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The dynamics of the ordering processes in two-dimensional lattice models with annealed
vacancies and nonconserved order parameter is studied as a function of temperature and va-

cancy concentration by means of Monte Carlo temperature-quenching simulations. The models
are Ising antiferromagnets with couplings leading to twofold-degenerate as well as fourfold-
degenerate ordering. The models are quenched into a phase separation region, which makes
it possible for both types of ordering to observe the following scenario of ordering processes:

(i) early-time nucleation and growth of ordered domains, (ii) intermediate tim-e trapping of the
mobile vacancies at the domain boundaries, and (iii) late-time diffusion of vacancies along the
domain-boundary network towards the surface. In the case of high dilution, the ordering pro-
cesses correspond to early-time island formation and late-time coarsening and compactification
via coalescence. The domain-size distribution function, which is approximately log-normal, is
shown to obey dynamical scaling over a substantial time range for both types of ordering. The
growth for the pure systems is found to be described by a power law with the classical growth
exponent n = &. For the dilute systems there is a distinct crossover at late times to a much

slower, possibly logarithmic growth mode. These results apply to both types of ordering, sug-

gesting that the effects on ordering dynamics of vacancy diffusion and annealed randomness do
not depend on the symmetry of the order parameter. The results of the model study are relevant
for the interpretation of experiments on ordering in impure systems and off-stochiometric alloys,
grain growth in radiation-damaged materials, and may also shed light on aspects of sintering
processes. The finding of a crossover from an algebraic growth law for the pure system to a
slower, possibly logarithmic growth behavior in the dilute system is in accordance with recent
high-resolution low-energy electron-diffraction experiments on the oxygen ordering on W(112)
surfaces doped with nitrogen and time-resolved x-ray-scattering studies of the ordering in thin
films of Cu3Au alloys with extra Cu.

I. INTRODUCTION

The study of the dynamics of ordering processes in

condensed matter is not only important for materials
science applications but of uttermost significance for our
understanding of nonequilibrium pattern formation and
the evolution of order in systems far from thermodynamic
equilibrium. 2 These are very general phenomena, which
often arise in systems which suddenly become subject to
alteration in thermodynamic conditions. A typical sit-
uation involves a system which is thermally quenched
below a phase-transition temperature. The system will

then initially be unstable or metastable and start to un-

dergo a spontaneous ordering process, leading first to
nucleation and growth of small clusters of ordered do-
mains and later to a coarsening of the domains. Fi-
nally, the system will approach its uniformly ordered
equilibrium state. In particular, the study of univer-
sal aspects of the dynamics of late-stage ordering has
been intensified recently, experimentally as well as
theoretically, and it has been found that the or-
dering phenomena display dynamical scaling and can be
classified into a few universality classes. These classes

are mainly determined by whether or not the order pa-
rameter is a conserved quantity. Quantities like ordering
degeneracy, spatial dimension, details of
the interaction potentials, and whether or not addi-
tional conservation laws are operative appear to
be irrelevant as far as the value of the growth exponent
is concerned.

The true asymptotic growth behavior may, how-

ever, often be veiled by crossover efkcts, 36 e.g. , due
to low-temperature activated processes or
parameter effects related to the details of the inter-
action potential. ~4 ~ Possibly more important for
many real materials under experimental circumstances
is that the growth behavior may be influenced by effects
due to nonideal conditions and imperfections, such as
impurities, 4 vacancies, random couplings
or random fields, and second-phase particles.
All these different circumstances impose some kind of
randomness with which the ordering process has to com-

ply, leading to effects which may slow down the growth
and eventually pin it, or possibly even lead to a com-
pletely diA'erent growth mode. Two intensively stud-
ied cases are that of random fields» and that of
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quenched (immobile) impurities and vacancies. is ss 4s In
both cases the growth is found to be slowed down dramat-
ically and there is theoretical evidence that the growth
mode becomes logarithmic at late times. "~

The case of annealed (mobile) vacancies or impuri-
ties and their eH'ects on ordering dynamics has been
studied much less. 4 This is the main topic of the
present paper. This case is that of a system with at
least two components, and it often involves phase sep-
aration dynamics, si depending on the actual phase dia-

gram, i.e. , the microscopic interactions with and among
the mobile imperfections. Similar to the case of quenched
impurities4~ or random fields, s~ the present case is in-

teresting because it may implicate activated processes
by which the impurities interact with the moving do-
main boundary. 4 This proves to have a dramatic ef-
fect on the growth behavior. The cases of annealed and
quenched impurities (or vacancies) differ from the case
of the random-6eld Ising model. 4~ in that the random-
ness in the annealed case does not couple directly to the
local order parameter as is the case in the random-field
Ising model. This is an important distinction from the
point of view of nonequilibrium dynamics. 4~ s2

Two-dimensional chemisorbed molecular overlayers on
solid surfaces constitute a particularly suitable class of
systems for studying fundamental aspects of ordering dy-
namics, since these systems provide a richness of ordering

symmetries and degeneracies. They are attractive to
model by computer-simulation techniques, but it is un-
fortunately very difficult to obtain reliable time-resolved
experimental data from them. Moreover, the kinetics
of ordering and growth on surfaces may be strongly in-
fluenced by surface inhomogeneities, such as steps and
impurities. Only very recently has the first systematic ex-
perimental work been reported on the growth kinetics of
a chemisorbed overlayer in the presence of impurities. is

In this paper we report on a Monte Carlo computer-
simulation study of a simple site-diluted Ising model with

