
with the distortion of the spin ordering. We show that the spectrum of excited states (of this inter-
nal structure) commences at a lower energy than previously thought, at an energy of the order of
the exchange constant. The character of the corresponding states differ from those previously dis-
cussed in that the phases associated with the various spin configurations with the same number of
spin flips differ. Moreover, these excited states dominate the optical absorption and may explain the
experimental results of Thomas et al. [Phys. Rev. Lett. 61, 1313 (1988)].

I. INTRODUCTION

Experiments, particularly neutron (Birgeneau and co-
workers"?) and Raman (Lyons et al.®) scattering, show
that any theory of high-temperature superconductors
must consider charge carriers (usually holes) moving
through spins with short-range antiferromagnetic order.
How the holes drive the system paramagnetic and wheth-
er the superconducting order is caused by the paramag-
netic state are subtle questions. In this paper we focus on
the more restricted issue of how a single hole in an anti-
ferromagnetic affects, and is affected by, the spin system.
The antiferromagnetic might be a high-7, material, or a
more conventional Mott insulator.

Since the materials are driven paramagnetic by a
sufficient concentration of holes (e.g., Kitazawa er al.*),
we deduce that the holes and spins are coupled to some
degree. In this paper we are concerned with the effect of
strong coupling between the holes and spins. (We have
discussed the case of weak coupling in another paper®).
Of course there are many ways to couple the holes to the
spins. Initially we will be motivated by simplicity in de-
ciding which model to pick and will return at a later
stage to argue its applicability to the high-T, materials.

One expects that the “bare” (i.e., before coupling to the
spins) bandwidth of the holes is larger than the superex-
change constant (approximately 0.1 eV), which character-
izes the energy scale of the spin system alone. Thus for
energy scales of greater than 0.1 eV the dynamics of the
hole (and its interaction with the spin system) will
predominate. The coupling of the spins among them-
selves is of secondary importance.

The simplest model, which includes the effect of spins
on hole motion, is one hole in an infinite-U Hubbard
model. (Two-band models including both Cu and O sites
explicitly will be discussed later.) In that case all spin
configurations are degenerate until the hole is added,
whereupon the system (on a square lattice) is driven fer-
romagnetic (see Nagaoka®). Excitations in that limit
have been considered by Brinkman and Rice,’” whose re-
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sults we will return to.

Experimentally we know that there is exchange cou-
pling of the Cu spins; the simplest way to include this is
by adding an Ising coupling to the infinite-U Hubbard
model (e.g., Bulaevskii, Nagaev, and Khomskii.’) The
rest of this paper will be concerned with the analysis of
this model. As already stressed, the virtue of the model is
its simplicity; the implications for the real case of the
Heisenberg coupling will be discussed later—as will an
application of the Ising coupled model to the BaBiO;
family of superconductors. In the discussion section we
will consider the issue of one- versus two-band models. _

Qualitatively (see Bulaevskii, Nagaev, and Khomskii,?
and for a review see Nagaev,g) it is easy to see what hole
motion does in such a model, starting with a hole in an
otherwise perfect Néel state. It will leave a trail of dis-
placed spins as it moves, giving rise to a potential de-
pending linearly on the arc length of the trail (due to the
increase in exchange energy of the displaced spins). This
potential confines the hole to the neighborhood of its
‘“‘original state.”

There is one important proviso to this description (less
important qualifications are raised in the next section).
There is a special class of trajectories, ‘“Trugman cycles,”
where the hole may end up displaced from its original site
but with no displaced spins (Trugman'®). The simplest
example of such a trajectory is where the hole moves
around a plaquette one and half times, ending on the oth-
er site on the same sublattice.

We will argue that the ‘““polaronic” distortion of the
spin system and the net motion (due to the Trugman cy-
cles) can be separated, and we will focus on the former.
We will show that there are “‘internal” excited states of
the polaronic distortions. Some of these have been dis-
cussed before (e.g., Nagaevg), where the different states
have different probabilities of given arc lengths of distor-
tion, but give the same amplitude to all trajectories with
the same arc length. We will also construct other states
that have the same probabilities for all configurations
with given arc length, but different phases are associated
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with the different configurations. As we will show, it is
the latter excited states that determine the optical absorp-
tion, which is the main potential probe of such states.

Where is Nagaoka’s ferromagnetism in this picture? It
is concealed: Clearly the state with maximal S’=N/2 is
not coupled to the states that we consider, as only states
having total S?=0 are connected to the original Néel
state. However, the set that we do consider, all of the
S?=0 states, contains one that corresponds to S =N /2,
the magnetization being in the XY plane. As long as all
S?=0 are accessible, the Hilbert space contains the neces-
sary states. Thus one might expect the ferromagnetism
to occur in the limit of the Ising exchange, J, tending to
zero, yielding a ferromagnetic spin polaron of diverging
size (de Gennes'!). We will show that there are such fer-
romagnetic tendencies in our treatment. However, for
values of J that are not too small, the ferromagnetic ten-
dencies are very weak (this is indicated by the variational
results of Shraiman and Siggia'?).

