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Critical dynamics of the two-dimensional kinetic Ising model:
High-temperature series analysis of the autorelaxation time
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For the two-dimensional nearest-neighbor kinetic Ising model without conservation laws, we

derive on the square lattice the high-temperature series expansion of the autorelaxation time, to the
eleventh order. With use of ratio methods and Fade approximants, we obtain for the dynamical
critical exponent h~ the value 2.09+0.03, which implies the value 2.34+0.03 for the linear relaxa-

tion exponent z. This value is about 10% larger than several other recent estimates. This
discrepancy is possibly due to the relatively small number of nonzero coefficients in the series expan-
sion.

I. PREVIOUS DETERMINATIONS OF
THE DYNAMICAL EXPONENT z

The computation of the dynamical critical exponent z
in the kinetic Ising model (or Glauber model)' has been
the subject of many investigations over the past 25 years.
In recent years researchers have undertaken the compu-
tation of z with the use of ever faster computers and ever
more ingenious algorithms for Monte Carlo simula-
tion, Monte Carlo renormalization group, " Monte
Carlo finite-size scaling, ' ' or microcanonical simula-
tion. ' ' These massive numerical approaches have be-
gun to overshadow other methods like, for example,
real-space renormalization group, traditional series-
expansion analysis, ' or field-theoretical renormaliza-
tion. ' The accuracy claimed by the different authors
is usually rather modest (about 10—1 % on the deter-
mination of z), but seems to have become a prime target
in very recent works. For example, the authors of one of
the latest Monte Carlo simulations claim an accuracy of
0.25%. Obviously, the accuracy which is reported refers
to the intrinsic statistics of the analysis and does not take
into account possible systematic errors.

Our attention will be restricted to the two-dimensional
kinetic Ising model (on a square lattice) without con-
served densities (model A in the terminology of Hohen-
berg and Halperin ). To date the value of z for this mod-
el is still not reliably known, in our opinion, because
different research groups continue to obtain different
numbers which can only be made consistent with one
another when sufficient large uncertainties (typically
10%) are admitted. We will not review the different pre-
vious approaches and estimates of z, but only indicate
some noteworthy facts about the value of z.

For the linear relaxation exponent z there exists an
exact lower bound

z ~ 1.75,
and many of the recent determinations locate z in the in-

terval

2+z +2.2, (2)

with a majority of estimates close to the commonly ac-
cepted value

z=2. 15 . (3)

Curiously, the most recent estimate to our knowledge
(and for which the smallest error bars are reported) is

z =2.076+0.005, (4a)

from Mori's and Tsuda's Monte Carlo simulation in
1988. This estimate was preceded in 1987 by

z =2. 132+0.008, (4b)

from Monte Carlo finite-size scaling work by Ito et al. '

Both estimates feature very small error margins but ex-
clude each other. Finally, there has been the intriguing
conjecture of Domany in 1984,

z=2 (5)

with possibly a logarithmic correction factor to the alge-
braic divergence of the relaxation time.

II. SCALING HYPOTHESIS FOR
THE AUTORELAXATION TIME

+g W([sI, —s }P([s{,—s, t) . (6)

The transition rates 8'obey, as usual, "detailed balance":

W([sI)P([s{}=W([sI,—s }P([sj,—s ),
where P( [s I ) is the equilibrium probability distribution

Consider a d-dimensional nearest-neighbor kinetic Is-
ing model without conserved densities. The time evolu-
tion of the probability P([sI, t) of a spin configuration
[s ] at time t is given by the master equation

B,P([sI, t}=—g W-([sI)P([sI, t)
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expH( j$ j )/Z, with H(I$ j ) the Hamiltonian and Z the
partition function. Because of the detailed-balance con-
dition, P ( t $ j ) is stationary. Detailed balance still leaves
a lot of freedom in the choice of 8'. In one dimension
and for a special choice of 8' the Glauber model is exact-
ly solvable (Glauber's solution' ). No exact solutions have
been obtained in higher dimensions. Much attention has
been devoted to the study of the critical slowing down of
the relaxation of the order parameter, characterized by
the dynamical exponent z {or h=zv, where v is the static
correlation length exponent). Exact calculations of z
have, as a rule, been possible only in the one-dimensional
model or at the level of the mean-field theory.