(p = 2)- as well as (p = 4)-fold degenerate antiferro-
magnetic ordering; cf. Fig. 1. (p denotes the number of
degenerate ordered domains. ) The model has a noncon-
served order parameter. The symmetries of the order-
ing are the same as those of atomic oxygen chemisorbed
on the (110) and (112) surfaces of tungsten [0/W(110)
and 0/W(112)). A preliminary report on the results
for the p = 2 ordering has already appeared. These
chemisorbed systems are among the few for which time-
resolved experimental data are available. In the case
of an impurity-modulated adsorbate system, the only
one which has been studied systematically until now is
0/W(112) doped with nitrogen. s The general results of
the experimental studies on the pure systems are that
close to monolayer coverages, the ordering dynamics for
0/W(110) and 0/W(112) is described by an algebraic
growth law4

R(T)

with n 0.50 for 0/W(112) and n 0.28 for 0/W(110).
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FIG. &. Phase diagrams (temperature vs vacancy concen-
tration, c, and schematic representation of the two types of
antiferromagnetic ordering of the Ising model of Eq. (3). (a)
n ( z, twofold-degenerate (p = 2) antiferromagnetic order-
ing. (b) a & 2, fourfold-degenerate (p = 4) superantifer-
romagnetic ordering. The hatched areas denote regions of
the phase diagrams where the numerical determination of the
phase boundaries is uncertain.
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R(t) is the characteristic time-dependent linear length
scale of the growth process. The first growth-exponent
value quoted is in accordance with the classical re-
sult, n = &, from the theories of curvature-driven do-
main growth by Lifshitzss and Allen and Cahn. The
deviation of the latter result from n =

2 has been
interpreted as being either due to a low-temperature
crossover effect~7 or an effect due to a low rate of de-
excitation of a precursor state into the chemisorbed
state. ss Theoretically, it has been shown by computer-
simulation studies s 2 that both ordering degen-
eracies should lead to the classical growth law with
n = z. Specific calculations of ordering dynamics (with
a nonconserved order parameter) in models of 0/W(110)
(p = 4) P4 0/W(112) (p = 2),~s H/Fe(110) (p = 2, 3),zz

and Q/Pd(110) (p = 2, 3) 4 lead to n 0.50 inde-

pendent of the value of p. For the impure system, N-

doped 0/W(112), the experimental data obtained by
high-resolution low-energy electron-diffraction (LEED)
experiments~s suggest a dramatic slowing down of the
growth rate in a way which is consistent with a logarith-
mic growth law

R(t) - (lnt) (2)

with m 1. The results of the present model study
give evidence of a crossover from a pure-system algebraic
growth law with n =

z to a much slower, possibly log-
arithmic growth mode for the diluted system, in accor-
dance with the experimental findings.

Regarding ordering dynamics there is a conceptual
difference between the chemisorbed systems described
above and, e.g. , physisorbed and other open systems
for which the density is not conserved during the order-
ing process. For the chemisorbed systems, the density
(or total coverage) is constant, although the order pa-
rameter of the particular (2x 1) ordering is not. Only
for (lx1) ordering is the order parameter and the den-
sity the same quantity. However, it has been suggested7
that for low coverages of (2x1) phases the effect of the
antiphase boundaries may be irrelevant, and there is
an effective conservation law for the order parameter
via the density. This could imply the validity of the
Lifshitz-Slyozov mechanisms7 of growth via evaporation-
condensation processes subject to conservation of the or-
der parameter. This issue will also be addressed in this
paper.

A number of computer-simulation studies have been
carried out on the ordering dynamics in two-dimensional
models with quenched randomness, e.g. , the random-
field Ising model and Ising and Potts models with
quenched site dilution. All these studies sug-
gest a dramatic slowing down (possible logarithmic) of
the growth due to the randomness. Very few computer-
simulation studies have been reported on the effect of
annealed site dilution. The first one is the Monte Carlo
study by Mouritsen44 of orientational pinwheel order-
ing in models of diatomic molecules (Nq, CO) mixed
with rotationally inert molecules (Ar, Kr) physisorbed

on graphite. This is a rather special case in which the
mobile vacancies (the inert molecules) couple to the order
parameter. Subsequently, two Monte Carlo studies ap-
peared on the effect of diffusing vacancies of the ordering
in the square Ising ferromagnet. Both of these studies
were performed at very low quench temperatures, which

led to a pinning of the growth. Ohta et al. studied by
Monte Carlo techniques the domain-boundary morphol-

ogy in a diluted binary alloy model in tricritical quenches.
All these studies showed that, in the case of annealed va-

cancies and impurities, there is a tendency for vacancy
precipitation and trapping of vacancies at the domain
boundaries during the growth process.

The study of annealed impurity or vacancy effects
is closely related to that of ordering kinetics in off-

stoichiometric quenches of alloys in which the diffusional
motion of the excess atoms couple to the migration of
the domain wall. A recent careful time-resolved x-ray
study of the ordering kinetics in Cuo 79Aua zq alloys
indeed shows a crossover from the pure-system (CusAu)
algebraic growth law, Eq. (1) with n 0.50, to a loga-
rithmic growth law, Eq. (2), with m =1—2.