The plan of the paper is as follows: In Sec. II we con-
struct the configuration space of the model; in Sec. III we
introduce the Hamiltonian; in Sec. IV we solve the
Schrédinger equation; in Sec. V we calculate the optical
absorption; and in Sec. VI we discuss the results and con-
clude the paper.

II. CONFIGURATION SPACE:
THE BETHE LATTICE

How do we describe the set of all configurations of one
hole and the (N —1) spins on a N-site lattice? First, one
must specify the total S of the spins, which is a constant
of the motion for the Hamiltonians that will interest us
here. We will assume that we have S*=x1, having in
mind a Néel state to which a hole has been added to the
down-spin—up-spin sublattice, respectively. Second, one
must label those configurations; we will take a construc-
tive approach, in that we start from a hole added to a
Neéel state and consider those states (or configurations)
that are “‘accessible” from that starting point.

To be more precise, consider the model introduced in
the Introduction: a hole moving in an Ising antifer-
romagnet with initial Néel order. Since, as the hole
moves through the lattice, it disturbs only the spins on
sites that it has visited, each trajectory creates a particu-
lar spin configuration. It seems natural to use the trajec-
tories to label the spin configurations; however, there are
some difficulties.

For instance, does every spin configuration (subject to
the constraint on total S?) correspond to a particular tra-
jectory? It is easy to see that the trajectory may not be
unique: Consider the example of a “Trugman cycle”
(TC) (see Trugman'®). Here the hole moves around a pla-
quette one and a half times to move to the other site on
the same sublattice. However, it can do this in either a
clockwise or anticlockwise TC. Thus there are two tra-
jectories corresponding to the same spin configuration.
In practice this redundancy is not a problem as the set of
trajectories with a significant TC component is small,
roughly 1% for the walls of length 6 in two dimensions.
We will return at the end of the paper to the more accu-
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rate treatment of this aspect. So much for uniqueness.
What of existence: Does every spin configuration have a
corresponding trajectory? Nagaoka® in an appendix
demonstrated that an arbitrary spin configurations with
the same total S? are always accessible from each other.

We may, therefore, assume that the space of accessible
spin-hole configurations can be represented by the space
of all trajectories of the hole. In fact we may restrict the
space to those that do not have side branches that only
consist of backtracks. (Any spin configuration associated
with a backtracked trajectory is clearly identical to that
with the hole on the same final state without the back-
track.) The trajectories may, however, self-intersect.
Thus the “configuration space” may be deduced recur-
sively: Starting with the hole on its “initial” site there
are Z possible configurations after one step of the trajec-
tory and Z —1 for each subsequent step. This defines a
Bethe lattice with the same coordination as the underly-
ing lattice, say for the square lattice in two dimensions
Z=4.

Let us now define some terminology for the Bethe lat-
tice. First there is the “‘generation number” n associated
with the number of times the preceding construction has
been performed. This runs up from —1 for the initial
site. Then we have a set of “sibling numbers,”

(i 1sigy e esimy---sig)=n;ii},

that denote a particular site by the sequence of sites on
the Bethe lattice visited to arrive at that site from the
central site. The actual assignation of the sibling num-
bers to the sites of one generation connected to a give site
of the previous generation is arbitrary, and it is not neces-
sary to make a particular choice. The sibling numbers
take on the following values 0 <i, <&2 —1, where

(Z—1) n>0
E=1Z n=0 (2.1)
1 n=—1.

We will find in the next section that not only is the Bethe
lattice the configuration space of the problem, but that its
geometric structure enables a rather natural representa-
tion of both the hopping and (more suprisingly) the *““po-
tential” parts of the Hamiltonian of the problem.

III. THE HAMILTONIAN

There has been much work previously on the Bethe-
lattice tight-binding model, in terms of deriving the local
density of states from the Green function; however, there
is none that are aware of that discusses the nature of the
eigenstates (in particular the ‘“noninvariant” states that
we discuss here). It turns out that the nature of the
eigenstates is crucial to the determination of the optical
absorption, so we will discuss this point at some length.
The Hamiltonian has both a kinetic (hopping) part, #,,
associated with the thole motion, and a potential part,
H,, due to the Ising exchange between the spins. Let us
consider the hopping part first:

Hy=—t 3 {ln;{i}X{n+1;{j}|+H.c.},
nlij (i)

(3.1
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where ({i},{j}) indicate paths which up to n are
equivalent. Here the states |n;{i}) are naturally associ-
ated with the Bethe lattice sites, n;{i}. We will assume
that the hopping parameter, ¢, is positive.