Scaling hypotheses or "scaling laws" for dynamical
critical phenomena have been formulated by Halperin
and Hohenberg. Afterwards, renormalization-group
theory for critical dynamics has been developed, combin-
ing space rescaling ( r ~r ' = r /I ) and time rescaling
(r ~ t'= t /I'). "

Consider the dynamic correlation function

r(K, + I (E K,—),0)= I '+ +"r(K,O),

which implies, with e—=
~
T —'r,

~

/'r„
(16)

QK, O) ~e (17)

where the autorelaxation exponent 5z is given by '

b, z = (z —d +2 rI)v =b——2P, (18)

since A=zv and 2p=(d —2+rl)v. The exponent p is the
static critical exponent of the order parameter.

(10) reduces to the scaling law for the static correlation
function. The second is for r =0, in which case (10) be-
comes the scaling law for the autocorrelation function

G(K, O, t)=($;{t}$;(0}).

Because 6 (K,O, O) = 1, the scaling law for the autorelaxa-
tion time r(K, O) =A(K, O) takes the form

6 (K, r, t) = ($, (t)$J(0)), (8) III. HIGH-TEMPERATURE SERIES EXPANSION

for Ising spins $; (t)=+1, with nearest-neighbor coupling
K =J/k&T, and where r is the lattice vector connecting
sites i and j, and the average is defined as

($, (t)$ (0)) —=+$ P(I$ j )g $ P(I$'j, t
~ j$ j,0) . (9)

Is } Is' }

In this expression P(j$'j, t~I$j, 0) is the probability of
the configuration I$' j at time t, given I$ j at t =0.

For the dynamic correlation function, the following
scaling law applies:

For the kinetic Ising model on the two-dimensional
square lattice we have computed the autorelaxation time
r(K, O), in a high-temperature series expansion to the
eleventh order in u—= tanhL. Previously this series was
known to the ninth order, but analyzed to the seventh
order only. ' This means that we have six terms at our
disposal whereas previous analysis was based on four
terms only.

Using the standard formalism for the Glauber model,
one derives

G(K, + I (K —K, ), r/I, t /I') =I +"G(K,r, t), (10)

where r =
~
r

~ & yr = 1/v, and g is the static critical ex-
ponent of the correlation function. Relationship (10) is
valid for K near the critical value I( „and for r ~ ao, as
well as t ~ (x) . A time-independent scaling law can be ob-
tained by taking the integral over t of (10), taking into ac-
count that the dominant contribution comes from the
long-time domain (critical slowing down). One obtains
the relaxation time A,

and

r(K, O)=+$;IX '$; jP(I$j),
Is}

where

X —=g W ( t $ j )( 1 —
p~ ),

G(K, O, t)=g $; Ie '$; jP( ($ j )

Is}
(19)

(20)

(21)

A(K, r)= f 6(K, r, t)dt,
0

and the scaling law

A(K, +I (K —K, ),r/I)=I +" 'A(K, r), (12)

~(K, r) =A(K, r) /G (K, r, t =0),
takes the form

for K =K„and r~ ~. Finally, a scaling law for a nor-
malized relaxation time v, with

with spin-flip "operators" p, which act as follows on a
function A of the spins:

p A ($)». . . $J (&$)&$~+)& ~ ~ ~ )

= A ($, , . . . , $ „—$,$ +„.. . ) . (22)

Consequently, ~ can be expressed as a sum of static
(multi)spin correlations.