The layout of the paper is as follows: In Sec. II we in-
troduce the Ising Hamiltonian and its associated micro-
scopic dynamics. Section III deals with computational
details, including a description and test of the vector-
ized dynamics algorithm we have devised and used for
the present study. Sections IV and V are devoted to a
description of the results obtained for the ordering dy-
namics of diluted phases with twofold and fourfold de-
generacy, respectively. The computer-simulation results
are compared with available experimental data in Sec. VI.
The paper is concluded in Sec. VII.

II. MODEL

A. Hamiltonian and ordering symmetries

The site-diluted square-lattice spin-z Ising antiferro-
magnet with nearest-neighbor (NN) and next-nearest-
neighbor (NNN) interactions is described by the Hamil-
tonian

NN NNN

II = J ) o;o; + n ) o;o;.
i)j i+j

with cr; = 0, +1. The value cr; = 0 is associated with va-
cant sites. The global vacancy concentration is c. n mea-
sures the ratio between NNN and NN coupling strengths.
The lattice has free boundaries. We shall focus on the an-
tiferromagnetic case, J ) 0. For the pure system, c = 0,
and for n ( &, this model leads to simple c(2 x 2) antifer-
romagnetic order which is twofold degenerate (p = 2); cf.
Fig. 1. For n ) z, the order is of (2x 1) superantiferro-
magnetic type, which is fourfold degenerate (p = 4); cf.
Fig. 1. At a =

&
the two types of order are degenerate.

The phase diagram of this model as spanned by a and
temperature has been worked out by Binder and Landau
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for c = 0. 8 We have in this paper investigated the model,
Eq. (3), for n = 0 and a = 1 leading to twofold and four-
fold degenerate ordering, respectively. We shall, in the
following, refer to these two cases as the "p = 2" model
and the "p = 4" model. The transition temperatures in
the thermodynamic limit of the two models for c = 0 are
knT, /J 2.27 and 2.10, respectively.

In the case of annealed site dilution, c & 0, the sys-
tem is efFectively a two-component system which will

phase separate at sufFiciently low temperatures. The
phase diagrams of the two models are shown in Fig. 1.
The diagrams have been determined by Monte Carlo cal-
culations. It is important to notice that annealed site-
diluted models for any concentration, c & 0, in contrast
to models of quenched site dilution, will display cooper-
ative behavior and ordering, provided the temperature
is sufficiently low. In the very dilute range this implies
segregation of spins into ordered islands, i.e. , phase sep-
aration. There is a fundamental difFerence between the
phase-separated regions of the two models. The p = 2
model will simply phase separate into an antiferromag-
netically ordered phase with some dilution and an al-

most pure vacancy phase. In contrast, the p = 4 model
will at c = 50% support a so-called stoichiometric com-

pound which is a (2 x 2) superantiferromagnetic phase
[in fact a p(2 x 2) phase] in which the vacancies form
a 2 x 2 superlattice, which decouples all the NN bonds
and hence releases their inherent frustration. Therefore,
in the p = 4 model below c = 50%, the system phase
separates into a diluted (2 x 1) phase and a (2 x 2) phase
with some excess spins. Above c = 50%, there is phase
separation between a diluted (2 x 2) phase and an almost
pure vacancy phase. The case of c = 50% is therefore a
marginal case of the p = 4 model. In order to avoid ef-
fects due to the structure of the (2 x 2) phase we have
in this paper restricted ourselves to studying the p = 4
model for c ( 5%, in which interval it is found that the
effects due to the (2 x 2) ordering can be neglected. It
should be noted that the competition between (2 x 2) and
(2 x 1) ordering in the present model is similar to the com-
petition between herringbone and pinwheel orientational
ordering in the annealed site-diluted anisotropic planar
rotor model of 3:1 mixtures of diatomic molecules (Nz
and CO) and rare gases physisorbed on graphite. ~~ The
ordering dynamics of the (2 x 2) phases will be described
in a separate paper.

B. Model dynamics and annealed randomness

The ordering processes governed by the Hamiltonian,
Eq. (3), are based on a particular choice of microscopic
dynamics which involves spin-flip excitations as well as
vacancy difFusion. The spin-flip excitations involve sin-

gle sites, and they do not conserve the antiferromag-
netic order parameter. The vacancy difFusion involves
exchange of a spin and a vacancy at nearest- or next-
nearest-neighbor sites and a possible simultaneous spin
flip of the spin involved. The process conserves the global

vacancy concentration.
The dynamic model is implemented as follows

using standard Monte Carlo Metropohs importance
sampling. A site, i, and a NN or NNN site, j, to i are
chosen at random and the following possibilities are con-
sidered: (i) If 0; = &rz

—0, nothing happens. (ii) If rr; g 0
and 0& g 0, o; is randomly assigned a new value +I (spin
flip) with the standard Metropolis transition probability
of a spin flip. (iii) If o; g 0 and cd

—0, or o; = 0
and 0& g 0, the combined process of exchanging the site
variables and randomly assigning a value kl to the site
carrying the spin, is performed according to the Metropo-
lis transition probability of the combined process. In any
of the three cases (i)—(iii), the time parameter t is incre-
mented by one unit. This corresponds to a particularly
simple choice of time-scale ratio for the spin-flip dynam-
ics and the vacancy diffusivity. Obviously, this procedure
may easily be generalized to a variable time-scale ratio
as in the study by Srolovitz and Hassold. 4s It is impor-
tant to point out that for modeling a particular material
it may well be necessary to consider a particular time-
scale ratio. Moreover, it is known that the diffusion rate
of vacancies for many materials is strongly dependent on
temperature. Again, our model can be extended to ac-
count for such complications, provided the temperature
variation of the diffusion rate is known or assumed.