The potential part of the Hamiltonian is due to the
hole scrambling the spin configuration from the Néel
state. We will approximate the change in the exchange
energy of the spins due to the hole motion as being pro-
portional to the arc length of the trajectory, measured
from the site that the hole started from in the perfect
Néel state. The interpretation of this is that the hole
leaves a “string” of flipped spins behind it, each of which
is parallel to all but two of its neighbors (or all but one in
the case of the first site of the trajectory). Thus for each
unit of arc length the hole increases its energy by an
amount proportional to the exchange constant, J. Since
the arc length is the same as the generation number
(remember that backtracks do not exist), we see that the
Ff, may be expressed as

H,= 3 Valn; i) ns i}l (3.2)
nfi}
where
(Z=2)/2n +(Z—1)J/2 n=0
Va=10 n=—1. (3.3)

Let us discuss the validity of the assumption of the poten-
tial being proportional to the generation number. There
are, in fact, no devitations from linearity unless the tra-
jectory encounters itself, or a site neighboring itself (in
the future we will call both possibilities ‘“‘encounters”).
So in high dimensions the potential becomes linear. Since
we are in two dimensions, we must, however, consider
this point more carefully, first in the specific context of
the Trugman cycle. In that case the potential initially
grows linearly, but then returns to zero, as the spin sys-
tem is returned to the Néel state on completion of the
TC. Thus the TC’s gives rise to “pits” in the linear po-
tential, which however are rather dilute, as will be es-
timated in the last section of the paper.

In the more general case, it is clear that the potential is
at best when large and typically decreased by the en-
counter. Let us estimate, roughly, the diminution of the
potential at large generation numbers. We will use the
faact that “typical” trajectories will be random walks and
so, in two dimensions, be area filling. “Typical” means
that we select a site on the Bethe lattice at random that
corresponds to picking a random trajectory in real space.
(We do not expect the exclusion of trajectories with back-
tracks to be important asymptotically.) The area filling
implies that the hole will scramble an area of spins,
meaning on average that the potential should still be
linear with the generation number [since in a two-
dimensional (2D) random walk the arc length is propor-
tional to area covered], but with a coefficient correspond-
ing to half the neighbors of a given spin being ferromag-
netically aligned (i.e., approximately ZJ/4). Thus one
expects that the potential will still be asymptotically
linear on average, although the coefficient will be dimin-
ished by a factor of around 2.
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IV. SOLUTION

Given that the the potential only depends on the gen-
eration number, it is not suprising that the dependence of
the eigenstates on the generation number ‘‘separates”
from the dependence on the sibling numbers. As a conse-
quence we will see that the equation for the general
dependence of the eigenstate includes a term depending
on the quantum numbers associated with the variation
with sibling number. This has some parallel with the sep-
aration of the radial and angular dependence in a central
potential and the presence of a centrifugal potential, re-
spectively. Mathematically the origin of the separation is
the symmetry of the Hamiltonian under permutations of
the sibling numbers.

Were the generational dependence to be considered
alone, the problem becomes that of a single particle in a
one-dimensoinal linear potential; the role of the spin
configuration, or string, is merely to produce the poten-
tial. The relative phases of the string configurations are
obtained from the sibling dependence. The latter is the
novel part of this treatment, and will lead to some
surprising results such as states where the hole is never
found with an arc length less than a given amount.

We will initially illustrate this distinction by consider-
ing the simple case where the hole is confined to within
one lattice site of its initial position. (We will call this
problem the “tight-binding star” for future reference.)
The “star” is a central site connected to, say, four neigh-
bors, the “arms.” Assume that the site energy of the
cogenerational sites are the same. There are two “invari-
ant” states with no phase differences between the ampli-
tudes on the arms. Then there are the three noninvariant
states, with phase variation between the arms, necessitat-
ing a zero on the central site. A useful way of describing
these states is by assigning the corresponding phases on
each arm as powers of the four roots of unity, the invari-
ant states being labeled by the power zero and the three
noninvariant states by the next three powers.

This mode of description may be applied to all the
nodes of the Bethe lattice in the following way. First let
us define w; to be the appropriate roots of unity that will

play a similar role to those used in the tight-binding star:

w; =exp(2mi/E}) 4.1
Then let us transform the states of daughter sites, associ-
ated with a given parent site, weighting this with the
different powers of the appropriate roots of unity. The
utility of the transformation is then made clear by reex-
pressing the Hamiltonian in the new basis. Let us define
the unitary transformation:

1

n;fa})=—= o

In;fal Vs, 12-1'
Here we have defined the normalization, S, =Z(Z —1)"
for n 20 and S_; =1. The Greek indices, {a} denote the
conjugate entities to {/} and we will be labeled the “si-
bling momenta,” in analogy with the conjugate coordi-
nates and momenta. For convenience let us associate the
sibling numbers with “real” space and the sibling mo-

'wZ’""'In;{i}) . 4.2)
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menta with ‘“momentum” space. Notice that these
definitions are specific to the Bethe lattice. The number
of basis states in momentum space scale with generation
in the same way as the states in real space and may be
|