We have derived the high-temperature series in the
form

r(K, +I (K —K, ),r/I)=1 'r(K, r), (14)
N

r(K, O)= g &2„(tanhK)",
n=0

(23)

for K =K, and r ~ ~ . Note that 6 (K, r, 0) is the static
correlation function.

The scaling law (10} applies in the same form in two
other situations. The first is when t =0, in which case

and calculated a„, for n =0, . . . , 11. The technique we
have used follows closely the method outlined by Yahata
and Suzuki, and Oitmaa. For the transition rate 8',
we have chosen a standard form
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W~ ( {s ) ) =— 1 —s tanh K g sk
1

k

(24)

where k labels the (four) nearest neighbors of s . The cal-
culation relies on the high-temperature expansion for the
operator X

~—1 y ~—
1( Vg

—1)k

k=0
(25)

a„=O, for odd n,
a0=1,
a2=8,

a4 =64,

a6 = 1480/3,

as =91 808/27,

a, 0
= 18 074 824/729 .

(27)

IU. ANALYSIS OF THE SERIES

We have applied the ratio method and the technique of
Pade approximants to the eleventh-order series in
u = tanhE. Using the exact value for the critical coupling
in the nearest-neighbor model (tanhK, =&2—1), we ob-
tain the biased ratio-method estimates for 6 ~ shown in
Table I.

Clearly, the estimates based on alternating terms (third
column) behave much more regularly for n )6 than the
estimates based on successive terms (second column). In
a previous ratio-method analysis of the series only the
terms for n (7 were available and no conclusion could be
reached. Before drawing our conclusion we turn to the
complementary method of Pade approximants.

Pade approximants were calculated to the logarithmic
derivative of the series expansion. When this method was
applied previously for n (7, two estimates could be ob-

where Lo—:X(K =0) and V=—Xo—X. Note that
V~ 1/T for T~ao. When 2 ' acts on a spin s,
numerous "clusters" of spins are generated through the
action of V and its powers. Finally, the thermal average
of s;X 's; is obtained in the form

ill J
r(K, O)= g R~fi(K)g g s P({s]), (26)

j=1 Is} i =1

where m is the number of terms relevant to the eleventh
order in U =tanhK, R~ is a rational number, f, a function
of K which results from the action of powers of V, and
n =0, 2, 4, or 6, the number of spins in the static multi-
spin correlation (n =0 corresponds to a factor 1). The
calculation of the multispin correlations must be done to
the ninth order for n =2, to the seventh order for n =4,
and to the fourth order only for n =6, using standard
techniques. To carry out the final sum for obtaining 7,
we have employed the REDUCE program for symbol ma-
nipulation.

Our results for the coefficients in (23) are

TABLE I. Biased estimates of the critical exponent 5„ for
the autorelaxation time using ratios of successive (second
column) and alternating (third column) terms, and v, =0.41421
(NA means not available).

2
4
6
8

10

1.373
1.745
1.968
1.730
2.255

NA
1.745
2.042
2.002
2.082

2.06 b q 2. 11 . (28)

We proceed to combine our estimates from the biased
alternating ratio method with those from the biased Pade
analysis to obtain, in the ninth order, 2.00~6„(2.31,
and, in the eleventh order,

2.06(5~ (2.11 . (29)

Note that, in the eleventh order, the estimate from the ra-
tio method is, for the first time, within the interval of esti-
mates from the Pade analysis. Consequently, our final

TABLE II. Estimates of the critical point v, (in parentheses)
and exponent b ~ using Fade approximants to the logarithmic
derivative of the series.

NA
(0.375)
1.261

(0.489)
6.200

(0.304)
0.138

(0.378)
1.333

(0.343)
0.976
(0.409)
1.901

Negative
pole

(0.453)
6.030

tained, 6„=1.25 and h~ =1.33. Our results are shown
in Tables II and III.

In Table II we show the results of an unbiased analysis,
giving estimates for both the critical point u, =tanhE,
(with exact value &2—1=0.414) and the exponent 5„.
The estimates for the critical point are in parentheses.