The site dilution of the model may be viewed as a
kind of randomness with which the system has to comply
during the nonequilibrium ordering process. For conve-
nience this may be called annealed randomness to distin-
guish it from the quenched randomness of random-field
Ising modelss and systems with immobile vacancies
or impurities. 4~ In the case of annealed randomness the
system has an additional mode of relaxation by way of
manipulating the vacancy distribution. In contrast to
the random-field Ising model, the model with site dilu-

tion considered here does not involve random variables
which couple directly to the local order parameter. z This
is of importance for assigning the model to a particular
dynamical universality class. ~s

III. COMPUTATIONAL TECHNIQUES

A. Measures of growth

The ordering processes are studied as a function of
time, t, , subsequent to a deep thermal quench from a
very high temperature to some low temperature, kBT/J,
in the phase separation region. The time is measured in
units of Monte Carlo steps per site (MCS/S). A random
configuration is used to represent the high-temperature
initial state. After the quench, the system starts to de-

velop domains of ordered spins which grow as a function
of time. A domain is defined as a connected region of
spins with the same type of ordering. NN as well as
NNN connections are admitted. Whether a spin is asso-
ciated with a particular type of ordering is decided by a
simple majority rule which involves the spin and its four
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nearest neighbors. Other choices of connectivity and do-

main rules are possible and the particular choice will not
affect the large-scale properties of the growth measure.

The simulations are carried out on a variety of dif-

ferent lattice sizes, N, in order to estimate 6nite-size
effects. The major part of the results to be reported
are obtained for N = 100 x 100 and 200 x 200. Some
quenches have also been performed on smaller lattices
in order to demonstrate, for the very high dilution, the
late-time compactification process.

The growth of the domains may be monitored using
a variety of measures of linear length scale which are all

expected to display the same time dependence, provided
scaling holds. ts In this work we have restricted ourselves
to using as a primary measure of length scale the aver-

age domain size, R(t), determined from the linear-size
distribution function, P(R, t),

R(t) = R(t)P(R, t)dR, (4)
0

where P(R, t) is appropriately normalized,

f~ P(R, t)dR = 1. P(R, t) is determined as an average
over an ensemble of size-distribution functions calculated
directly from the microconfigurations.

In addition to R(t) we have used the excess energy per
site

d E(t) = E(t) —E(T)
as a growth measure. E(T) is the equilibrium internal
energy of the system at the temperature to which the sys-
tem is quenched, and b.E(t) is therefore the total energy
associated with the nonequilibrium interfaces (domain
boundaries) formed during the quench. E(T) has to be
determined from equilibrium Monte Carlo calculations.
For the dilute systems, such calculations are performed
by equilibrating an initially compact and approximately
circular domain of uniform ordering. If scaling holds, o

one has R(t) AE(t) . It is not obvious, however, that
this relation holds for dilute systems.

An additional measure of the length scale which we

have used for the fourfold degenerate ordering is the
Bragg peak intensity

/
4 ) 1/2

L(&) = vN ) g,'(t) (6)
)

which is calculated by means of the global antiferromag-
netic order parameter values, g;(t), for the four different
domains. Since I,(t) is not a self-averaging quantity, zs

and hence is very diKcult to determine accurately for
low degeneracy, we only use L(t) as a length-scale mea-
sure for p = 4; cf. Ref. 24.

10
p-4
c= O'L

kBT J=1.50

10'
10

I

10
I

10 t 10

lattices. In order to allow for parallel updating of the sites
in each sublattice, it is required that the spins within a
sublattice have no direct interaction bonds. For the gen-
eral Hamiltonian, Eq. (3), this implies a minimum of 16
sublattices. The dynamics of Sec. IIB is then imple-
mented by randomly selecting one of the sublattices and
simultaneously updating a certain fraction, f, of the sites
of that sublattice. The choice of f will be discussed later.

Use of vectorized or parallel updating algorithms in the
study of time-dependent Monte Carlo processesz~ 7~ 7z

raises some fundamental problems regarding the nature
of the discrete time parameter. Obviously, the master
equations describing sequential and parallel updating are
very different, and there seems to be no way of rigor-
ously proving that they should lead to the same average
dynamical evolution of the system. There is now some
evidence~z that, as far as relaxation out of nonequilib-
rium is concerned, the Monte Carlo time parameters of
different updating algorithms are linearly related as long
as these algorithms are built on spatially local decision
criteria. An interesting situation of a nonlocal collective
Monte Carlo updating algorithm is that of Swendsen-

Wang dynamics, s which leads to exponential relaxation
out of nonequilibrium contrary to a power-law relaxation
for local dynamics. 7~ In the absence of a rigorous theory it
is, however, necessary to test every new vectorized, par-
allel, or multispin-codingz updating algorithm against
well-known conventional single-site updating algorithms
applied to the same problem in order to examine the re-
lationship between the time scales.