H=—t
n{fal{B})

Again, the notation {{a}{B}) is used to indicate that a
parent state is connected to a daughter state. However,
in contrast to the real-space representation, a parent state
is connected to only one daughter state. This is under-
stood by realizing that in real space, the state that is cou-
pled describes an invariant combination of daughter
states. Conversely, the states that are decoupled describe
a noninvariant combination of real daughters states that
force the amplitude at their parent site to be zero. We
will now see how this is manifested in the Schrodinger
equation. Here ¥,,, is the amplitude of the state

In;{a}):
(E—V, )¢)al;n=—t(§n+1¢ia’01§"+l
+§n8a",0¢'§al;n—l) .

Let us consider a state that has an amplitude at some
generation, m, and in particular, has an invariant sibling
momentum of a,, =0 at that generation. Firstly use the
Schrodinger equation (4.4) to determine the amplitudes at
higher generations, n, only sibling momenta, «, . ,, =0,
have a nonzero amplitude. This may be interpreted in
real space by the following: An eigenstate that has a
nonzero amplitude at a given site forces the daughter
sites to have the same amplitude and phase as each other.
This implies the definition that states with sibling mo-
menta, a =0, are invariant. Secondly, we may deduce the
eigenstate amplitudes at Jower generations. Providing the
momenta, a, =0 the amplitudes remain nonzero as we
progress inward. However, suppose we assign an ampli-
tude to a noninvariant momenta a, >0. Then we are
forced to terminate the series: The amplitudes at genera-
tions n —1 through to the central site are forced to be
zero. Effectively, we have disconnected a one-
dimensional branch of the lattice in momentum space.
The quantum numbers that emerge from the separa-
tion of the variables are the following: m is the first gen-
eration where the wave function has a nonzero ampli-
tude, i labels the choice of the noninvariant momenta
a,,, and p labels the set {a} for n <m. The wave func-
tion separates into a product form [cf. R,,’,(r)Y,’,,(f),d))]:
1l’{ox};nzg §

n,m® v

4.4)

(4.5)
and substitution of (4.5) into (4.4) yields
(E=V IS m=—t[En+15 +1,m
+£,(1=6, ), -1 m], nZm .
(4.6)

We see that each of the eigenvalues of (4.6) has a degen-

S Eallnsia){n+1{B.B, =0} +H.c.}+ I V,ln;{a})(n;{a}l .
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thought of as defining a conjugate Bethe lattice. Howev-
er, by examining the Hamiltonian in the transformed
basis, the connectivity of the states is shown to be
different:

(4.3)

nial

r

eracy, of order (&2, —1)S,, _,, associated with the free-
dom in é’m u To illustrate the form of the eigenstates, the
wave functions for states where m = —1 (where all the
hole trajectories of a given length enter with the same
amplitude and phase), and states where m=0 (where a
noninvariant collection of phases at generation n=0
force a node at the central site) are shown schematically
in Fig. 1.

Let us return to consider the rather surprising feature
that the wave functions describing the noninvariant states
have areas of zeros about the central site. The physical

(b)

3

®

O—
’

FIG. 1. Schematic diagram of the amplitudes of the hole tra-
jectories up to two lattice parameters entering: (a) the purely in-
variant wave function where m = —1, and (b) a noninvariant
wave function where m =0. Circles with similar shading have
the same amplitude, but in the case of the noninvariant wave
function the phase of each site on the four branches is denoted
by the appropriate factor in the diagram. The central site of the
noninvariant state has zero amplitude.
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significance of the zeros is that these states have lower
limits to the lengths of trajectories that the hole may ex-
plore. There is a certain parallel with the centrifugal bar-
rier encountered in the central potential problem, but this
contrasts with the evanescent decay of the wave function
in that instance. The reason for this is that in the central
potential problem the phase variation only enforces a
node at the origin. However in the Bethe-lattice problem
the wave function is continually forces to have nodes as
the generation number is increased, due to phase varia-
tion round each parent site.

In fact we may further simplify (4.6), as the generation
number enters only as an offset to the potential. Since the
potential is linear, the difference equation relating near-
neighbor generations may be written in a general form
where the quantum number, m, is absorbed into a
redefinition of the potential. By defining the dimension-
less ratio z =8V (Z—1)"/ZJ and E =J(m +3—v) the
Schrodinger equation may be rewritten as

Antv) o ()=

G, (2)+ G, (2). (4.7)
The difference equation is satisfied by the Bessel functions
of both the first, J, . (z), and the second kind, Y, , (2),
in the semi-infinite limit pertinent to the Bethe lattice.
(Note that the energy of the state enters only in the order
of the Bessel function.) Since Bessel functions of the
second kind diverge as n — «, we may discard them as
we are seeking finite energy, i.e., localized, states.