The results in Table II are not well behaved. The only
reasonable estimates are found for N =D =4. Note how
strong the correlation is between the errors in the esti-
mates of u, and those of 6„.Moreover, h„appears ex-
tremely sensitive to errors in the estimates of v, . (The
previously obtained estimates are those for X =O, D =4
and N =2,D =2.)

Much better behavior is found in the results from the
biased Fade analysis (where the exact U, is assumed), in
Table III. In view of the sensitivity of 6„ to errors on u„
this improvement is no surprise. If the analysis were re-
stricted to the ninth-order series, the conclusions would
already be quite meaningful, namely, 2.05 (6„+2.31.
Analysis of the eleventh-order series narrows this interval
to
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TABLE III. Biased estimates of the critical exponent 6„
from the residues of the Pade approximants to the logarithmic
derivative at the pole U, =0.41421.

4.205
2.049
2.101

2.313
2.112

2.063

conclusion (29) is not different from the conclusion (28)
reached on the basis of the Pade analysis alone.

We can summarize our result in the form

5„=2.09+0.03 .

For the exponent z this implies, in view of (18),

z =2.34+0.03 .

(30)

(31)

This result is about 10% larger than several recent results
from other works. ' ' ' ' Clearly, the number of es-
timates on which our result is based is rather small and
therefore both the numerical value and the error margin
cannot be considered authoritative. Qualitatively, our re-
sult agrees with those of other recent works in indicating
that z &2, and thus suggesting that Domany's conjec-
ture (z =2) is not valid in the d =2 Ising model. How-
ever, if it is true, as Domany suggested, that a logarith-
mic correction factor is present, then it would be more
difficult to rule out his conjecture because such correc-
tions may lead to a serious overestimation of the ex-
ponent. ' We have not searched for the possible presence
of such corrections because the series expansions are too
short for this.

In conclusion, our main result has been the derivation
of a longer series for the autorelaxation time, which al-
lowed us, for the first time, to carry out a meaningful
computation of its dynamical critical exponent A„by
means of high-temperature series analysis. In the highest
order of our analysis the estimates from ratio method and
Fade approximants are mutually consistent and lead to
an estimate for the linear relaxation exponent z which lies
about 10% away from the majority of recent authorita-

tive estimates. As far as comparison of our work with

previous series analyses is concerned, we would like to re-

mark the following. Clearly, our analysis of the autore-
laxation time is much better than previous analyses for
that particular function, simply because our series is

substantially longer. However, for other functions,
namely the linear relaxation time (and the nonlinear one),
the "old" series analysis by Racz and Collins predicted
a value of z which agrees with the commonly accepted
value today. They obtained z =2. 125+0.01. For ex-

plaining why our result differs by about 10% from theirs,
one must take into account that (i} different thermo-
dynamic functions have been used, (ii} in both cases the
analyses were based on series of reasonable but still short
length (twelfth order at most), (iii) a twelfth-order series
for the linear relaxation time contains 13 nonzero terms,
whereas our eleventh-order series for the autorelaxation
time has only six nonzero terms [see Eqs. (27)], and (iv)

the quoted error bars always refer to the intrinsic statis-
tics of the analysis and ignore possible systematic errors
due to possible errors in the series coefficients or to the
shortness of the series, for example.

In the light of the foregoing, it is plausible that our
statistics and hence our result suffer from the relatively
small number of terms in our series. This would then
mean that the autorelaxation time is intrinsically more
difficult to analyze, having only "even" coefficients in the
series expansion. It would certainly be worthwhile to
derive a still longer series in order to improve the accura-
cy, but this appears too costly within the present compu-
tational scheme.

It is important to pursue the direction we have taken
and to obtain eventually much more accurate values of
6„. Indeed, one can then use that information and com-
bine it with the most reliable estimate of 6 in order to
test the scaling relation (18), which we have taken for
granted in our discussion so far.
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