In the present implementation we have varied the
fraction, f, of updated sublattice sites ranging from f
= 16/N to f = 1. The lower limit of this range corre-
sponds to conventional random visitation of single lattice
sites; the upper limit corresponds to maximum vectoriza-
tion and simultaneous visitation of all sites in a sublat-
tice. In Fig. 2 are shown, as an example, the data for

B.Vectorized dynamics

We have developed an updating algorithm for the
model dynamics which can be implemented on a vec-
tor processor. This algorithm is based on a generalized
checkerboard principle by which the lattice is subdivided
into a number of equivalent interpenetrating square sub-

FIG. 2. Log-log plot of the excess energy per spin, AE(t),
vs time (in units of MCS/S) for the p = 4 model on a 100
x100 lattice at a quench temperature knT/J = 1.50 and c
= 0%. Data are shown as obtained by a vectorized Monte
Carlo checkerboard algorithm which updates a fraction, f, of
the sites in the 16 sublattices into which the lattice is divided.
The curves correspond to f = 16/100, 0.25, 0.50, 0.75, and
1.
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tion, rather than the average domain size, R(t), requires
extensive statistics on large systems. Hence, for econom-
ical reasons, we have selected a few cases for closer anal-

ysis, specifically c = 20% at k13T/J = 0.50 and c = 50%
at k~T/J = 0.25. Characteristic time evolutions in these
cases of configurations on a 200 x 200 lattice are shown
in I"ig. 1'2. Within the time span studied, these two cases

in turn present greater demands to the statistics of the

simulations.

8. Domain-size distribution and dy'namical scaling

A characterization of the scaling properties of the

growth process via the full domain-size distribution func-

« I 4

49877149
I I II II Ih

10
I I i ~

t=2 36 648

I4
I ll

I
I
I

I

I

J

'« 'SI

I
«

la«

lm I

Iwl
I'p «

«

I

I

«

«I

I ~

I

I

«

I

I

«1
««««

« II

« IS «'«

~, II 'I

I I

« I I«
«

«««
«

10

I

ll

III ht, I II J J

36
'I

«.
I

« ' I ' ' I

648
««

I ir. .~I 1 Sl) « ~ «'I II

49877149t=2

„Ii

II »I

'l I'

t=2

«ll

I

I
J I

I,

I

«I!II III,
'.—: "!,':tlII'I! &III

«««

«
I ", :, , ««

I~ ii«
I Ill II"

»«, I IIIII
I 1 «

'jI i lil
I II II I ~ ~ I J

9 I li"«&
I ~ . I' . I' gl

«I«
«

,

'!I fIII I I f
IIIII'

,

I

.
--

IfhjII!

1062

I fl!! II I'I I'Ifffh'

Il II I II ii

'I i .

,I

' )I«««III««
ll

I I
iiii«l

' ~ ! III!

«II II,

"l! I'll'I '

',
I I. le/ IIl

'

49876

I

h«i

ll I

jj

7745

~fI««

', I 5
I I 4

««sg I I III1 IIIIII 11,!I I ~ . :«
mI i~~«««' «««lil I IIIIIII ««I I I ~ -. . . IINI &, I

24215

««Jlsaf!4!«;;I4« II««FI'~Yh

I III I II l
I' «I«—:il

II"I. ,

'

i5.~ =-'I

t=2

' -~ + «««« Il I i««%BI
ai r

a ~

'="~ -'
V, l~e'fII

~ I imgiih

i « ~ iWli 6 &~Rl;.:.~WI

„;i". lI. I
«

' '«4! "If I
;j ~lI

I glI

, , Ili'IIff14 e

I
wff4!

«'

342

II'I

I

44291237322 6289

J.'0 -"-Ac~a"b
58

««. +I1 r ««h I

I

' .«Ii«ii««III . «I
I „ i«l I, j - ",«II!!,«II(I I

4712 12425 49876

—,«41",lllll! '«t Vjff'I)I'. ',I»" ll'I

) V!I(I'"I!II«~ gllIII 'P

648

50Vo

k T J=O5O

FIG. 8. SnaPshots of microconfigurations for the J« = & model as they evolve in time t (in units of MCS /S) after quenches to a
«mP««u«&aT/1 = 0.50 for vacancy concentrations c = 2~/o, 5%, 10%, 20%, and 50%. The two tyPes of antiferromagnetically
ordered domains are indicated by grey and black regions. The snapshots refer to lattices with 100 x 100 sites.



4] YNAMICS OF ORDERIN~ PROCESSES IN ANNEALED

20% .
4 -; „-. :iii

I I

a. I

t =2Q

L), «L
W ~

~ ~

I,.
iI{I:I &t

$ ~ ~

~

"I,', ~

8O

'«„«
~ '

II

281 723" 19Q6
'

5Q81

50'L +'&gP'1I,Nl

e,'r.t g'4

m- I

1Q268

L

ILM, « i

~ ~
'L»g, , L

QLL ~
t'' ')-

) ~

952

p
'I

'I ~

L

a) .
L

LLg

Lf
t

k: ~-.'. g
--ta

I' '

~J

~ I

Qlt ~(n
L

LLt
L

~ LL
L

L

L III L

I

~,h

19Q6
I' ~

at

3837'
«

~
Lj ~

1Q268 2Q2QQ

8P0

0, ~

t ~ L

L ~ L"I)g" ".