The eigenvalues are determined from the boundary
condition imposed at the origin or termination of the
tree: This is the requirement that the amplitude of the
wave function vanish at generation, m —1. The order of
the Bessel function is determined by this, leading to the
final “generational” quantum number s. Generally, the
eigenvalues are determined by J_,, ,(z)=0. However,
the eigenvalues of the purely invariant states (m = —1)
are complicated by the coordination of the origin. In this
case we need to use the first two difference equations,
which relate the wave-function amplitudes on the first
three generations [here E=V' Z /(Z —1)]:

2
%gozggl )

4.8)
26 =£50+,

For a given value quantum number, m, there will be an
infinite set of states that are denoted by the quantum
number s. For weak string tension (z>>J) then
v~(t/J)—(t/1)**f (s) (the Nagaev'?), which may be ob-
tained by scaling, with f (s) being estimated to be 52/ by
Wentzel, Kramers, and Brillouin. So the gap between the
states for a given m scales like (¢ /J)?/3J, whereas the gap
between successive m scales like J. This implies that the
first excited state is the first noninvariant state and not a
higher invariant state. In fact for a large range of ¢/J,
the second excited state is also a noninvariant state.

We may now comment on the relation between our re-
sults and Nagaoka’s® theorem by determining the spin or-
der induced by the hole. The spin order is changed by
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the hole by its motion, in particular, leading to a superpo-
sition of states with different spin configurations, with the
hole on the same site. The simplest example of this is the
superposition of spin configurations induced by the am-
plitudes for the hole to be on its initial site and the same
site after a cycle (not a TC, but two steps short of it)
around a plaquette. In that case there is a superposition
of states for the two spins on the sites that would be visit-
ed to complete a TC. In the second state, they are re-
versed and, in the ground state for hole-spin system, su-
perposed with the same phase. Thus by comparison with
the Néel state where the two spins are in an equal mix-
ture of singlet and triplet states, one now has a predom-
inantly triplet configuration. (If the sign of the superposi-
tion had been negative, then the state would have been
mainly singlet.) As the string tension tends to zero, these
two configurations tend to have the same amplitude, and
hence one gets a pure triplet state. This is the sign of
Nagaoka ferromagnetism, occurring in the XY plane (as
one is always dealing with total S?=0). [Equivalently
one may examine the “transverse” part of the spin-spin
correlation function (i.e., in the XY plane) to note that
there are ‘‘ferromagnetic” correlations.]

The tendency towards Nagaoka ferromagnetism may
be deduced for the case of several spins being on the
wrong sublattice by noting that the expression for the
operator for the total spin may be rewritten as follows:

AV
S,=2 3 S:+2 3 S,S,

n=1 n#n'

N
=23 S2+2 3 [SISE+LS, S, +S,58.7)].

n=1 n¥n'
4.9)

In evaluating the expectation values of this, the only part
that has off-diagonal contributions from the superposi-
tion of different spin configurations is the sum over the
spin raising and lowering operators. To make this contri-
bution maximal (ferromagnetic) the different spin
configurations must have the same phase. Since the
ground state does have the same phase for all spin
configurations (with the hole at the same site), the hole,
within its confined region, tends to create ferromagnetic
(Nagaoka) order.

The situation with excited states, both invariant and
noninvariant, is more complicated —some pairs of spins
are in relative triplets and some are in relative singlets,
depending on the sign of the superposition of the two
components. Thus there is at least a tendency for Nagao-
ka ferromagnetism in the ground state, growing as the
string tension tends to zero. More cannot be said without
the consideration of TC’s, as the nature of the real lattice
enters into statements about which an eigenvalue of total
S? is the ground state (e.g., whether the lattice is frustrat-
ed or not and the sign of the hopping term).

We have seen that the momentum space representation
provides a simple way of understanding the separation of
the variables. However, since we imagine the Bethe lat-
tice embedded on the square lattice, let us reexpress the
wave functions in the real-space representation. Since all
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the wave functions with a common value of m are degen-
erate, instead of labeling the eigenstates by a sequence of
momenta we may specify a path in real space, redefining
the quantum number p. That is, u describes a path on
the real-space Bethe lattice and not the momentum space
version. Incorporating the normalization, the wave func-
tions are described by

Im,u,m,s) =3 Gramin;i}) , (4.10)
nfil
where
g'"'"'sa)l,,"'S“,mm_‘ n2>m
Gt = 0 n<m (4.11)
and
Jn—m*1+v (Z)
m,n,s — $
g NS i (4.12)
ms~n-—m —
Finally, the normalization is given by
12
(ZZI) m>0
Nons= 3 [y sy @DP |(Z—1) m=0 4.13)
PO 1 m=—1.