IIt{-.
46'

I ~

52148'

tp8 ~ L L ~

~,;IF
' lt'-", ~, -'

~
~ L I

(
« ~ ~

~ 'Q ~ )ott,

1Q23

t
L /%Lee

aP
L

Lt, ~

~ ~

19g2

s

~ Ilail&,
'

39QQ
Lt' ~

~ 0 ~ I

A ~

L

~
1 ~

I II

L

~ l

~,

attt I
~ (I

~ ~
L

'
I ~

L
~ ~ L

~ ~

5Qg25

1 ~

at ~

' ~

..t-. '"

1QQ2g

L

t

„'.& ', .~ll':

2258g

,Lt

I
~ ~

P= 2 k

thatt the growth ro
'

o hp o

1 scaling funct'

one
representation

e log-normal f

orma ity. 4

are similar withi respect to
anciesat th d n b "nd""' T

e case of c = 50% p

and 14 a
f

g r al fR(T
y aimcal sc lion ingdn '

aa ing functions P
e s in Figs. 13 and 14. It '

is seen

FIG g

B =050

e

tarot

&pcs of order a
s to a tern er

odel as the

ar d &ted b
P iature &~T~J

y evolve, n &;

@c& regions. Th
g vacancy con

""' «MCS/S

~ e con figur t'
oncentrations —

into the

lection

r f
ns c 2pof 5 y

a lattice ~'th
o, and

wi 4p & 4o sit

L

I ~ L
L

R{t}

20-

10-

0

p=2
kBT/J =0.25

10 10 10

.5'/o

2'
5L

10Vo

2Q'4
5Q%

410 t 10

40-
R{t}
30-

20-

10-

p= 2

10 10 10

2%

5%

10%

2Q%

5Q%
t 410 t 10

FIG. 10. Sem i micemilogarithmici mic plot of thee ata in F'lg. 3. FIG. 11. Se ri mSemilogarithm'ri mic plot of tho t edatain F'lg. 5.



7012 PETER JIVAN SHAH AND OLE G. MOURITSEN 41

~~I P'

2

~MSWGFV

I

~ I I

50%

80 1425

-~~4 P ~, ~a+I

r. &, 'Q ) yIi' e.
IQ I

&:;.e a
~ ~ +~) a

5765 18476

FIG. 12. Snapshots of microconfigurations for the p = 2 model on a 200 x 200 lattice as they evolve in time t (in units of
MCS/S) for quenches to a temperature k&T/J = 0.50 for c = 20% and a temperature k~T/J = 0.25 for c = 50%. The two

types of antiferromagnetically ordered domains are indicated by grey and black regions.

V. DYNAMICS OF FOURFOLD-DEGENERATE
ORDERING

P (R,t)

0.20-

Since the analysis and presentation of the computer-
simulation results for the p = 4 model with nonconserved
order parameter [n = 0 in Eq. (3)j are very similar to
those given in Sec. IV for the p = 2 model, this section
will be very brief, mainly emphasizing the similarities

0.15- 0.20
P(R,U

0.10-

0.05- )

0
0.1 5-

0.1 0-

0 10 15 20 25
R(t}

Q.05-
.25

FIG. 13. Domain-size distribution function, P(R, t), for
quenches of the p = 2 model to a temperature k&T/1 = 0.50
for a vacancy concentration c = 2570, cf. Fig. 12. The maxi-
mum of P(R, t), moves to the right as time elapses. Results
are given for the following times: t = 4, 9, 19, 38, 79, 164,
and 340 MCS/S. The inset shows the corresponding dynamic
scaling function, P(x) in Eq. (7), where s = R(t)/R(t) is the
scaling variable.

Q.QQ
0 10

R()
4Q

FIG. 14. Same as Fig. 13 for k&T/J = 0.25, c = 50%.
Results are given for the following times: t = 79, 164, 340,
708, 1424, 2853, 5765, 11764, and 18 475 MCS/S.
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P(x)
p=2

C= 50Vo
kBT J =0 25

10
FIG. 15. Same data as in Fig. 14 plotted in a semilogarith-

mic diagram to reveal the log-normal shape of the dynamical
scaling function, P(x), for the domain-size distribution.

accumulation at the interfaces and precipitation inside
the domains are observed during the fourfold-degenerate
ordering process of the dilute system as for the p = 2
model; cf. Figs. 8 and 12. As expected, the domain pat-
tern is more compact the higher the ordering degeneracy
is. Also in the case of the p = 4 mode' the dilution leads
to a slowing down of the growth, as seen quantitatively in
all three quantities, R(t), B.E(t), and L(t); cf. Figs. 17—
19. The slowing down is most strongly signalled in the

R(t) data. Replotting the R(t) data on a semilogarith-
mic scale, as demonstrated in Fig. 21, shows that also
for the p = 4 model there is, at late times, a crossover
to an efFectively logarithmic growth mode for the diluted
system.

The dynamical scaling properties of the p = 4 model
are demonstrated in Fig. 22 which shows the domain-
size distribution function, P(R, t), and the corresponding
scaling function, P(x), at the temperature k~T/J = 0.25
for c = 5%%uo. Again we note that dynamical scaling is

fulfilled over a substantial time range.

and differences between the two models.
The pure system, c = 0, has previously been studied

rather extensively z4 z and is found to obey the Allen-
Cahn growth law, and the structure factor is found to
exhibit dynamical scaling. In Fig. 16 we deliver addi-
tional evidence for dynamical scaling in this model by
presenting the scaling function, P(x), for the domain-
size distribution function. The data for R(t), EE(f),
and L(t) in Figs. 17—19 for c = 0 show that the algebraic
growth law, Eq. (1) with n = 2, is fulfilled.

We then turn to quenches of the dilute model. In
Fig. 20 is shown the time evolution of microconfigurations
for c = 5%. The same general phenomena of vacancy

R(t} —0.5Vo

P(x) C= P%
k T J=0.25

R(t}

kBT(J = 0.25

0.5%

10
I

10 10 10 10

3
FIG. 16. Dynamical scaling function for the domain-size

distribution function, P(x) in Eq. (7), for quenches of the

p = 4 model at c = O%%uo to a temperature k~T/J = 0.25.
Results are given for times t in the range from 10 to 300
MCS/S for a system with 200 x 200 sites.

FIG. 17. Log-log plot of the average domain size, R(t), vs
t (in units of MCS/S) for quenches to two different temper-
tures, kaT/J = 0.25 and 0.50, for different vacancy concen-
trations, c, in the p = 4 dilute Ising model. For the sake of
clarity, the various data sets have been appropriately trans-
lated along the vertical axis.
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nE{t}
k Z/J=0. 50 L{t)

p —4
kBT/J =0.50

0.5Vo

0.5 /o

kBT/J = 0.25 10
L(t)

kBT/J = 0.25

-2 '

10 10 10 10 10 10
' 210

I

10 10 10

FIG. 1g. Same as Fig. 17 but for the excess energy b E(t)
in Eq. (5).

F!G.19. Same as Fig. 17 but for the length measure I(t)
in Eq. (6).

VI. COMPARISON WITH EXPERIMENT

It is well known in materials science that impurities,
vacancies and other types of imperfections have dramatic
effects on grain-boundary mobility. 7s Such effects are
of a rather general nature and are observed also, e.g. , in
impure systems with solitons and discommensurates.
As pointed out by Cahnr in the case of grain growth,
the important concepts in such problems are the grain-
boundary velocity relative to the diffusivity of the impu-

rity (vacancy), as well as the impurity's interaction with
the grain boundary: If the impurity dispersion is static,
the growth will become pinned; if the impurity diffusiv-

ity is very fast compared to the grain-boundary velocity,
the boundary mobility will not be affected by the impu-
rities. This is also borne out by the computer-simulation
study of the dilute Ising ferromagnet by Srolovitz and
Hassold4s who varied the vacancy diffusivity.

For real materials it is difFicult to determine the -precise
relation between grain-boundary diffusion and vacancy

13 60 128 280 615
p= 4 kBT/J = 0.25

FIG. 20. Snapshots of microconfigurations for the p = 4 model on a 200 x 200 lattice for c = 5+0 as they evolve in time t
(in units of MCS/S) for quenches to a temperature k&T/J = 0.25. The four types of antiferromagnetically ordered domains
are indicated by black and three diferent grey-toned domains.



DYNAMICS OF ORDERING PROCESSES IN ANNEALED. . . 7015

R(t)
kBT/J =0.50

Q.5'L

R(t)

I

10
' 210

I

10 1Q

FIG. 21. Semilogarithmic plot of the data in Fig. 17.

or impurity difFusion, a situation which becomes further
complicated by the fact that the diffusivity depends on
temperature and hence varies during the quench. In the
present model study we have restricted ourselves to the
case where the boundary and the vacancy mobilities are
comparable during the quench. Furthermore, the inter-
actions between the vacancies and the boundary are cho-
sen to be attractive; cf. Eq. (3). We believe that the
general results of our study should apply, at least qualita-
tively, to a number of systems. Unfortunately, only a few
systematic time-resolved experimental studies have been
reported on the effect of mobile vacancies or impurities
on the ordering dynamics of systems with order-disorder
transitions. %e shall here discuss our results in relation
to these studies.

In a high-resolution LEED study Zuo et al. recently
studied the ordering dynamics of an oxygen monolayer
chemisorbed on W(112) doped with various amounts of
nitrogen impurities. The symmetry of the oxygen or-
dering is that of the p = 2 model of the present work.
Zuo ef al. ~s found a distinct crossover from algebraic
growth in the pure oxygen monolayers ~s (described by
the Allen-Cahn law) to a progressively slower growth
mode as the impurity content is increased. This slow
growth mode was, within the scatter of the data, found to
be consistent with a logarithmic growth law, R(t) in'.
Zuo et sl. ~s interpreted their finding within the theoret-

P (R,t} 1.5
P{x)

0.20-

0.1 5
0 1 2 3 4

0.10-

0.05-
C= 5'lo

k T J=0.25

0
0 1O 2O 3O 40

R(t)

ical framework of the random-field Ising model, 's i.e., in
terms of quenched randomness. However, as we have re-
cently pointed out, surface diffusion data including
prefactor and activation energy for 0 and N on tungsten
surfaces in the pertinent temperature range (800—900 K)
suggest that the de'usion of the nitrogen impurities is
similar to that of oxygen. Therefore, our model predic-
tions should apply when we interpret the mobile nitrogen
impurities as a site dilution which does not participate
in the oxygen ordering and does not couple directly to
the order parameter (which is required by the random-
field Ising model). sz Therefore, we reinterpret the LEED
results as a manifestation of slow, possible logarithmic
growth, due to annealed randomness.