V. OPTICAL ABSORPTION

How many the internal excited states of the quasiparti-
cle be experimentally detected? The change in the nature
of the spin distortion between the states might imply that
neutron scattering would allow transitions between the
states to be observed. However, neutrons, when scat-
tered, flip only one spin in the system, and none of the
states mixed by the hole motion contains a single spin
flip. Optical absorption only couples to the hole motion
(to a good approximation), and hence transitions between
the “internal” states are not ruled out by any such selec-
tion rule. In this setion we will calculate the optical ab-
sorption noting that only transitions between the invari-
ant and noninvariant states are allowed.

The inclusion of a vector potential for a single band
was first discussed by Peierls!* (see also Harper!®). Here
we adopt a more direct approach of constructing the sim-
plest gauge invariant tight-binding model—in the same
spirit as the introduction of a gauge field on a lattice in
particle physics. The treatment agrees with Peierls’ for
long-wavelength small-amplitude disturbances. The elec-
tromagnetic field is conveniently represented by a vector
potential, A (n,€), associated with each link, € between
lattice sites n and n+€. One makes connection with the
continuum case by equating (assuming slow variation of
the continuum vector potential):

A= [""4x)dl.

n

(5.1)

To couple the hole motion to the electromagnetic field,
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while maintaining gauge invariance, we form the

modified hopping term, #.:
ﬂhemz —t 2 { ln>eiA(n,€)

X{(n+e|+|n+€)e 4™(n|} . (52

For linear-response theory, we will make the gauge
noninvariant expansion of the exponential factors and
moreover assume that we may approximate the vector
potential to be independent of the position of the link
(long-wavelength limit) and to be nonzero only for links
in the X direction (of course this constitutes a limitation
of gauge freedom):

A(n,8)= A4,8(€,%X) . (5.3)

When substituted into (5.2) and the ordinary hopping
term is neglected, we find

Hem™>—i1 3 A,8(8,X){|n)(n+&|—|n—2)(nl}

=—(#)4, Y 8(e,x)F(ne) , (5.4)

where we have implicity defined the non-gauge-invariant
current operator, &#(n,€), associated with link € emanat-
ing from site n.

We immediately see a difficulty in coupling the hole
and its spin distortion to the electromagnetic field: The
perturbation is naturally discussed in terms of the under-
lying square lattice, however the hole dynamics are most
easily described on the Bethe lattice. The relationship be-
tween the two lattices (i.e., which links on the Bethe lat-
tice are in the X direction) is not simple. Fortunately we
will see that we do not need to know the precise relation-
ship between links on the Bethe lattice an in real space.
The method that we employ is similar to that of Brink-
man and Rice,’ with some modification: We have a finite
string tension, which they did not; and we will construct
our arguments around the consideration of matrix ele-
ments directly, rather than in the Kubo formula itself.
Our approach makes it clear which states contribute to
the absorption.

The tight-binding star again provides intuition for the
more general problem. Matrix elements of the current
operator between the invariant states are zero, due to the
states being of even parity while the operator is odd pari-
ty. However, the electromagnetic field is able to excite
transitions from the invariant to the noninvariant states,
exploiting the mixed-parity nature of those states. The
foundation of the discussion of the general case will be
similar parity considerations.

In practice we need only consider excitations from the
ground state, which is the lowest invariant state. As in
the case of the tight-binding star, the lack of phase varia-
tion forbids transitions between invariant states, although
the argument is a little more subtle (due to the relation
between the underlying lattice and the Bethe lattice being
less simple than in the tight-binding star). Every trajecto-
ry with a component parallel to the vector potential (i.e.,
parallel to X) has an ‘“‘image” trajectory formed by



41 INTERNAL STRUCTURE OF HOLE QUASIPARTICLES IN . ..

reflection perpendicular to the X. As a consequence of
the invariance of the wave function, the contribution to
the matrix element from a hole moving along X is can-
celed by the contribution from the image trajectory,
where the hole moves in the negative X direction. This
notion is contained in Brinkman and Rice.’

Matrix elements to the noninvariant states fall into two
classes. The first noninvariant set of states with m=0 is
particularly simple, and we will consider it first. (We will
see that this is due to the coordination of the origin being
four.) Transitions between the ground state and the first
noninvariant states closely resemble the tight-binding
star. As in the case of the invariant states most of the
contributions to the matrix elements vanish pairwise (Fig.
2). The only contribution that survives comes from hole
motion purely parallel and antiparallel to the X direction
where the noninvariance of the states provides the re-
quired phase to prevent cancellation. Specifically, for the
first noninvariant states we have seen that there are three
possible wave functions described by 7. The amplitudes
of the wave function along each branch from the origin
are the same but their phases are prescribed by the direc-
tion of the link to the first generation (cf. the tight-
binding star). For two of the three excited states, denoted
by 7, the phase along +% is of opposite sign to the phase
along —X. However, in the third case they are the same.
This sign change is exploited by the current operator to
yield the following:

(0,0,7,s|#(0,%)]0) =2x"(1,s), (5.5)

where the function Y is purely a function of the radial
variation of the wave function defined more generally for
arbitrary m and is given by

X (m,s)= b gm10gntlms

n>m

+ 2 gn,m,sgn+],'1,0‘

n>m

(5.6)

Notice that since the only terms that contribute enter
from at most two paths emanating from the origin of a
Bethe lattice, the contribution from higher-order terms in
(5.6) decay exponentially due to the normalization associ-

]

FIG. 2. Contributions to the matrix elements of the current
operator taken between the ground state and the first noninvari-
ant state: “vanishing pairs” are shown wavy, “contributing
pairs” are shown dashed.
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ated with the density of possible paths. Thus, the leading
order terms represent a good approximation to the sum.

The higher noninvariant states (m >0) are also able to
couple to the ground state by exploiting the phase varia-
tion at their “terminating” generation (the lowest genera-
tion with a nonzero amplitude). However there are now
two distinct possibilities, this complication arising from
the presence of only three links from one site to the next
generation whereas there are four directions: when look-
ing for an image path, we will see that it may not exist.
Consider a site in the terminating generation. Nonex-
istent image paths occur when the link (from the previous
generation) to the site has a nonzero vector potential (i.e.,
corresponds to a link in the real lattice in the +X direc-
tion). In that case, the image path does not exist, as there
is no link in the next generation of the appropriate type.
So in this case, there is no constructive interference (Fig.
3).

Matrix elements to the higher noninvariant states,
m >0, dependent on the link, €, to the branch node as al-
ready explained, are given by

{(m,u,n,s|#n,%)|0)

%[)(“L(m,s)—i)(“(m,s)] uelA

~ 7
X (m,s) pR|tA . 550
Let us concentrate on the limit of interest where the
string tension is relatively high. For ¢t = J the spacing of
the zeros of the Bessel function show that the first two ex-
cited states have m=0,1 and s=0. In this limit (5.6) may
be convienently approximated by

m,—1,0,m+1,m,0

x*(m,0)=¢g g (5.8)

This is clearly very small in the limit of weak string ten-
sion, due to the small amplitude on the initial sites. Am-
plitudes for transitions to particular higher states are
strongly suppressed by normalization factors. We will
comment on the relation to experiment in the discussion
section.

-

{1}

FIG. 3. Contributions to the matrix elements of the current
operator taken between the ground state and a higher nonin-
variant state for the different directions of link: (a) €L A, (b)
CE.
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VI. DISCUSSION

We will now review the approximations that we made,
comment on the differences caused by the introduction of
Heisenberg coupling between the spins, consider the
changes required to discuss “Cu-O” planes and conclude.

The most important approximation that we made was
the neglect of Trugman cycles. We argued that in
sufficiently high dimensions this approximation becomes
exact, since trajectories intersect themseleves very infre-
quently and the proportion of TC’s is even smaller—
varying as d ~* for the shortest examples (not the even in
2D this is rather small). The main effect of the TC’s is to
delocalize the quasiparticle and the scale of this effect
may be estimated by considering the Bethe lattice. Given
that a TC is performed by looping around a plaquette,
this suggestion may appear strange, as the Bethe lattice
has no loops. However, it must be remembered that the
Bethe lattice is the configuration space of the trajectories,
not merely the position of the hole—so that a loop in real
space need not be a loop in configuration space, as the
spin configuration will not be returned to the starting
point in general.

We may qualitatively consider the resulting ‘“band
structure” for the hole, by using a *‘tight-binding” pic-
ture. Initially consider the nonorthogonal set of lowest in-
variant states that are centered on the sites [*“Trugman
sites” (TS)] on the Bethe lattice associated with Trugman
cycles from the original site. These states will broaden
into bands under the combined influence of the nonortho-
gonality and the difference between the assumed and real
potentials on the lattice—the potential not actually in-
creasing with the generation number as a TS is ap-
proached, but diminishing. Due to the dilute nature of
the TS’s in large dimensions, the wave function based on
a particular TS has a small amplitude at neighboring
TS’s. Thus we expect that the band width to tend to zero
asd— .

We may also include higher states based on each TS in
the same manner, each generating a corresponding band.
However the band widths will decrease as the generation-
al quantum number becomes large, since the amplitude at
the low order TS’s (which are the least dilute) will dimin-
ish. Similarly for the noninvariant states. (In all of these
considerations, we are neglecting the weaker—in the
sense of an even more dilute set of sites—effect of return-
ing both hole and spin systems to their original
configuration after performing the same TC twice.)

Surprisingly, the Ising model that we have discussed is
most appropriately applied to the Ba,_, K, BiO; materi-
als. Varma'® has shown that the formal charge ordering
of Bi** and Bi*" may be regarded as analogous to anti-
ferromagnetic order, with the two charge states being
two pseudospin states. The nearest-neighbor electrostatic
repulsion plays the role of the (dominant) Ising coupling,
and the XY coupling is related to the kinetic energy. In
that case the motion of a hole is analogous to that of the
motion of a hole in an antiferromagnetic
(d’Ambrumenil'?), with a “string” of displaced charge or-
der behind it.