The ordering dynamics of oxygen on W(110), which
has the symmetry of the p = 4 model, has not been
studied systematically in the presence of impurities. The
experimentally observed late-time slowing down of the
growth in supposedly pure oxygen monolayers has been
ruled out experimentally as being due to impurities. In
the light of the results of the present work, it should
be pointed out that any analysis of impurity-controlled
ordering in 0/W(110) should consider the possibility
(depending on the 0-impurity interactions as well as
impurity-impurity interactions) that the mobile impuri-
ties may decouple the nearest-neighbor O-O interactions

FIG. 22. Domain-size distribution function, P(R, t), for
quenches of the p = 4 model to a temperature I'nT/ J = 0.25
for a vacancy concentration c = S%%uo, cf. Fig. 20. The maxi-
mum of P(R, t) moves to the right as time elapses. Results
are given for the following times: t = 9, 13, 19, 28, 40, 58,
87, 128, 189, 280, 414, 614, and 911 MCS/S. The inset shows
the corresponding dynamic scaling function, P(x) in Eq. (7),
where x = R(t)/R(t) is the scaling variable.
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and form a (2 x 2) superstructure.
Ordering processes in quenched off-stoichiometric al-

loys constitute a diR'erent class of systems in which dif-

fusion of excess material may take the role of diAusion of
impurities and vacancies. In these systems the ordering
dynamics has to cope with the excess atoms. A partic-
ularly beautiful experimental demonstration of this phe-
nomenon was recently reported by Shannon et al. i~ who
studied by time-resolved x-ray scattering the ordering dy-
namics in Cuo 79Aup zi alloys. These authors found that
the extra Cu gives rise to a crossover from an algebraic
growth law (with the Allen-Cahn exponent n = z) in
the (pure) stoichiometric system, ia i4 (CusAu), to a log-
arithmic growth law off stoichiometry; cf. Eq. (2) with
m =I—2. Furthermore, Shannon et al i4

sug. gested pic-
turing the ordering process as one in which the extra
Cu precipitates into the antiphase domain boundaries.
Since we do not expect the findings of the present pa-
per to depend on the spatial dimension, we note that
the experimental findings for the ordering dynamics in

quenched oR'-stoichiometric alloys is in accordance with
our computer-simulation results for the growth law. Fur-
thermore, the picture put forward by Shannon et al. i"
(see also Ref. 47) of accumulation of excess material in
the domain boundaries is supported by our computer-
simulation snapshots; cf. Figs. 8 and 20.

VII. CONCLUSIONS

In this paper we have studied by Monte Carlo
computer-simulation techniques the inhuence on the or-
dering dynamics of annealed dilution. Twofold (p = 2)
as well as fourfold (p = 4) degenerate ordering has been
studied. The ordering dynamics in the case of a noncon-
served order parameter has been investigated as a func-
tion of temperature and degree of dilution. Our main
result is that, independent of the temperature and the
ordering degeneracy, there is a distinct crossover from
an algebraic growth law, R(t) t'~z, to a much slower
growth mode as the system becomes diluted. This slower
growth mode may be described as an effective logarithmic

growth law, R(t) lnt. These results are in accordance
with recent experimental studies of the ordering dynam-
ics in impure overlayers chemisorbed on solid substrates
and in off-stoichiometric alloys.

Another important result is the finding of vacancy ac-
cumulation in the domain boundaries. As the vacan-
cies accumulate in the domain boundaries, the direct
domain-domain interactions become screened or even de-
coupled, implying that the curvature-driven pure-system
Allen-Cahn growth mechanism becomes ineffective. This
may provide a possible explanation of the logarithmic
growth behavior in the dilute system, since the growth
then proceeds via an evaporation-condensation mecha-
nism which is an activated process, and the time it takes
for two domains to merge depends on the size of the do-
mains. Since the order parameter is not conserved in this
process, the I.ifshitz-Slyozov theory should not apply.

However, since we are dealing with a phase-separation
problem between phases of difFerent density, this theory
may still be pertinent, 79 i.e. , R(t) t ~ . We cannot ex-
clude, on the basis of the present data, that the growth
at late times crosses over to the Lifshitz-Slyozov law. It
appears from our calculations that there may be two dif-
ferent morphological regimes for the ordering in annealed
dilute systems, cf. Figs. 8 and 12. For a very high dilu-
tion, e.g. , c = 50%, we are in a droplet regime, whereas
for less dilution, c = 20%, a convoluted percolation struc-
ture appears. These different regimes are similar to those
observed in tricritical quenches in binary mixtures. 47 Our
results indicate that, whereas the growth behavior is ef-
fectively logarithmic in the percolative regime, within the
droplet regime an effective algebraic growth law is effec-
tive with a rather low exponent, n 0.16. These state-
ments seem to hold independent of temperature. Hence,
it appears that a low density is not sufficient to relax
the condition of conserved order parameter which is re-
quired for the Lifshitz-Slyozov evaporation-condensation
mechanism to apply.

We emphasize that we have no theory for the two types
of slow growth behavior in the dilute system and wish to
remark that, although this behavior is also described by
an effectively logarithmic growth law, it is not covered by
either the theory of the random-field Ising modelsi s2 or
the theory by Huse and Henley42 for a quenched dilution.

For both types of ordering degeneracies our results
show, for both the pure and the dilute systems, that
the domain-size distribution function (which is approxi-
mately log-normal) obeys dynamical scaling over a sub-
stantial time range. On the other hand, the different
measures of length scale, specifically the average domain
size R(t) and excess energy AE(t), no longer obey the
relationis R(t) b.E '(t). This implies that b,E i(t) is
not a reliable measure of the total domain perimeter den-

sity, which was also observed by Srolovitz and Hassold s

for the dilute Ising ferromagnet.
We finally wish to point out that the model proposed

in the present paper for studying ordering processes in

highly dilute systems with open boundaries may serve as
the basis for more involved models of compaction pro-
cesses in condensed matter. Specific problems involve

annealing of radiation-damaged materials and sintering
processes in metals and ceramics. Some preliminary work

by Srolovitz et al. a on high-p-state dilute Potts mod-
els has revealed the temporal evolution of grain-size and
pore-size distribution functions in two dimensions.
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