Let us now examine whether the Ising limit provides
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insight into the case with finite X-Y coupling. First the
X-Y coupling provides an additional means for the hole
to delocalize, as has been discussed by Shraiman and Sig-
gia.'> § S~ may operate on the two spin flips at the end
of the string annihilating them. The string then appears
to start at one magnetic lattice parameter removed from
the initial site, hence allowing the quasiparticle to move.
Of course this is the simplest possibility; in general the
tendency of spin dynamics is to cause the destruction of
the strings—the set of spin flips that constitute the
strings evaporating into individual spin waves. The ques-
tion as to whether so remnant of the string picture
remains has been considered by Kane, Lee, and Reed!'®
for the case of invariant states. They find, using a Green
function approach, that peaks in the spectral weight at
the energies estimated by a string approach should still be
visible. More detailed calculations by Gros and
Johnson'® show that some string features remain in their
calculations, namely a discrete quasiparticle pole at low
energies. They do not comment on the distribution of
spectral weight at higher energies.

Providing some remnant of the Ising string remains in
the presence of Heisenberg exchange, the following
prescription provides a useful way of deducing its im-
mediate effect on the hole quasiparticle. In the absence of
TC’s, a hole becomes localized in a quasiparticle centered
on the sublattice state at which it was notionally intro-
duced. In this case, each lattice site may be associated
with a Bethe lattice of spin configurations associated with
hole trajectories from that site. We have seen how TC’s
provide weak links between Bethe lattices on sublattice
sites. The spin dynamics provide further connections at
an order as low as two generations. The action of the
spin dynamics on the displaced spins of a string of length
two creates a new string this time of zero length but at-
tached to a neighboring sublattice site. The hole acquires
a bandwidth which, when the string tension is high is ex-
pected to scale with the exchange constant. Further-
more, it becomes energetically favorable for a hole quasi-
particle to acquire a component of a noninvariant state to
enhance the ‘‘effective hopping integral” along the direc-
tion of motion. We are currently making an extensive
study of the leading order effects on the XY exchange.

It is interesting to note that the original data of Tho-
mas et al.?’ are not inconsistent with absorption associat-
ed with transition to the lowest noninvariant states. Note
that the transition will occur at an energy of order J,
which does not depend on the hopping parameter, ¢,
which is very hard to estimate. The peak visible at low
temperatures at approximately 0.5 eV is consistent with a
high string tension, with J~0.1 eV, which may derived
from the neutron-scattering results (Birgeneau and co-
workers!).

Finally we should discuss the relation of our results to
two-band models (e.g., Emergy?! and Varma and co-
workers?), where the O sites are included explicitly.
Zhang and Rice? have argued that an effective one-band
model may be constructed by forming singlets from a
Cu-spin and a hole on neighboring O sites. However the
form of the resulting Hamiltonian is still controversial
(see, for instance, Emery and Reiter?* and Long®).
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FIG. 4. Assumed relative position of the Cu'* and Cu**
configurations, with respect to the O p states and illustration of
a hopping process via the Cu'* configuration.

Let us consider the two-band case where hopping is via
the Cu™ configuration (see Fig. 4), that is the Cu®"
configuration is inaccessible. We may then consider, as
before, ‘““‘trajectories” that are now defined on both the
Cu and O sites. When the holes “cross” a Cu site, they
may flip the spin and hence as they move leave a wake of
flipped spins, as in the one-band case. The complication
is that there is also a matrix element for non-spin-flip
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hopping. This is an alternative avenue for delocalization
to the XY coupling. However in the limit that we have
chosen, the spin-flip amplitude is larger. Thus there is a
considerable parallel with the one-band case, and our re-
sults should have some applicability in that case as well.

To conclude, we have examined a model consisting of a
hole moving in an Ising Néel background. We argued
that to a good approximation, the configuration space is a
Bethe lattice. The eigenstates were found and it was
pointed out that some of these had not previously been
considered. They consisted of weighting different
configurations with the same arc length of trajectory with
different phases. These were shown to determine the op-
tical absorption. We pointed out that the feature ob-
served in the optical absorption at approximately 0.5 eV
may be a remnant, in a Heisenberg system, of the Ising
string. Work by Kane, Lee, and Read'® and a Gros and
Johnson'? was mentioned in support of this.
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FIG. 1. Schematic diagram of the amplitudes of the hole tra-
jectories up to two lattice parameters entering: (a) the purely in-
variant wave function where m = —1, and (b) a noninvariant
wave function where m =0. Circles with similar shading have
the same amplitude, but in the case of the noninvariant wave
function the phase of each site on the four branches is denoted
by the appropriate factor in the diagram. The central site of the
noninvariant state has zero amplitude.



